CIOMP OpenIR  > 中科院长春光机所知识产出
Using genetic algorithm for magnitude model parameter identification
Tan B.; Zhou H.; Zhang J.; Tang L.; Guo S.
2007
发表期刊Journal of Information and Computational Science
ISSN15487741
卷号4期号:4页码:1105-1112
摘要The parameter identification is actually a complicated nonlinear optimization problem. The traditional optimization algorithms are apt to be trapped into local minimum and the computation efficiencies are quite low. However genetic algorithm is a directed random search method, which has a good probability converge to global optimum. A genetic algorithm called Random Sampling and Space Reduction Genetic Algorithm RSSRGA was designed to evaluate magnitude model parameter. The method is based on Simple Genetic Algorithm (SGM). A set of magnitude measurement data was used to test the algorithms. Three GA models, SGA, RSGA (Rand Sample Genetic Algorithm) and RSSRGA were evaluated, and all models can find the satisfied solutions, but random sampling space reduction genetic algorithm has the fastest convergence rate.
收录类别EI
文献类型期刊论文
条目标识符http://ir.ciomp.ac.cn/handle/181722/34598
专题中科院长春光机所知识产出
推荐引用方式
GB/T 7714
Tan B.,Zhou H.,Zhang J.,et al. Using genetic algorithm for magnitude model parameter identification[J]. Journal of Information and Computational Science,2007,4(4):1105-1112.
APA Tan B.,Zhou H.,Zhang J.,Tang L.,&Guo S..(2007).Using genetic algorithm for magnitude model parameter identification.Journal of Information and Computational Science,4(4),1105-1112.
MLA Tan B.,et al."Using genetic algorithm for magnitude model parameter identification".Journal of Information and Computational Science 4.4(2007):1105-1112.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Tan B.]的文章
[Zhou H.]的文章
[Zhang J.]的文章
百度学术
百度学术中相似的文章
[Tan B.]的文章
[Zhou H.]的文章
[Zhang J.]的文章
必应学术
必应学术中相似的文章
[Tan B.]的文章
[Zhou H.]的文章
[Zhang J.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。