文章编号 1004-924X(2023)12-1752-09

大口径红外光学系统透过率测量装置

李洪雨¹,郭汉洲^{2*},李俊霖¹,唐延甫¹,杨永强^{1,3},李忠明^{1,3} (1.中国科学院长春光学精密机械与物理研究所,吉林长春 130033; 2.中国科学院苏州生物医学工程技术研究所,江苏苏州 215163; 3.中国科学院大学,北京 100049)

摘要:针对大口径红外光学系统的整机透过率测量难题,提出了基于图像灰度的单通道红外透过率测量方法,搭建了大口径红外光学系统整机透过率测量装置。首先,将黑体和靶标按照指定位置关系放置于待测红外光学系统的焦平面处,将红外热像仪放置于待测红外光学系统的入光口,采集被测系统的辐射图像;接着,将黑体放置于红外热像仪前,采集黑体辐射图像;最后,分别计算被测系统辐射图像均值和黑体辐射图像均值,二者比值即为被测系统的透过率。以某型大口径红外光学系统作为被测系统,开展了红外透过率测量实验。实验结果标明:本文方法测量值与设计值的绝对误差为0.85%,对测量结果不确定度进行分析,测量精度约为1.04%,测量方法可行。此方法测量过程简单,为大口径红外光学系统的整机性能评估提供了有效手段。

关 键 词:透过率;大口径;红外光学系统;整机;图像灰度 **中图分类号:**TP391.4;TN219 **文献标识码:**A **doi:**10.37188/OPE.20233112.1752

Transmittance measurement device of large-aperture infrared optical system

LI Hongyu¹, GUO Hanzhou^{2*}, LI Junlin¹, TANG Yanfu¹, YANG Yongqiang^{1,3}, LI Zhongming^{1,3}

(1. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China;

2. Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China;

> 3. University of Chinese Academy of Sciences, Beijing 100049, China) * Corresponding author, E-mail: guohanzhou1@163. com

Abstract: To solve the transmittance measurement problem of large-aperture infrared optical systems in complete machines, a single-channel infrared transmittance measurement method based on grayscale images is proposed, and a transmittance measurement device is established. First, a blackbody and a target are placed at the focal plane of the infrared optical system under measurement according to the specified position relationship, and an infrared thermal imager is placed at the entrance port of the infrared optical system to capture the radiation image. Then, the infrared thermal imager is placed in front of the blackbody to capture the radiation image of the blackbody. Finally, the mean value of the radiation image and the radiation ima

收稿日期:2023-01-18;修订日期:2023-02-20.

基金项目:国家自然科学基金资助项目(No. 62005280)

ue of the blackbody radiation image are calculated; the ratio of the two values is the transmittance of the measured system. Upon measuring the infrared transmittance of a large-aperture infrared optical system by using the proposed method, the results indicate that the method can accurately measure the transmittance of large-aperture infrared optical systems. The absolute error between the measured value and the design value is 0.85%. Analyzing the uncertainty of the test results reveals that the transmittance measurement accuracy of the proposed method is approximately 1.04%. This method entails a simple measurement process and is effective for evaluating the transmittance of large-aperture infrared optical systems in complete machines.

Key words: transmittance; large-aperture; infrared optical system; complete machine; image gray

1引言

随着红外辐射测量技术的飞速发展,红外成 像系统被越来越广泛地应用于科学研究、国民经 济、国防军事等领域。在日益复杂的应用背景 下,对红外成像仪器性能参数的测量精度和测量 方法提出更高的要求。红外光学系统是红外光 电成像仪器的重要组成部分,表征其传递特性的 常用指标有透过率、折射率、反射率等^[1],光学透 过率对红外光学系统的性能有着重要影响。

光学系统透过率是指光学系统的出射光通量与入射光通量之比,标志着光学系统传输光辐射能力的强弱,可影响光学系统的探测能力和作用距离^[2]。

随着光学元器件制造工艺的发展,红外光学 系统的口径越来越大,系统的探测距离和探测能 力也越来越强。然而,口径增大致使红外光学系 统透过率测量的实现难度也不断增加^[3-6]。

光学系统透过率测量主要分为单通道测量 和双通道测量两种方式。单通道测量是将未放 入被测样品的光通量与放入样品后的光通量作 比值,其特点是系统结构简单、便于操作,但受光 源稳定性、环境光影响较大;双通道测量是将光 束分为参考光和测量光,测量光经被测样品后能 量衰减,测量光的光通量和参考光的光通量之比 即为透过率,其特点是测量精度高,但结构复 杂^[78]。传统的光学系统透过率检测方法主要有 光电流检测法、积分球检测法等^[78],但主要应用 于可见光谱段,无法满足红外光学系统透过率的 测试要求。当前对于光学镜片透过率的测量大 多数是通过光纤光谱仪实现^[9],但采用该测量方 式仅能针对单镜片进行测量,对于集成光学系统 无法进行整机测量。

针对大口径红外光学系统整机透过率测试 测量难题,本文提出基于图像灰度的单通道大口 径红外光学系统透过率测量方法,该方法特点在 于将待测大口径红外光学系统的实际入光口作 为出光口,将黑体辐射源放置于被测系统的成像 焦面位置,利用小口径红外热像仪接收透过能 量,实现大口径红外光学系统透过率的简便 测量。

2 测量原理

为解决大口径红外光学系统整机透过率测 试测量难题,本文提出了基于图像灰度的单通道 大口径红外光学系统透过率测量方法。该方法 的路线是建立透过率与采集图像灰度的关系,以 简化大口径红外光学系统的测量方式。

光学系统透过率是指光学系统的出射光通 量与入射光通量之比:

$$\eta = \frac{\Phi_{\text{out}}}{\Phi_{\text{in}}},\tag{1}$$

其中:辐射通量Φ,也称辐射功率,是光源在单位 时间内辐射的能量,单位为W。

辐射率是给定方向面元在单位立体角内发射的辐射通量,对光源面元积分为扩展面元,可 用于表示扩展光源辐射特性,单位为 $W/(sr \cdot m^2)$ 。黑体为朗伯体,黑体辐射率L不随 辐射方向变化,根据辐射率定义 $\Delta \Phi = L \cdot \Delta A \cdot \Delta \Omega$,对于辐射率为L的发光面 A_3 进行积分,则辐 射立体角 Ω 内辐射的光通量为:

$$\Phi = L \cdot A_s \cdot \Omega. \tag{2}$$

辐照度是入射辐射通量在表面上一点的密

度,定义为单位面积上的辐射通量,单位为 W/m^2 。一块为 A_d 的接收面积的辐照度表示为^[10]:

$$E = \frac{\Phi}{A_d}.$$
 (3)

引入探测器响应率以及量子效率之后,进入 成像镜头的辐射通量和成像后的图像总灰度值 成线性关系^[11],则图像灰度均值和探测器辐照度 的关系如公式(4),其中 *b* 为系统辐射带来的 偏移:

$$\overline{DN} = k \cdot E + b. \tag{4}$$

本文提出的基于图像灰度的单通道大口径 红外光学系统透过率测量方法,分别计算经待测 红外光学系统后的透过能量和黑体直接辐射能 量,利用实测值和空测值之比计算透过率。

2.1 黑体能量标定过程的辐射传输

图 1 为黑体能量标定过程中的辐射传输,其 中黑体的辐射面积为 A_{bd} ,黑体至红外热像仪镜 头的距离为d,红外热像仪镜头的入瞳面积为 A_{can} ,红外热像仪镜头与探测器的距离为 f_{can} ,黑 体辐射率为L。根据公式(2),黑体的出射光通 量 Φ_{bd} 为:

$$\Phi_{bd} = L \cdot A_{bd} \cdot \Omega_s = L \cdot A_{bd} \cdot \frac{A_{cam}}{d^2}.$$
 (5)

根据光学成像倍率关系:

$$\frac{A_{bd}}{A_{\rm img}} = \frac{d^2}{f_{\rm cam}^2}.$$
 (6)

则公式(5)中黑体的出射光通量 Φ_{bd} 可以写作式(7):

图1 黑体能量标定过程的辐射传输

$$\Phi_{bd} = L \cdot A_{\text{cam}} \cdot \frac{A_{\text{img}}}{f_{\text{cam}}^2}.$$
 (7)

经过红外热像仪的透镜衰减后,探测器接收 到的入射光通量、辐照度分别为:

$$\begin{cases} \Phi_a = \eta_{\text{cam}} \cdot \Phi_{\text{bd}}, \\ E_a = \frac{\Phi_a}{A_{\text{img}}} = \frac{\eta_{\text{cam}} \cdot \Phi_{\text{bd}}}{A_{\text{img}}} = \frac{\eta_{\text{cam}} \cdot L \cdot A_{\text{cam}}}{f_{\text{cam}}^2}, \end{cases}$$
(8)

其中,η_{cam}为红外热像仪镜头的透过率。

2.2 红外光学系统透过能量标定过程的辐射 传输

将待测大口径红外光学系统的实际入光口 作为出光口,将靶标安装到红外光学系统的焦面 位置,黑体辐射能量通过靶标镂空处入射到红外 光学系统。黑体、靶标、待测红外光学系统入瞳 的位置关系如图2所示。黑体辐射源绝对均匀、 稳定,并且大气衰减作用很弱,大气透过率可近 似为1的情况下,靶标孔处的辐射为后方黑体 辐射。

图 2 黑体、靶标、入瞳几何位置关系图

根据三角形相似关系,设I为入射光线经靶标镂空处对应后方黑体的最高点与轴线的距离, 黑体半径为H,待测红外光学系统入瞳半径为R, 靶标镂空部分半径为x,黑体和靶标距离为D,靶标和待测红外光学系统距离为焦距fopico黑体、 靶标、入瞳三者尺寸和位置关系满足公式(9)的 情况下,靶标镂空部分等效于后方黑体,照射入 待测红外光学系统的辐射光线全部为黑体辐射。 超出此范围后,靶标孔等效温度不再等于黑体温度,且靶面均匀性和稳定度受环境影响,影响透 过率测试^[12-13]。

$$\begin{cases} \frac{R}{I} = \frac{f_{\text{optic}} - y}{D + y} \\ \frac{x}{I} = \frac{y}{D + y} \\ I = \frac{(D + f_{\text{optic}}) \cdot x + D \cdot R}{f_{\text{optic}}} < H \end{cases}$$
(9)

按照公式(9)的位置约束模型,将靶标放置 到待测大口径红外光学系统的焦面位置,待测大 口径红外光学系统透过能量标定过程的辐射传 输如图3所示,其中靶标的辐射面积为A_{obj},待测 大口径红外光学系统的入瞳面积为A_{opic}。

图 3 待测红外光学系统透过能量标定过程的辐射传输 Fig. 3 Radiative transfer process of infrared optical system energy calibration

黑体辐射经靶标镂空处的出射光通 量 Φ_{obi} 为:

$$\Phi_{\rm obj} = L \cdot A_{\rm obj} \cdot \Omega'_{s} = L \cdot A_{\rm obj} \cdot \frac{A_{\rm optic}}{f_{\rm optic}^{2}}.$$
 (10)

黑体辐射至待测大口径红外光学系统后,以 平行光出射,辐射出射度(M,单位W/m²)各点基 本相同,当小口径镜头接收时,通过红外热像仪 镜头入瞳面积与待测大口径红外光学系统出瞳 面积之比可计算进入红外热像仪镜头的能 量,即:

$$\Phi_{\rm cam} = \eta_{\rm optic} \bullet \Phi_{\rm obj} \bullet \frac{A_{\rm cam}}{A_{\rm optic}} = \eta_{\rm optic} \bullet L \bullet A_{\rm obj} \bullet \frac{A_{\rm cam}}{f_{\rm optic}^2}, (11)$$

其中 η_{optic} 为待测大口径红外光学系统的透过率, 根据光学成像倍率关系:

$$\frac{A_{\rm obj}}{A'_{\rm img}} = \frac{f_{\rm optic}^2}{f_{\rm cam}^2}.$$
(12)

则公式(11)可以表示为:

$$\Phi_{\rm cam} = \eta_{\rm optic} \cdot L \cdot A'_{\rm img} \cdot \frac{A_{\rm cam}}{f_{\rm cam}^2}.$$
 (15)

经过红外热像仪的透镜再次衰减后,探测器 接收到的入射光通量、辐照度分别为:

$$\Phi_{b} = \eta_{\text{cam}} \cdot \Phi_{\text{cam}},$$

$$E_{b} = \frac{\Phi_{b}}{A'_{\text{img}}} = \frac{\eta_{\text{cam}} \cdot \eta_{\text{optic}} \cdot L \cdot A_{\text{cam}}}{f_{\text{cam}}^{2}}.$$
(16)

以上为黑体辐射经红外光学系统,至红外热 像仪探测器的辐射传输过程。

最后依据式(1),式(4),式(8)和式(16),利 用图像的灰度均值计算得到待测大口径红外光 学系统的透过率:

$$\frac{\overline{DN_b}}{\overline{DN_a}} = \frac{k \cdot E_a + b_1}{k \cdot E_b + b_2} \approx \eta_{\text{optic}}.$$
(17)

3 测量装置的组成及测量流程

3.1 透过率测量装置的组成

图 4 为大口径红外光学系统透过率整机测 量原理图,它主要由黑体、靶标、遮光板和红外 热像仪组成。黑体为辐射源,为测量系统提供 均匀稳定的辐射能量;靶标使用时放置于待测 大口径红外光学系统的焦平面位置,黑体辐射 输出经靶标投射到待测大口径红外光学系统; 遮光板用于背景辐射采集时遮挡黑体辐射;红 外热像仪用于采集接收辐射能量并转化为灰 度图像。

3.2 透过率测量流程

透过率测量流程分为待测大口径红外光学 系统透过能量标定和黑体能量标定两个流程。

待测大口径红外光学系统透过能量标定流 程为:(1)将黑体和靶标按照一定位置关系放置 于待测红外光学系统的焦平面处,将红外热像仪 放置于待测红外光学系统的入瞳处;(2)黑体设 置温度T;(3)红外热像仪调整调光参数,保证所

成的靶标图像灰度处于半饱和线性区;(4)采集 亮场靶标图像;(5)将遮光板放置到黑体前,采集 暗场图像;(6)完成暗场扣除,计算靶标图像的平 均灰度值 DN_b。

黑体能量标定流程为:(1)为避免环境光辐 射至红外热像仪入瞳,将黑体贴近红外热像仪放 置;(2)黑体设置温度*T*;(3)红外热像仪设置为 与透过能量采集相同的调光参数,采集亮场黑体 辐射图像;(4)将遮光板放置到黑体前,采集暗场 图像;(5)完成暗场扣除,计算黑体辐射图像的平 均灰度值*DN_a*。

最后利用公式(17)计算大口径红外光学系 统的透过率。

4 实验及测量结果

本 实 验 采 用 德 国 InfraTec 公 司 的 Vario-CAM[®] hr head 384 红外热像仪,工作光谱范围为 7.5~14 μ m; 以 色 列 CI-Systems 公 司 的 SR-800N-4A 黑体,温度调节范围 0~125 ℃;梯形靶 标。被测系统为某型大口径红外光学系统。

4.1 透过能量标定

将某大口径红外光学系统作为被测系统,依 据透过能量标定流程,根据该待测红外光学系统 的实际使用工况,设置黑体温度依次为60℃, 70℃,80℃,90℃,100℃,在每个温度点下分别采 集多帧亮场图像和暗场图像做平均,并对图像进 行背景扣除操作,得到如图5所示的靶标图像。

图5 大口径红外光学系统透过能量标定靶标图像

Fig. 5 Target image of transmission energy calibration for large aperture infrared optical system

选取背景扣除后靶标图像内的均匀区域,计 算图像灰度均值,得到结果如表1所示。

表1 透过能量标定结果			
Tab. 1 Result of transmission energy calibration			
No.	Black-body temperature/℃	Gray-mean	
1	60	2 242. 285	
2	70	2 501.823	
3	80	2 905. 969	
4	90	3 357. 377	
5	100	5 460. 485	

4.2 黑体能量标定

依据黑体能量标定流程,设置黑体温度依次 为60℃,70℃,80℃,90℃,100℃,在每个温度点 下分别采集多帧亮场图像和暗场图像做平均,并 对图像进行背景扣除操作,得到如图6所示的黑 体图像。

计算图像灰度均值,得到结果如表2所示。

4.3 透过率计算

依据公式(1)对大口径红外光学系统透过率

表2 黑体能量标定结果

	Tab. 2	Result of black-body	energy	calibration
--	--------	----------------------	--------	-------------

No.	Black-body temperature/℃	Gray-mean
1	60	3 402. 930
2	70	4 428.631
3	80	5 552.472
4	90	6 756.346
5	100	8 143.070

进行计算,得到的测量结果如表3所示。对各温 度下的透过率做平均,测得该型号大口径红外光 学系统的平均透过率为49.87%。该型号大口径 红外光学系统的理论设计值为50.72%。测量值 与设计值的绝对误差为0.85%。

对实验过程及结果分析,待测大口径红外 光学系统透过能量标定过程中,随着黑体温度 升高长时间照射导致靶标背景吸热后温度升 高,在扣除背景噪声后,导致透过率计算结果 下降。

为降低靶标背景辐射的噪声影响,应选用表 面喷涂高反射率黑漆涂料的红外靶标。

	表 3	透过率计算结果
Tab.3	Results	s of transmittance calculation

No.	Black-body temperature/°C	Gray-mean of transmission	Gray-mean of black-body	Transmittance/%
1	60	1 725. 525	3 404. 708	50.68
2	70	2 227.892	4 429. 153	50.30
3	80	2 778.483	5 549.247	50.07
4	90	3 351.767	6 758. 575	49.59
5	100	3 973. 975	8 160.042	48.70

图6 黑体能量标定图像

Fig. 6 Image of energy calibration for black-body

5 不确定度分析

测量不确定度可反映测试水平,体现测试方 法和过程的可信度,本文对整个透过率测量过程 进行了不确定度分析。根据不确定度来源及评 定方式是否为统计分析方法,不确定度共分为A 类和B类^[14]。

5.1 A类不确定度分析

(1)环境杂散辐射引入的测量误差。环境杂散辐射进入红外热像仪会影响成像灰度值,为了 消除环境辐射对测量结果的影响,采用扣除背景 图像的方式将背景去除,环境杂散辐射影响可基本忽略。

(2)黑体、靶标、红外光学系统的空间分布 引入的误差。在满足公式(11)位置关系模型的 情况下,靶标和红外光学系统相对位置不变,移 动黑体与靶标之间的距离,经实验在60℃~ 100 ℃时的红外热像仪的测温相对误差不超过 3%,结合透过率计算公式,对结果的影响约为 0.27%。

5.2 B类不确定度分析

(1)红外热像仪的测量误差。查询红外热像 仪数据手册得到红外热像仪的测量精度为 ±1.5K(0~100℃)。根据表3计算得到红外热 像仪的测温误差对图像灰度值变化影响不超过 1,影响可忽略。

(2)黑体辐射输出稳定性引入的测量误差。

查 询 黑 体 数 据 手 册 得 到 黑 体 稳 定 性 为 ±0.008 ℃(ΔT>25 ℃)。根据表 3 计算得到黑 体温度变化对应红外热像仪的灰度值变化不超 过 1,影响基本可忽略。

(3)数据处理引入的测量误差。该误差包括 红外热像仪图像灰度读取的准确性引入的误差。 经实验在相同照度下,采用多帧图像平均的方 式,图像灰度读取的相差不超过1,影响基本可忽略。利用公式进行数值运算,根据修约规则和读数位数等评估,对结果的影响约为1%。

综上所述,将A类不确定度和B类不确定度 合成,计算得到合成不确定度: $u_{c} = \sqrt{u_{A}^{2} + u_{B}^{2}} =$ 1.04%。

6 结 论

为满足大口径红外光学系统透过率的测量 需求,本文依据辐射通量的传递原理推导了光学 系统透过率和探测器图像灰度均值的计算关系, 提出了大口径红外光学系统的测量方法。依据

参考文献:

[1] 刘洪兴,李宪圣,孙景旭,等.曲面透明件雾度和透光率实时测试仪[J].光学精密工程,2018,26
(12):2881-2887.
LIUHX, LIXS, SUNJX, *et al.* Haze and transmittance real-time tester for curved-surface and transparent samples[J]. *Opt. Precision Eng.*, 2018, 26
(12):2881-2887. (in Chinese)

[2] 田留德,王涛,赵怀学,等.红外光学系统光谱透 过率测试装置及方法:CN109060731B[P].2020-04-03.

> TIAN L D, WANG T, ZHAO H X, *et al.* Infrared optical system spectrum transmittance testing device and method: CN109060731B[P]. 2020-04-03. (in Chinese).

[3] 刘俊池,李洪文,王建立,等.地基大口径红外光 电设备快速辐射定标[J].光学学报,2015,35(3): 17-26.
LIU J C, LI H W, WANG J L, *et al.* Fast radiance calibration for ground-based large-aperture in-

frared opto-electric equipment[J]. Acta Optica Sinica, 2015, 35(3):17-26. (in Chinese)

[4] 黄智国.空间目标地基红外探测技术研究[D].长春:中国科学院大学(中国科学院长春光学精密机械与物理研究所),2018.

HUANG Z G. Research on Infrared Detection Technology of Space Target Ground [D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2018. (in Chinese) 测量方法及流程,对某型大口径红外光学系统的 透过率进行了检测,测量结果与理论设计结果基 本符合。最后对测量结果进行不确定的分析,测 量结果不确定度约为1.04%。

为提高测量精度,应对背景辐射噪声进一步抑制,如:选用表面喷涂高反射率黑漆涂料的红 外靶标等更改靶标加工工艺,在以后的研究中应 逐步改善测试条件。

该方法测量过程简单、检测设备少、装调难 度低、检测结果直观可视,在其他型号的红外光 学系统透过率测试中也得到了应用,结果符合预 期。该方法为大口径红外光学系统的整机性能 评估提供了有效手段。

- [5] 张学军,樊廷超,鲍赫,等.超大口径空间光学遥感器的应用和发展[J].光学精密工程,2016,24 (11):2613-2626.
 ZHANG X J, FAN Y C, BAO H, et al. Applications and development of ultra large aperture space optical remote sensors [J]. Opt. Precision Eng., 2016,24(11):2613-2626. (in Chinese)
- [6] JI Y L, HAO X P, SUN Y D, et al. Research on large-area blackbody radiation source for infrared remote sensor calibration [J]. International Journal of Thermophysics, 2022, 43(9): 1-16.
- [7] 王立秋.光谱透过率测试系统设计及优化[D].长春:长春理工大学,2016.
 WANG L Q. Design and Optimization of Spectral Transmittance Testing System [D]. Changchun: Changchun University of Science and Technology, 2016. (in Chinese)
- [8] 尹枫强.基于二次反馈激光自混合干涉的镜片透 过率测量方法[D].阜阳:阜阳师范大学,2022. YIN F Q. Lens Transmittance Measurement Method Based on Secondary Feedback Laser Self-Mixing Interference [D] Fuyang: Fuyang Normal University, 2022. (in Chinese)
- [9] 李一,田明,王劲松,等.热像仪测量锗玻璃红外 透过率及误差因素分析[J].长春理工大学学报(自 然科学版),2022,45(6):79-83.

LI Y, TIAN M, WANG J S, *et al.* Infrared transmittance and error factor analysis of germanium glass measured by thermal imager [J]. *Journal of Changchun University of Science and Technology*, 2022, 45(6): 79-83. (in Chinese)

- [10] ROGALSKI A. Infrared Detectors, Second Edition[M]. Florida: CRC Press, 2020.
- [11] 杨国庆.地基红外辐射测量系统提高测量精度的 关键技术研究[D].长春:中国科学院大学(中国 科学院长春光学精密机械与物理研究所),2020.
 YANG G Q. Research on Key Technologies for Improving Measurement Accuracy of Ground-Based Infrared Radiation Measurement System
 [D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2020. (in Chinese)
- [12] GUTSCHWAGER B, TAUBERT D, HOL-LANDT J. Analysis of reference sources for the characterization and calibration of infrared cameras

作者简介:

李洪雨(1989-),男,吉林长春人,硕 士,助理研究员,2012年、2015年于西 安电子科技大学分别获得学士学位和 硕士学位,主要从事光电系统性能参 数检测技术、图像处理技术等方面的 研究。E-mail: lihongyu@ciomp.ac.cn [J]. International Journal of Thermophysics, 2015, 36(2): 303-314.

- [13] 刘夭娇,张涛,李俊霖,等.测试装置空间分布对 红外相机噪声等效温差测试的影响[J].激光与光 电子学进展,2023,60(6):170-174.
 LIUTJ, ZHANGT, LIJL, et al. Effect of spatial distribution of test device on noise equivalent temperature difference test of infrared camera[J].
 Laser & Optoelectronics Progress, 2023, 60(6): 170-174. (in Chinese)
- [14] 费业泰.误差理论与数据处理[M].7版.北京: 机械工业出版社,2015.

FEI Y T. *Error Theory and Data Processing* [M]. 7th ed. Beijing: China Machine Press, 2015. (in Chinese)

通讯作者:

郭汉洲(1990一),男,吉林长春人,硕 士,2014年于长春理工大学获得学士 学位,2017年于中国科学院大学获得 硕士学位,主要从事图像处理与数据 分析技术研究。 E-mail: guohanzhoul@163.com