Changchun Institute of Optics,Fine Mechanics and Physics,CAS
Using genetic algorithm for magnitude model parameter identification | |
Tan B.; Zhou H.; Zhang J.; Tang L.; Guo S. | |
2007 | |
发表期刊 | Journal of Information and Computational Science |
ISSN | 15487741 |
卷号 | 4期号:4页码:1105-1112 |
摘要 | The parameter identification is actually a complicated nonlinear optimization problem. The traditional optimization algorithms are apt to be trapped into local minimum and the computation efficiencies are quite low. However genetic algorithm is a directed random search method, which has a good probability converge to global optimum. A genetic algorithm called Random Sampling and Space Reduction Genetic Algorithm RSSRGA was designed to evaluate magnitude model parameter. The method is based on Simple Genetic Algorithm (SGM). A set of magnitude measurement data was used to test the algorithms. Three GA models, SGA, RSGA (Rand Sample Genetic Algorithm) and RSSRGA were evaluated, and all models can find the satisfied solutions, but random sampling space reduction genetic algorithm has the fastest convergence rate. |
收录类别 | EI |
文献类型 | 期刊论文 |
条目标识符 | http://ir.ciomp.ac.cn/handle/181722/34598 |
专题 | 中科院长春光机所知识产出 |
推荐引用方式 GB/T 7714 | Tan B.,Zhou H.,Zhang J.,et al. Using genetic algorithm for magnitude model parameter identification[J]. Journal of Information and Computational Science,2007,4(4):1105-1112. |
APA | Tan B.,Zhou H.,Zhang J.,Tang L.,&Guo S..(2007).Using genetic algorithm for magnitude model parameter identification.Journal of Information and Computational Science,4(4),1105-1112. |
MLA | Tan B.,et al."Using genetic algorithm for magnitude model parameter identification".Journal of Information and Computational Science 4.4(2007):1105-1112. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Tan B.]的文章 |
[Zhou H.]的文章 |
[Zhang J.]的文章 |
百度学术 |
百度学术中相似的文章 |
[Tan B.]的文章 |
[Zhou H.]的文章 |
[Zhang J.]的文章 |
必应学术 |
必应学术中相似的文章 |
[Tan B.]的文章 |
[Zhou H.]的文章 |
[Zhang J.]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论