Changchun Institute of Optics,Fine Mechanics and Physics,CAS
Visual tracking and learning using speeded up robust features | |
Li J. Y.; Wang Y. L.; Wang Y. J. | |
2012 | |
发表期刊 | Pattern Recognition Letters |
ISSN | 0167-8655 |
卷号 | 33期号:16页码:2094-2101 |
摘要 | A speeded up robust features (SURF) based optical flow algorithm is presented for visual tracking in real scenarios. SURF construct invariant features to correspond the blobs of interest across frames. Meanwhile, new feature-based optical flow algorithm is used to compute the warp matrix of a region centered on SURF key points. Furthermore, on-line visual learning for long-term tracking is performed using incremental object subspace method, which includes the correct update of the sample mean and appearance model. The proposed SURF based tracking and learning method contributes measurably to improving overall tracking performance. Experimental work demonstrates that the proposed strategy improves the performance of the classical optical flow algorithms in complicated real scenarios. (c) 2012 Elsevier B.V. All rights reserved. |
收录类别 | SCI ; EI |
语种 | 英语 |
文献类型 | 期刊论文 |
条目标识符 | http://ir.ciomp.ac.cn/handle/181722/34113 |
专题 | 中科院长春光机所知识产出 |
推荐引用方式 GB/T 7714 | Li J. Y.,Wang Y. L.,Wang Y. J.. Visual tracking and learning using speeded up robust features[J]. Pattern Recognition Letters,2012,33(16):2094-2101. |
APA | Li J. Y.,Wang Y. L.,&Wang Y. J..(2012).Visual tracking and learning using speeded up robust features.Pattern Recognition Letters,33(16),2094-2101. |
MLA | Li J. Y.,et al."Visual tracking and learning using speeded up robust features".Pattern Recognition Letters 33.16(2012):2094-2101. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论