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Fig 3 Modeling and simulation results
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Fig 4 SRS microscope detection system

HWP. Half wave plate; GTP: Gran Taylor prism; LL1: Convergent lens; 1.2: Collimating lens; DM: Dichroic mirror
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Fig 7 Objective function ]| related experimental results
(a): Experimental results of optical power ratio and SRS signal-to-
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Fig 8 SRS spectrum scanning results of dimethyl sulfoxide under different experimental conditions
(a): Spectra of dimethyl sulfoxide at different modulation depths when Py, =60 mW, P,/P,=1: 1;
(b) : Spectra of dimethyl sulfoxide at different optical power ratio when P =60 mW, M=85 51%
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Abstract  Stimulated Raman scattering is one of coherent Raman scattering. The signal generated by stimulated Raman
scattering is significantly enhanced under the third-order nonlinear effect, and there is no interference from non-resonant
background. Its spectrum is almost consistent with the spontaneous Raman spectrum. Therefore, the micro-imaging technology
based on stimulated Raman scattering has the advantages of no labeling, high specificity and being non-invasive. It has been
successfully used in biological cell imaging and has made many great achievements. Stimulated Raman signal has the same
wavelength as excitation luminescence and is easily disturbed by excitation luminescence background noise. In order to solve this
problem, the combination of optical modulation and phase-sensitive detection is often used to detect it. In the detection process,
modulation depth influences the intensity and signal-to-noise ratio of the stimulated Raman signal. Because of this, this paper
deeply analyzes the influence of modulation depth on stimulated Raman signal intensity and signal-to-noise ratio based on relevant
theories. At the same time, considering the limitation of cell photodamage threshold on the sum of two excitation optical powers
in applications such as bio-spectral imaging, the excitation optical power configuration method to obtain the maximum signal
intensity and the best signal-to-noise ratio at different modulation depths is analyzed. By establishing a stimulated Raman
experimental system. dimethyl sulfoxide is taken as the research object for experimental verification. The results show that when
the stimulated Raman loss is detected under the limitation of photodamage threshold, at the same modulation depth, the signal
intensity reaches the strongest when the optical power ratio of pump light to the one of stokes light is 1 ¢ 1,and the signal-to-
noise ratio reaches the best when the ratio is 1 : 2. When the optical power ratio of pump light to the one of stokes light is the
same, the intensity and signal-to-noise ratio of stimulated Raman signal decrease with the decrease of modulation depth, and the
correlation is approximately linear. The stimulated Raman spectrum of dimethyl sulfoxide obtained from the experiment also
verified that the higher the modulation depth, the stronger the spectral signal and the better the signal-to-noise ratio and the
better the spectral quality of the whole sample. The research results are the improvement of stimulated Raman microscopy in
signal modulation and detection and can provide reference guidance for stimulated Raman spectroscopy detection and cell imaging

experiments.

Keywords Phase sensitive detection; Stimulated Raman scattering; Modulation depth; Signal Intensity; Signal-to-Noise ratio;

Optimum optical power ratio
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