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A B S T R A C T   

This study takes into account the multi-point thermal model’s automatic adjustment mechanism. 
The combined heat balance test temperature is used as the genetic algorithm’s optimization target 
value. To minimize time and resources when running simulations, a back propagation neural 
network-based surrogate model between temperature and parameters is used. The best parameter 
set is discovered when the thermal model is modified at high temperatures. The overall tem-
perature distribution of the thermal model is significantly improved by the 50% decrease in the 
heat transfer coefficient X1 of the joint body and the multi-layer insulation assembly, among 
others. The model’s root-mean-square error before and after the adjustment is decreased from 
4.51 ◦C to 0.95 ◦C. The best parameter set has been effectively contrasted and validated by 
reintroducing it into the low temperature environment. When the model is updated, the root- 
mean-square error drops from 2.73 ◦C to 1.09 ◦C. Following the model update, the joint tem-
perature distribution is more in accord with the experimental findings, and all errors are within 
2 ◦C. Therefore, the finite element thermal model of a space manipulator joint can be altered 
using a combination of back propagation neural network and genetic algorithm.  

Nomenclature 

Q1 = sum of three kinds of external heat flux absorbed by the joint surface of the manipulator (W) 
Qsun = direct solar heat flux (W) 
Qref = Earth-reflected heat flux (W) 
QEair = Earth infrared-radiation heat flux (W) 
αs = solar absorption coefficient of the external joint surface 
εh = infrared hemisphere emissivity of the external articular surface 
Φ1 = solar irradiation angle coefficient for the outer surface of the joint 
Φ2 = Earth’s albedo angle coefficient for the outer surface of the joint 
Φ3 = Earth’s irradiation angle coefficient for the outer surface of the joint 
S = solar constant (W/m2) 
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Er = Earth’s albedo heat flux on the outer surface of the joint (W/m2) 
Ee = Earth’s irradiated heat flux on the outer surface of the joint (W/m2) 
A1 = effective heat transfer areas of the joint surface for solar irradiation (m2) 
A2 = effective heat transfer areas of the joint surface for Earth’s albedo (m2) 
A3 = effective heat transfer areas of the joint surface for Earth’s irradiation (m2) 
Q2 = heat produced by the heat source inside the joint (W) 
qi = heat source inside the joint (W) 
Q3 = radiative heat transfer between the joint and external environment (W) 
Q4 = radiation heat transfer between the manipulator joint surface and the cabin body (W) 
Q5 = energy change generated by the joint itself (W) 
mk = mass of a joint component (kg) 
ck = specific heat capacity of a joint component (J/(kg⋅K)) 
∂T
∂τ = temperature change rate of a joint component (◦C/s) 
T = temperature of a characteristic part of the joint (◦C) 
f = functional relationship between the temperature of each characteristic part of the joint and relevant thermal design 

parameters 
Φi = angle-of-view coefficient 
Ai = effective heat transfer areas (m2) 
mi = mass (kg) 
ci = specific heat capacity (J/(kg⋅K)) 
Ri = contact thermal resistance (K/W) 
ki = contact heat transfer coefficient (W/(m2⋅◦C)) 
X1 = heat transfer coefficient between multilayer insulation material and body (W/(m2⋅◦C)) 
X2 = contact heat transfer coefficient between side plate 1 of electric box and outside side plate 1 of electric box (W/ 

(m2⋅◦C)) 
X3 = contact heat transfer coefficient between electric box side plate 1 and electric box side plate 2 and 4 (W/(m2⋅◦C)) 
X4 = contact heat transfer coefficient between side plate 1 and top plate of electric box (W/(m2⋅◦C)) 
X5 = contact heat transfer coefficient between the bottom plate of the electric box and the inner plate of the side plate 1 of 

the electric box (W/(m2⋅◦C)) 
X6 = contact heat transfer coefficient between the bottom plate of the electric box and the outer plate of the side plate 1 of 

the electric box (W/(m2⋅◦C)) 
X7 = contact heat transfer coefficient between electric box side plate 1 and electric box top plate (W/(m2⋅◦C)) 
X8 = contact heat transfer coefficient between handrail pad and joint shell (W/(m2⋅◦C)) 
X9 = contact heat transfer coefficient between joint inner shell and joint end cap (W/(m2⋅◦C)) 
X10 = contact heat transfer coefficient between the joint inner shell and the joint shell (W/(m2⋅◦C)) 
X11 = contact heat transfer coefficient between the joint shell and the bottom of the electric box (W/(m2⋅◦C)) 
X12 = contact heat transfer coefficient of joint shell and female connection (W/(m2⋅◦C)) 
X13 = contact heat transfer coefficient between joint shell and ring gasket (W/(m2⋅◦C)) 
X14 = contact heat transfer coefficient between male connection and insulation mat (W/(m2⋅◦C)) 
X15 = contact heat transfer coefficient between female connection and insulation mat (W/(m2⋅◦C)) 
Y = objective function (◦C) 
xia = the lower limits of thermal design parameters (W/(m2⋅◦C)) 
xib = the upper limits of thermal design parameters (W/(m2⋅◦C)) 
z = the number of joint temperature measurement points 
TPi = predicted temperature at the ith measurement point (◦C) 
TAi = test temperature at the ith measurement point (◦C) 
F = fitness function (◦C− 1) 
T1 = electricity box + X measuring point temperature (◦C) 
T2 = electricity box -Y measuring point temperature (◦C) 
T3 = electricity box + Y measuring point temperature (◦C) 
T4 = joint shell -Y + Z measuring point temperature (◦C) 
T5 = joint shell -Y-Z measuring point temperature (◦C) 
T6 = joint shell -Z measuring point temperature (◦C) 
T7 = joint shell -X + Y measuring point temperature (◦C) 

Abbreviations 
BPNN = back-propagation neural network 
GA = genetic algorithm 
RMSE = root-mean-square error 

M. Zhang et al.                                                                                                                                                                                                         



Case Studies in Thermal Engineering 49 (2023) 103253

3

1. Introduction 

Space manipulator has emerged as a popular study issue in aerospace due to the rising demand for on-orbit service of space devices 
[1]. A space manipulator is essential for on-orbit activities like spacecraft construction and maintenance. It is the essential component 
of a spacecraft’s in-orbit system [2]. However, when it operates in orbit, the space manipulator is entirely situated in the chilly, dark 
extravehicular environment. Its internal heat source consumes a lot of power and its motion posture is changeable. It is particularly 
negatively impacted by external heat flux, which causes significant temperature differences at various locations and significant 
temperature fluctuations at various times. A suitable thermal design must be used in order to maintain a reasonable temperature range 
[3]. This necessitates ongoing research on finite element thermal simulations and precise temperature field predictions for each 
machine as the space manipulator operates in orbit [4]. Consequently, it is imperative to have a precise finite element thermal model. 
Typically, the initial thermal model’s temperature distribution is not very precise [5]. Because there will be some variation between 
the calculated results and the experimental data during the process of creating the thermal model of aeronautical products for thermal 
analysis. Numerous academics have conducted a great deal of related study [6–8]. This needs to continuously update the thermal 
model by changing the thermal design parameters. W. B. Qin enhanced the update technology of the spacecraft thermal network model 
based on the formulation of the thermal grid combination equation of parameter node group. This fixed the issue where there aren’t 
enough temperature monitoring points for the model correction to work during thermal testing [9]. When Q. Li wanted to adjust the 
thermal analysis model parameters for the carbon dioxide detector in layers, he used the Monte Carlo approach to determine how 

Fig. 1. Modification of a space manipulator’s joint thermal model.  
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sensitive they were. The majority of temperature discrepancies were decreased by an order of magnitude after the correction [10]. 
The majority of professionals in spacecraft thermal management still adjust the parameters by hand using engineering knowledge 

and theoretical analysis [11]. In addition to taking a lot of time, this method cannot ensure that the changed thermal model is the best. 
For the joint of the main space manipulator components, a multi-point thermal model update approach is therefore taken into 
consideration. This approach can successfully verify the correction impact between a number of measuring locations, in addition to 
meeting the industry’s desire for automatic correction of thermal models. The genetic algorithm (GA), first suggested by Holland [12] 
in 1975, is an algorithm that seeks out the best answer globally. This algorithm has the benefit over previous optimization algorithms 
[13–15] in that it does not require prior consideration of pertinent domain information. Additionally, as a population is assessed 
throughout each iteration as a whole, the interaction between the input parameters can be efficiently taken into account. This 
approach is currently being used in numerous engineering disciplines [16–18]. Szenasi, S. employed GA to research the inverse heat 
conduction problem against the backdrop of parameter identification and control parameter optimization of the thermal system [19]. 
Anglada, E. employed GA to automatically correlate the equipment during a thermal test with the spacecraft’s mathematical thermal 
model. Improvements have been made to spacecraft thermal control design and verification [20]. 

Thus, the primary objective of this study is to incorporate GA into the process of thermal model parameter modification. By using 
the joint thermal balance test temperature as the optimization goal value, temperature prediction accuracy is increased. The tem-
perature of important measuring locations in various positions is compared to one another in the joint thermal model correction to 
increase the method’s dependability. The objective function specifies the root-mean-square error (RMSE) of the anticipated temper-
ature and test temperature of measuring sites at various places. This reduces the likelihood of producing a single variable. A surrogate 
model based on Back Propagation Neural Network (BPNN) is used in this paper to analyze the relationship between the temperature of 
multiple measuring points and the parameters of a joint thermal model, saving time and resources by replacing simulation calculations 
with it. BPNN [21] can adapt to this complicated and dynamic nonlinear system more successfully than other algorithms [22–24]. 

2. Study on parameter modification of thermal model 

A space manipulator’s joint thermal model parameters can be modified in four steps, as shown in Fig. 1. (a) To start, the thermal 
design parameters for efficient modeling are chosen in accordance with the joint’s thermal balancing control equation. The param-
eters’ suitable customizable range is established. This part is stated in Section 2.1. (b) The BPNN technique is then used to build a 
surrogate model between the parameters and the projected temperature TPi. This part is included in Section 2.2.1. (c) The test value 
TAi is the temperature distribution data from the thermal balance test performed at a high temperature, and it is used to adjust the joint 
thermal model’s parameters. This section focuses on Sections 2.2.2, 2.2.3, and 3. (d) The adjustment effect of the joint thermal model 
parameters is then once more examined using the results of the thermal balancing test at low temperatures. This part is described in 
Section 4. For changing the thermal model of aerospace products, this strategy has significant directing implications. 

2.1. Selection of thermal model parameters 

Internal heat source and space environment are two factors that affect the joint temperature of a space manipulator. According to 
Fig. 2, the thermal balance equation [25] of a space manipulator joint is given. 

Q1 +Q2 = Q3 + Q4 + Q5. (1)  

Q1 =Qsun + Qref + QEair = αsΦ1SA1 + αsΦ2ErA2 + εhΦ3EeA3. (2)  

Q2 =
∑

qi. (3)  

Q5 =
∑

(

mkck
∂T
∂τ

)

. (4) 

Fig. 2. Schematic of heat exchange at the joint of a space manipulator.  

M. Zhang et al.                                                                                                                                                                                                         



Case Studies in Thermal Engineering 49 (2023) 103253

5

A joint’s response to external heat flux, or Q1, includes three types of external heat flux from space: direct sunlight, or αsΦ1SA1, 
Earth-reflected, or αsΦ2ErA2, and Earth infrared-radiation, or εhΦ3EeA3; Q2 represents the heat that the heat source produces; Q3 

represents the radiative heat transfer between the joint and external environment; Q4 represents the radiation heat transfer between 
the manipulator joint surface and the cabin body; Q5 represents the energy change generated by the joint itself; qi is the heat source; αs 

is solar absorption coefficient of the external joint surface; εh is infrared hemisphere emissivity of the external joint surface; Φi is the 
angle coefficient between two objects; Ai is the effective area between two heat transfer objects; mk is the mass of a joint component; ck 

is the heat capacity of a joint component; ∂T
∂τ is the temperature change rate of a joint component. 

Equations (1)–(4) indicate that the power consumption of the internal components of the joint, the external heat flux, and the heat 
transfer capacity of the joint surface are important factors affecting the temperature of the joint shell of the space manipulator. It is 
difficult to obtain an analytical expression for the relationship between the temperature of each characteristic point of the joint and 
each thermal design parameter. To accurately analyze the effects of thermal design parameters on the temperature of each charac-
teristic part of the joint, the temperature of each characteristic part of the joint is expressed using the inverse solution of the thermal 
balance equation and various influencing factors [25]: 

T = f (Φi,Ai,αs, εh, ki,mi,Ri, ci,⋯), (5)  

where T is the temperature of a characteristic part of the joint, ◦C, and f represents the functional relationship between the temperature 
of each characteristic part of the joint and relevant thermal design parameters. The contact thermal resistance between the various 
components of the joint is denoted Ri and the contact heat transfer coefficient is denoted ki. Φi is the angle-of-view coefficient. 

In the above function, some design parameters, such as Φi and Ai, cannot be arbitrarily changed because they are limited by the 
structure size, working conditions, and space environment of the joint. Some thermal design parameters, such as αs and εh, are fixed by 
the selection of the thermal control materials themselves and cannot be changed arbitrarily. Some design parameters, such as ki and Ri, 
can be adjusted and selected according to need in their effective ranges. On the basis of the aforementioned parameter analysis, the 
significant heat transmission path and the intricate contact condition between surfaces are taken into consideration. Table 1 lists the 15 
thermal design parameters that will be chosen. The heat transfer coefficient between the joint body and the multi-layer insulating 
component is designated by the symbol X1. In the simulation computation, X1 often changes in the range of 0.01–2 W/(m2⋅◦C) due to 
varied multi-layer implementation states, according to the literature study [26] and practical experience summary. The contact heat 
transfer coefficient (X2–X15) between two components depends on the gap medium, contact load, and other external parameters in 
addition to the roughness of the contact surface. Previous experimental observations reveal that X2–X15 typically fluctuates between 
100 and 3000 W/(m2⋅◦C). As a result, these modifiable thermal design factors dictate the temperature T at each distinct site of the joint. 
By setting different boundary conditions, such as the contact heat transfer coefficient, the corresponding temperature distribution 
surrogate model is trained. 

2.2. BPNN-GA thermal model parameter correction method 

2.2.1. BPNN agent model 
The BPNN comprises an input layer, hidden layer, and output layer and can be used to simulate the nonlinear relationship between 

input and output [27]. In the training process, the input signals of the neural network are nonlinearly transformed to calculate the 
desired output. Finally, the difference (error) between the desired output and actual output is obtained and fed back to the hidden layer 
to obtain the ideal model. The BPNN used in this article is shown in Fig. 3. As observed in the picture, the input group ranges from X1 to 
X15. The output group is T1–T7, and the number of hidden layer nodes is fixed at 30 in accordance with the modeling expertise of BPNN. 

The steps of the BPNN model’s training procedure [28] are shown in Fig. 4. (a) The distribution of values for the aforementioned 15 

Table 1 
Thermal design parameters used to establish the BPNN model.  

Symbol Parameter Value range(W/ 
(m2⋅◦C)) 

X1 Heat transfer coefficient between multilayer insulation material and body 0.01–2 
X2 Contact heat transfer coefficient between side plate 1 of electric box and outside side plate 1 of electric box 100–3000 
X3 Contact heat transfer coefficient between electric box side plate 1 and electric box side plate 2 and 4 100–3000 
X4 Contact heat transfer coefficient between side plate 1 and top plate of electric box 100–3000 
X5 Contact heat transfer coefficient between the bottom plate of the electric box and the inner plate of the side plate 1 of the 

electric box 
100–3000 

X6 Contact heat transfer coefficient between the bottom plate of the electric box and the outer plate of the side plate 1 of the 
electric box 

100–3000 

X7 Contact heat transfer coefficient between electric box side plate 1 and electric box top plate 100–3000 
X8 Contact heat transfer coefficient between handrail pad and joint shell 100–3000 
X9 Contact heat transfer coefficient between joint inner shell and joint end cap 100–3000 
X10 Contact heat transfer coefficient between the joint inner shell and the joint shell 100–3000 
X11 Contact heat transfer coefficient between the joint shell and the bottom of the electric box 100–3000 
X12 Contact heat transfer coefficient of joint shell and female connection 100–3000 
X13 Contact heat transfer coefficient between joint shell and ring gasket 100–3000 
X14 Contact heat transfer coefficient between male connection and insulation mat 100–3000 
X15 Contact heat transfer coefficient between female connection and insulation mat 100–3000  
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thermal design parameters is uniform. Table 2 displays the sampling results of 500 sets of random data samples of design parameters. 
(b) 500 sets of sample data are substituted into the finite element model to be modified. The temperature of each characteristic point 
corresponding to 500 groups of thermal design parameters is obtained by finite element model simulation calculation. Boundary 
conditions and thermal control state are high temperature operating circumstances at the moment. Table 3 provides a description of 

Fig. 3. Structure of the BPNN.  

Fig. 4. BPNN model training process.  

Table 2 
Partial parameter data used to preliminarily establish the BPNN surrogate model.  

Num. X1( W/(m2⋅◦C)) X2 (W/(m2⋅◦C)) … X15 (W/(m2⋅◦C)) T1 (◦C) T2 (◦C) … T6 (◦C) T7(
◦C)

1 1.63 2108.34 … 1527.80 16.93 15.74 … − 7.42 6.2 
2 1.81 1714.34 … 2114.76 18.5 16.58 … − 8.79 3.83 
3 0.26 1249.91 … 2920.93 32.41 32.19 … 6.79 19.54 
4 1.83 278.61 … 1050.49 18.89 17.99 … − 8.999 3.05 
… … … … … … … … … … 
497 1.49 1053.56 … 501.94 19.25 18.02 … − 7.13 7.36 
498 0.79 1996.05 … 1805.81 24.75 23.61 … − 1.47 11.61 
499 1.31 2272.48 … 1161.85 19.56 18.18 … − 5.39 8.04 
500 0.35 1791.24 … 2439.60 30.62 30.22 … 4.72 17.42  
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the boundary conditions and analytical parameters for high temperature and low temperature circumstances. During the orbit, the 
manipulator’s joint’s stance is not fixed. As a result, other potential low temperature scenarios can be covered by the calculation based 
on the extreme case where the cooling surface is cold and black. Other potential high temperature scenarios can be covered by the 
extreme case where the cooling surface always faces the sun. (c) The BPNN model is trained using 500 sets of analysis samples. (d) The 
difference (error) between the actual value and the anticipated value is then tested using 100 sets of calibration data. (e) The training is 
scheduled to end when the error is less than 3.0 ◦C based on engineering experience. 

A joint has complicated and erratic overall structural features. A joint’s overall temperature distribution can be correctly char-
acterized by seven measuring points, which are chosen (see Fig. 9). In order to create seven BPNN models that satisfy the training 
conditions from seven measuring points, repeated training is required. This is equivalent to the corresponding temperatures of T1 
through T7. Figs. 5 and 6 display temperature errors for several test samples as determined by a finite element model and seven BPNN 
surrogate models. The joint electric box is where the measuring points T1–T3 are all set. On the joint shell, the measuring points T4 
through T7 are all organized. The errors of the seven BPNN models are all fewer than 3.0 ◦C, according to observation. As a result, the 
nonlinear functional relationship between the joint thermal design parameters and the temperature of seven measuring points can be 
accurately represented by seven BPNN surrogate models. Additionally, seven BPNN models’ results for forecasted temperature can be 
compared to one another during the parameter modification. This improves the accuracy of the joint thermal model modification. 

2.2.2. GA optimization 
GA is an algorithm that is based on the optimization principle of finding the best option. The process of model updating is also an 

optimization problem in essence. In this paper, the GA is used to search for the optimal parameter group within reasonable ranges of 
the thermal design parameters. This set of parameters minimizes the objective function (i.e., the difference between BPNN prediction 
results and heat balance test results). The objective function is [29] 

Y
xia＜xi＜xib

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑z

i=1
(TPi − TAi)

2

z

√
√
√
√
√

, (6)  

where Y is the objective function; xia and xib are respectively the lower and upper limits of thermal design parameters; z is the number 
of joint temperature measurement points; TPi is the predicted temperature at the ith measurement point; and TAi is the test temperature 

Table 3 
Low- and high-temperature conditions.  

Condition High temperature condition Low temperature condition 

Multilayer outer film properties Final Initial 
Heat dissipation surface white paint properties Final Initial 
Handrail surface properties Final Initial 
Joint tooling boundary temperature − 30 ◦C +50 ◦C 
The heat flux The maximum solar constant is 1412 W/m2 0 
Internal heat source working condition 8 h working mode Don’t work 
Active temperature control measures Don’t start Start  

Fig. 5. Comparison of results between simulation model and surrogate model of measuring points T1–T3 of electric box.  
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at the ith measurement point. 
Fig. 7 depicts the GA optimization process, and the steps are as follows: (a) Determine the fitness function. Assume that the fitness 

function F is the reciprocal of the objective function Y+1. (b) Genetic manipulation. The roulette approach is utilized in this study to 

Fig. 6. Comparison of results between simulation model and surrogate model of measuring points T4–T7 of joint shell.  

Fig. 7. Optimization process of GA.  
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determine the individual selection probability based on the individual fitness value. Uniform mutation and single-point crossover are 
used to carry out the genetic operation. (c) Evolutionary individuals. The individual with the best fitness in the function is acquired 
after random mutation and crossover operations. The operation is complete because this person is the best remedy for the issue. If not, 
proceed to step (b). 

F =
1

Y + 1
, (7)  

2.2.3. Thermal balance test 
The thermal design of the joint of the space manipulator is shown in Fig. 8. The exterior of the joints is coated in a multilayer 

insulation material that isolates the effects of the external heat flux and cold black space. The heat produced as the joint moves dis-
sipates through the heat dissipation surface and a complicated heat dissipation path to the cold, dark environment. In order to 
counteract heat loss, a heating component is simultaneously glued into a crucial joint location. The thermal balance test is conducted in 
accordance with the thermal design of the joint. The thermal balance test device and platform are shown in Fig. 8. To replicate the cold, 
dark, and vacuum of space, a joint is placed in a space environment simulator. To imitate the external heat flux to the joint, an infrared 
heating cage is utilized. The layout of temperature measurement points is depicted in Fig. 9 for the thermocouple, which is used to 
measure a joint’s temperature at various locations. 

3. Modification of thermal model parameters at high temperature 

3.1. Optimal set of input parameters for thermal model modification under high temperature conditions 

The finite element model of the space manipulator joint is established in the finite element simulation program in accordance with 
the structural model of the space manipulator joint. The model has 197 thermal couplings and 5675 two-dimensional shell pieces, as 
depicted in Fig. 8. Before the finite element thermal model of joint is modified, the initial temperature simulated by the thermal model 
under high temperature and the test temperature under the same thermal balance test are shown in Table 4. Table 4 shows that there 
are different degrees of error between the initial simulation value and the test values for T1–T7. The temperature difference between T2, 
T5, and T6 is about 2 ◦C. The temperature difference of T7 is about 10.82 ◦C. The research suggests that the location of contact between 
the joint shell and the electric box shell may be the cause of the large temperature differential of T7. The adjustability of the parameters 
close to them is imprecise due to the measurement’s difficulty. The initial value is empirically estimated. Additionally, the electric box 
itself provides a significant amount of heat for prolonged operation. The temperature difference between the simulation and the 
experiment could result from this. 

Following the parameter optimization described in Section 2.2.2, Table 5 displays the ideal input parameter group and percentage 
change. X1 changes through optimization by 50% to 0.08 W/(m2⋅◦C). This is so because X1—the coefficient of heat transmission 
between the joint body and the multilayer thermal insulation materials—is used in the thermal simulation study. It contains ines-
capable flaws and is significantly influenced by the thermal control implementation method. The 0.08 W/(m2⋅◦C) after X1 correction is 
still within the acceptable range according to empirical research, though. X6, X7, X13, and X15 change considerably in the model 
update, with X6 and X7 being 4.5–4.8 times their original values. This is because X2–X15 is the contact heat transfer coefficient, which 
depends on the contact load, gap medium and other external factors, especially the roughness of the contact surface. These large 
changes result from the increase in contact pressure due to the fastening installation of side plate 1 of the electric box with the top plate 
and bottom plate of the electric box. Meanwhile, the contact heat transfer coefficients X13 and X15 are 2.1–3.7 times their original 
values because the roughness of the contact surface between the male and the boundary and the roughness of the contact surface 
between the female connection and the boundary are very low. 

3.2. Temperature field of the modified thermal model under high temperature conditions 

To evaluate the results of model optimization, revert to the finite element model using the ideal parameter set from Section 3.1. 
Table 6 and Fig. 10 display the improved model’s temperature distribution. The initial simulated temperature of the joint is lower than 
that in the thermal balance test before the parameters are modified. The multi-layer coating process is primarily to blame for the 
temperature increases that have occurred as a result of changing the parameters at each measuring point. Although thermal insulation 

Fig. 8. Finite element model and thermal balance test platform of a space manipulator joint.  
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materials have been applied to the joint surface, the status of multi-layer thermal implementation technology has a significant impact 
on each measuring point’s temperature. It is impossible to anticipate the multilayer and joint body’s heat transfer coefficient at some 
overlapped places and at the boundary between multilayer coated and uncoated regions. Consequently, the ideal finite element 
thermal model cannot be directly and correctly simulated. Therefore, the heat transfer coefficient between the multi-layer and joint 
body decreases with the update of parameter X1 at high temperature. The joint’s simulated temperature increases. T6 and T7 in 
particular undergo significant alteration, with T7 rising by nearly 10 ◦C. The adjusted X1 and the thermal characteristics close to the 
measurement point can be used to evaluate the clearly higher temperature at the measuring point T7. X5, X6, X7, X11 and X15 are all 
contact heat transfer coefficients close to the measuring site T7, and they all exhibit observable variations before and after adjustment. 
The temperature of T7 definitely rises through heat conduction between the electric box and the female connector as a result of the 
higher contact heat transfer coefficient. Each distinctive point’s temperature fluctuates clearly, as can be observed. The RMSE of the 

Fig. 9. Locations of temperature measurements.  

Table 4 
Comparison of initial simulation temperature of the finite element model and thermal balance test temperature under a high-temperature condition.  

Thermocouple T1 T2 T3 T4 T5 T6 T7 

Experiment (◦C) 38.91 40.07 38.93 10.28 8.41 9.66 30.94 
Simulation (◦C) 37.57 37.31 37.26 12.47 9.86 7.15 20.12 
Initial error(%) 3.44 6.88 4.28 − 21.30 − 17.24 25.98 34.97  

Table 5 
Update of the thermal design parameters.  

Parameters Unit Initial value Lower bound Upper bound Optimized value Percent change (%) 

X1 W/(m2⋅◦C) 0.16 0.01 2 0.08 − 50 
X2 W/(m2⋅◦C) 300 300 2000 383.46 27.81 
X3 W/(m2⋅◦C) 300 300 2000 333.65 11.21 
X4 W/(m2⋅◦C) 300 300 2000 426.22 42.07 
X5 W/(m2⋅◦C) 300 300 2000 514.84 71.61 
X6 W/(m2⋅◦C) 300 300 2000 1756.59 485.52 
X7 W/(m2⋅◦C) 300 300 2000 1652.90 450.96 
X8 W/(m2⋅◦C) 300 300 2000 323.39 7.79 
X9 W/(m2⋅◦C) 300 300 2000 355.33 18.44 
X10 W/(m2⋅◦C) 300 300 2000 333.84 11.28 
X11 W/(m2⋅◦C) 300 300 2000 543.41 81.13 
X12 W/(m2⋅◦C) 300 300 2000 374.80 24.93 
X13 W/(m2⋅◦C) 300 300 2000 1409.39 369.79 
X14 W/(m2⋅◦C) 300 300 2000 388.20 29.39 
X15 W/(m2⋅◦C) 300 300 2000 944.26 214.75  

Table 6 
Temperature comparison at seven measuring points under the high-temperature condition.   

Initial(◦C) Updated(◦C) Experiment(◦C) Initial error(%) Error after update(%) 

T1 37.57 38.54 38.91 3.44 0.95 
T2 37.31 38.65 40.07 6.88 3.54 
T3 37.26 38.78 38.93 4.28 0.38 
T4 12.47 11.53 10.28 − 21.30 − 12.15 
T5 9.86 9.83 8.41 − 17.24 − 16.88 
T6 7.15 9.64 9.66 25.98 0.20 
T7 20.12 31.71 30.94 34.97 − 2.48  
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model before and after updating is decreased from 4.51 ◦C to 0.95 ◦C at high temperatures. It can be said that the updated model’s 
temperature is closer to the experimental data. The largest temperature difference between the BPNN model and the finite element 
model is also 2.02 ◦C, further demonstrating the BPNN model’s accuracy. 

4. Verification and discussion of model modification 

The same set of thermal design parameters that were optimized for high-temperature conditions are added to the low-temperature 
finite element thermal model in order to further evaluate Section 3.1. Table 3 lists the high temperature and low temperature cir-
cumstances. Thus, it is possible to determine the updated thermal model’s temperature at low temperatures. The thermal model 
temperature and test temperature at low temperature are shown in Table 7 and Fig. 11. The initial simulated temperature of a joint 
before updating the parameters is typically lower than that in the thermal balance test performed in low temperature settings. The 
temperature at each measuring location has risen to varied degrees as a result of the parameter updates. The multilayer coating 
process’s X1 parameter decrease has an impact on it as well. The measuring stations T1, T2, T3 and T7 in particular all experience an 
increase in temperature of roughly 2 ◦C before and after the thermal model update. Measurement sites T1 through T3 are all located on 
the joint electrical box, while T7 is a measurement point on the joint shell that is situated next to the electrical box and the female 
connection. The reason is that the electric box’s contact heat transfer coefficients, X4, X5, X6, X7 and X11, are all evident parameters. 
The contact heat transfer coefficient between the female connector and the joint shell is parameter X15. The temperature of the 
measurement point visibly rises due to their increase and the impact of active heating measures initiated at low temperatures. The 
RMSE of the simulation temperature and test temperature decreased from 2.73 ◦C to 1.09 ◦C thanks to the optimization of the thermal 
model. It may be said that the adjusted model’s temperature is more in line with the low-temperature experimental data. So, a 
comparison and verification of the improved finite element thermal model has been successfully completed. 

Both high and low temperatures can be handled by the improved joint thermal model. The improved joint thermal model’s 
anticipated temperature and the thermal test temperature differ by less than 2 ◦C under the identical operating conditions. The 
comparison analysis mentioned above demonstrates the proposed method’s advantage. This offers other thermal models in orbit a very 
solid technological foundation for temperature prediction. 

This paper further verifies the efficiency of metamodel modification. It took 1 h, 42 min, and 12 s for a computer to solve the 
thermal simulation model of the joint under the high-temperature condition using finite element software and took the same computer 
19 min and 54 s to iteratively optimize the parameters of the joint model and solve the output temperature of the parameters. The 
efficiency of parameter updating using the surrogate model is about 5.14 times that of the traditional method. Additionally, optimizing 
models in finite element software requires researchers to have a rich engineering experience and an in-depth understanding of the joint 

Fig. 10. Temperature comparison at seven measuring points under the high-temperature condition.  

Table 7 
Temperature comparison at seven measuring points under the low-temperature condition.   

Initial(◦C) Updated(◦C) Experiment(◦C) Initial error(%) Error after update(%) 

T1 − 28.18 − 25.94 − 24.1 − 16.92 − 7.63 
T2 − 26.54 − 23.99 − 24.16 − 9.85 0.70 
T3 − 26.59 − 24.13 − 24.99 − 6.40 3.44 
T4 − 34.97 − 33.55 − 32.29 − 8.29 − 3.90 
T5 − 35.49 − 34.71 − 33.32 − 6.51 − 4.17 
T6 − 37.69 − 37.81 − 38.53 2.18 1.86 
T7 − 32.66 − 29.21 − 28.82 − 13.32 − 1.35  
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thermal model, which have unpredictable associated time costs. 

5. Conclusion 

The primary objective of this study is to alter a space manipulator joint’s finite element thermal model by merging BPNN and GA 
technologies. This increases temperature prediction accuracy and is crucial to the accomplishment of upcoming space missions.  

(1) The introduction of GA into the thermal model parameter correction procedure is the primary objective of this study. As the 
optimization goal value, the joint thermal balance test temperature is used. A multi-point thermal model update method is taken 
into account. This technique allows for automatic thermal model correction in industry. It also takes into account the fact that 
the effect of adjustment between a number of thermal model measurement points can be successfully tested against one another. 
This paper also uses a surrogate model based on BPNN to reduce the time and resources required for simulation calculation. The 
joint thermal model’s parameters and the temperature at various monitoring places serve as the surrogate model. The thermal 
model of aerospace products can be modified using this technology, which has substantial guiding implications.  

(2) The primary finding of this study is that, when thermal model parameters are modified, X1 represents the multi-layer and joint 
body’s heat transfer coefficient. The thermal model’s overall temperature distribution is effectively improved by its 50% 
adjustment. The temperature of local joint characteristic points is visibly adjusted by other contact heat transfer factors. At high 
temperature, the RMSE of the model before and after the entire update is decreased from 4.51 ◦C to 0.95 ◦C. The RMSE of the 
model before and after the entire update is decreased from 2.73 ◦C to 1.09 ◦C at low temperatures. This increases the precision of 
temperature forecasting. Following the model update, the joint temperature distribution is more in accord with the experi-
mental findings, and all errors are within 2 ◦C. As a result, the space manipulator’s finite element thermal model can be modified 
using BPNN and GA together.  

(3) A joint thermal model’s updated findings are promising. However, there is still a lot of work that can be done more effectively. 
The following recommendations for further work are made due to the research’s limitations. (a) The combined BPNN thermal 
model’s parameter selection is based on the thermal control equation and experience. Both sensitivity analysis and systematic 
parameter sorting are absent from this. Future study can take the sensitivity of thermal design elements into account. Addi-
tionally, it has some reference expertise for spaceflight product thermal design. (b) The temperature adjustment is limited by the 
number of measuring points in the thermal test and is focused on seven distinguishing spots on the joint. The prediction ac-
curacy of the location other than the seven measurement sites must be looked into in order to examine the overall performance 
of the improved joint thermal model. (c) This study only takes changing working conditions into account when modifying and 
validating the joint thermal model. Future studies can concentrate on improving the algorithm’s use in additional spacecraft 
products. 
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