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The target tracking by space-based surveillance systems is difficult due to the long
distances, weak energies, fast speeds, high false alarm rates, and low algorithmic
efficiencies involved in the process. Tomitigate the impact of these difficulties, this
article proposes a target tracking algorithm based on image processing and
Transformer, which employs a two-dimensional Gaussian soft-thresholding
method to reduce the image noise, and combines a Laplace operator-
weighted fusion method to augment the image, so as to improve the overall
quality of the image and increase the accuracy of target tracking. Based on the
SiamCAR framework, the Transformer model in the field of natural language
processing is introduced, which can be used to enhance the image features
extracted from the backbone network by mining the rich temporal information
between the initial and dynamic templates. In order to capture the information of
the target’s appearance change in the temporal sequence, a template update
branch is introduced at the input of the algorithm, which realizes the dynamic
update of the templates by constructing a template memory pool, and selecting
the best templates for the candidate templates in the memory pool using the
cosine similarity-based selection, thus ensuring the robustness of the tracking
algorithm. The experimental results that compared with the SiamCAR algorithm
and the mainstream algorithms, the TrD-Siam algorithm proposed in this article
effectively improves the tracking success rate and accuracy, addressing poor
target tracking performance under space-based conditions, and has a good value
of application in the field of optoelectronic detection.
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1 Introduction

Optoelectronic detection technology possesses the benefits of
high-resolution images, large detection distances, compact system
sizes, and low costs; these favourable properties facilitate the
detection of many objects in space and meet the requirements of
space-based target detection [1–5]. Target tracking is an important
research element in the field of optoelectronic detection. Moreover,
target tracking is the foundation for computer vision tasks such as
pose estimation, behavior recognition, behavioral analysis, and
video analysis.

Currently, it is difficult to monitor targets with high precision,
specifically in four areas: 1) Radical variations in target appearance
throughout the tracking task, including target rotation, illumination
changes, scale changes, etc., 2) frequent occlusion of targets during
tracking; 3) drifting tracking frame caused by interactive motion
between targets. 4) poor image quality with unclear targets in
complex backgrounds [6].

Image preprocessing is defined as the processing of images prior
to the detection and tracking of spatial targets in the image [7]. For
space-based target tracking, the target can be very distant, and it is
imaged on the detector’s image plane as a dot or short strip,
occupying only a few image elements. This results in an
extremely low signal-to-noise ratio and causes the uneven
background noise to obscure the target. To solve these problems,
researchers have examined how the characteristics of space-based
targets differ from those of background stars and noise via methods
such as multiframe time series projection [8], trajectory
identification [9], matching correlation [10], and hypothesis
testing [11]. However, the background noise composition of the
space-based environment is intricate, and the distribution of noise
within the images is nonuniform because of the effect of external
stray light and the detector itself. Furthermore, the forms and
greyscale values of the spatial targets in the images resemble
those of the noise. These algorithms are frequently unsuccessful
at denoising space-based images of stars, resulting in the loss of
target information or the production of spurious targets.

With the advent of deep learning techniques, monitoring
researchers began experimenting with the application of deep
neural networks. In the beginning, more emphasis was placed on
the use of pre-trained neural networks; however, from
2017 onwards, researchers have paid more attention to
Siamese network trackers, whose algorithms exhibit ultra-fast
tracking speed while ensuring greater tracking accuracy. The
classical twin-based tracking algorithm determines the tracking
model through offline training and only employs the tracking
model learned based on the template of the initial frame during
the tracking process, which makes it difficult for the algorithm to
adapt to changes in the target’s appearance and reduces the
algorithm’s robustness. updateNet [12] automatically learns
appearance samples of the target during the tracking process,
thereby mitigating the issue that a single template cannot account
for changes in the target’s appearance during motion. However,
the update module proposed by UpdateNet is distinct from the
embedded tracking algorithm, does not profit from end-to-end
training, and updates the template at a fixed frequency, which
adds superfluous computational effort when the target’s
appearance does not change significantly.

SiamFC [13] utilized an image pyramid approach for the
prediction of target bounding boxes, which is not only inefficient
in inference but also incapable of adapting to scale changes in the
target’s appearance. In target detection, algorithms such as
SiamRPN [14] and SiamRPN++ [15] borrowed from anchor
point-based region recommendation networks, which are more
adaptable to the target than the multi-scale search approach.
However, the pre-setting of anchor points is dependent on the
configuration of hyperparameters, which increases the complexity of
model training.

In order to resolve the aforementioned problems, this article
proposes a target tracking algorithm based on image preprocessing
and transformer [16]. First, the original image is pre-processed using
a two-dimensional Gaussian soft thresholding method based on the
denoising factor [17] to eliminate background noise, and the image
is enhanced using a Laplace operator weighted fusion method after
noise reduction [18, 19]. Secondly, SiamCAR [20] is used as the
overall framework of the target tracking algorithm, given that
SiamCAR employs an anchorless bounding box based regression
strategy for target state estimation go. Transformer is then
incorporated to improve feature representation. Transformer is
widely used in the field of computer vision, and the DETR [21]
algorithm in target detection uses this model to expand the features
of the image and process them into sequence form, so that each
feature node in the sequence can calculate the correlation between
each other and have the capability of global modelling, and the
global modelling capability using the correlation between each
feature node in the sequence to calculate the correlation between
each feature node. The transformer’s global modeling capability can
be used to derive information on the temporal variations in the

FIGURE 1
Algorithm flow chart.

Frontiers in Physics frontiersin.org02

Zhu et al. 10.3389/fphy.2023.1266927

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1266927


target’s motion, thereby enhancing the performance of the target
tracking algorithm. Finally, a dynamic template update is designed
to capture changes in the target’s appearance during motion in order
to increase the tracking algorithm’s robustness to appearance
changes.

The rest of this article is organized as follows: in Section 2, the
implementation process of the target tracking algorithm based on
image preprocessing and Transformer is proposed. In Section 3
experimental validations are made and the results are proved,
demonstrating the superior performance of the proposed TrD-
Siam. Finally, the conclusions are drawn in Section 4.

2 Algorithms in this article

Figure 1 depicts the algorithm’s flow chart, which consists of
image denoising, image enhancement, the SiamCAR backbone
network, the Transformer, the template update branch, and the
classification and regression networks. Using ResNet-50 to
extract template features, the template pool selects the
dynamic templates, the Transformer encoder enhances the
initial template features and dynamic template features, and
the Transformer decoder aggregates the information of the
initial and dynamic templates in the search area to accomplish
deep mining of temporal information in the image blocks of the
search area. After modeling by Trasformer, the template features
are cross-correlated with the search features to generate a high-
quality feature response map, which is then input into an
anchorless-based classification regression network to decode
the predicted target bounding box.

2.1 Image processing

Image denoising: A two-dimensional Gaussian soft threshold
method is used to pre-process the image to derive the processed
R (x,y), with the following equation:

R x, y( ) � ∂g x, y( )
∂t

� a · ∂2f x, y( )
∂x2

+ ∂2f x, y( )
∂y2

( ) (1)

Where f(x, y) denotes a original image; x denotes the spatial
horizontal coordinate position of a pixel and y denotes the spatial
vertical coordinate position of a pixel; t denotes the image denoising
processing time, a denotes the denoising factor and g(x, y) denotes a
two-dimensional Gaussian function. R(x, y) denotes the output
image.

The two-dimensional Gaussian functions are

g x, y( ) � 1����
2πσ2

√ exp
− i2 + j2( )t

2σ2
(2)

Where i denotes the distance of the pixel from the origin on the
x-axis, j denotes the distance of the pixel from the origin on the
y-axis and σ is the standard deviation of the Gaussian distribution.

The denoising factor a is.

a � g x, y( ) + ∇f x, y( )[ ]n g x, y( )≤ − ∇f x, y( )
g x, y( ) − ∇f x, y( )[ ]n g x, y( )≥∇f x, y( ){ (3)

Where n denotes the number of iterations and ∇f(x, y) denotes
the original image two-dimensional gradient value. The denoising
factor a is not a fixed value; the final value of a is determined by
∇f(x, y); and as the number of iterations n increases, image
denoising is becoming more and more apparent.

Using the Laplace operator weighted fusion method, the
enhancement of the pre-processed image is conducted, and the
enhanced image B (x,y) is obtained.

B x, y( ) � f x, y( ) + β
∂2I x, y( )

∂2x
+ ∂2I x, y( )

∂2y
( ) (4)

Where I(x, y) denotes the Laplace transform operator and β

denotes the weighting factor. The value of the weighting factor β
depends on the image sharpness and contrast, with the dark target
weighting being large and the light target weighting being small. The
weighting factor β is

β � i − j
∣∣∣∣ ∣∣∣∣2P i, j( ) + p[ ] · q −∑L−1

k�0
gklog2gk

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣⎡⎣ ⎤⎦ (5)

Where P(i, j) denotes the probability of the pixel distribution of
the grey level difference between pixels, L denotes the image grey
level value, gk denotes the kth image histogram, and p, q are constant
terms. Taking the star atlas as an example, the results are shown in
Figure 2.

2.2 Backbone network

Figure 3 depicts the algorithm structure block diagram with
SiamCAR as the backbone network and a modified ResNet-50 as the
backbone sub-network for feature extraction. ResNet-50’s
perceptual field was expanded to make it suitable for dense
prediction tasks by reducing the spatial step size to retain more
target features and implementing dilation convolution. To increase
the perceptual field, the network was designed by setting the step size
to 1 in the Conv4 and Conv5 blocks and the dilation rate to 2 in the
Conv4 block and 4 in the Conv5 block. The shallow features can
effectively represent visual attributes and thus aid in target
localisation, while the deep semantic features are more conducive
to classification; combining shallow and deep features improves
tracking accuracy [15]. To improve the classification of the
regression prediction bounding box, the algorithm described in
this article cascades the features extracted from the last three
residual blocks of the ResNet-50 backbone network:

φ X( ) � Cat F3 X( ), F4 X( ), F5 X( )( ) (6)
Where F3(X), F4(X) and F5(X) are represented as features of

ResNet-50 backbone network layers conv3_4, conv4_6 and conv5_
3 respectively, and their channel numbers are all adjusted to 256 by
applying 1 × 1 convolution. Cat stands for channel cascade
operation and φ(X) is the fused feature after channel cascade
with 3 × 256 channels.

The Siamese network for target feature extraction consists of two
backbone subnetworks with shared weights: the template branch,
which receives template patch Z as input and returns template
feature φ(Z); and the search branch, which receives search regionX
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FIGURE 2
Image pre-processing results. (A)Original image (B)Image denoising (C)Image enhancement.

FIGURE 3
Block diagram of the tracking algorithm structure. Adapted with permission from, “Zebras Grazing by Taryn Elliot, https://www.pexels.com/zh-cn/
video/5146558/.
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and returns search feature φ(X). By sharing convolutional neural
network parameters, both branches guarantee that the same
transformation is applied to the input. Both branches of the
convolutional neural network share the same parameters to
ensure that the same transformation is applied to the input. In
the subsequent prediction subnetwork, the algorithm is executed
with template feature φ(Z) as the kernel and the intercorrelation
operation on search feature φ(X) to obtain the feature response
map R.

R � φ Z( )*φ X( ) (7)
In order to adapt to space-based optoelectronic detection

systems, the number of channels of ϕ(X) is decreased from 3 ×
256 to 256 by performing a dimensionality reduction operation on
the 1 × 1 convolution kernel in order to satisfy real-time
requirements and reduce the algorithm’s complexity, thereby
enhancing the tracking performance.

2.3 Transformer for target tracking

Figure 4 depicts the structure of the Transformer for target
tracking. The structure of the Transformer is derived from the
traditional Transformer in natural language processing. The left half
is the Transformer encoder and the right half is the Transformer
decoder, with the self-attention and cross-attention modules serving
as the respective fundamental construction elements.

2.3.1 Transformer encoder
A feature mapping of the initial and dynamic templates, designated

T1 ∈ RC×H×W and Td ∈ RC×H×W, is the input to the Transformer

encoder. Cascade it to T � Concat(T1, Td) ∈ R2×C×H×W. A self-
attentive calculation weights the integrated initial frame with
cascaded feature T of the dynamic template so that cascade T can
benefit from the features of both frames, resulting in a higher quality
representation of the template features. The primary method of
calculation is as follows: First, the features of the template feature T
are adjusted to T′ ∈ RNT×C, i.e., serially processed, to acquire a one-
dimensional feature vector containing NT � 2 × H × W.The encoder
module computes the self-attentiveness matrix of the template features,
as shown in Eq. 8:

ATT � Attention φ T′( ),φ T′( )( ) ∈ RNT×NT (8)
In Eqs. 1, 8 × 1 is processed from φ(T) to φ(T′) under the linear

transformation operation φ(•), which is intended to adjust the
dimensionality of the one-dimensional sequence features from C
to C/4. φ(T′) is then fed into the self-attention module of the
encoder to do the calculation of the self-attention matrix. Based on
the self-attentive matrix ATT, the transformed template feature
ATT × T′ ∈ RNT×C can be obtained, and this term is used as the
residual term and added to the original feature T′. As in Eq. 9:

Tf � Ins.Norm ATTT′ + T′( ) (9)

Where Tf ∈ RNT×C is the final encoded feature vector from the
encoder. Ultimately, this one-dimensional feature vector is
recovered as a two-dimensional feature map Tencode ∈ R2×C×H×W.

2.3.2 Transformer decoder
The input to the transformer decoder is a search for feature

S ∈ RC×H×W of the image block, which first resizes the feature to
S′ ∈ RNs×C, whereNs � H × W. S′ is then fed into the self-attention

FIGURE 4
Transformer structure.
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module to obtain the self-attention matrix ASS for the search region,
as in Eq. 10:

ASS � Attention φ S′( ),φ S′( )( ) ∈ RNS×NS (10)
The final output of the self-attentive module of the decoder is

given in Eq. 11:

Sf � Ins.Norm ASSS′ + S′( ) (11)

From the search feature Sf and the output Tf of the encoder, the
cross-attention matrix between them can be calculated as

ATS � Attention φ Sf( ),φ Tf( )( ) ∈ RNS×NT (12)

In addition to constructing the propagation of temporal
information, Gaussian labels for the initial and dynamic template
features were constructed to utilize the spatial information andmake
the tracking algorithm more focused on areas where the target could
be present, as shown in Eq. 13:

m y( ) � exp − y − c
���� ����2
2σ2

⎛⎝ ⎞⎠ (13)

Where c represents the true position of the target, for the initial
template mask m1 and the dynamic template mask md, which is
stitched together as M � Concat(m1,md) ∈ R2×H×W. And further
adjusted to M for M′ ∈ RNT×1.

In order to transfer the information between the template
features and the search features, the template mask M′ is first
multiplied element by element with the template feature Tf to
obtain Tf ⊗ M′, which is used to suppress the background region.
The transformed feature ATS(Tf ⊗ M′) is then obtained based on
the cross-attention matrixATS, and this feature is added as a residual
term to the search feature Sf. Instance normalisation is then
performed to obtain the output of the Transformer decoder, the
process being Eq. 14:

Sfeat � Ins.Norm ATS Tf ⊗ M′( ) + Sf( ) (14)

Converts the final output feature vector Sfeat ∈ RNs×C of the
Transformer decoder into a two-dimensional feature map
Sdecode ∈ RC×H×W.

Finally, by 1 × 1 convolution, Tencode ∈ R2×C×H×W is downscaled
and its channel is adjusted to C. Finally, the adjusted Tencode is
intercorrelated with Sdecode to obtain the response map R*. This
response map is fed into the classification regression network for
classification and regression of the target.

2.4 Dynamic template updates

For dynamic template branching, an N-sized template memory
pool with the feature encoding Ti|Ti ∈ RC×H×W, i � 1: N{ } is first
constructed. The feature encoding in the memory pool is then
aggregated and converted into a vector to produce the encoded
feature vector in the memory pool: ei|ei ∈ R1×m, i � 1: N{ }.The
same operation is performed on the feature encoding in the
search region to obtain edecode ∈ R1×m. The cosine similarity
between the individual feature vectors in the memory pool and

the feature vectors in the search region is then calculated according
to the following Formula (15):

cos ei, edecode( ) � ei · edecode
ei‖ ‖ × edecode‖ ‖ (15)

After calculating the similarity between the feature vectors in the
memory pool and the feature vectors in the search region, the frame
with the highest similarity is selected, cropped, and used as a
dynamic template for subsequent tracking, as shown in Eq. 16:

Td � crop argmax cos ei, edecode( )( )( ) (16)
Where crop(·) is the cropping operation, the dynamic template

selection and update process is shown in Figure 5.
Define a template noise degree to determine whether to update

the template. Due to the limited computational capability of the
space-based target tracking system, continuous updating of the
template not only increases the computational burden of the
system, but also introduces noise, so when the template noise
level increases sharply, the choice is not to update the template.
The template noise degree calculation formula is as follows:

Nt � λ1
F max −mean F max( )| |

mean F max( ) + λ2
apce −mean apce( )∣∣∣∣ ∣∣∣∣

mean apce( ) (17)

Where λ1 and λ2 are constants, usually set to 1 and 2. Fmax is the
maximum response value in the feature response map R obtained by
inter-correlating the target template features with the search frame
features; apce is the average peak correlation energy; mean(Fmax)
and mean(apce) represent the mean of the historical frame Fmax

and apce values. apce is calculated as follows

apce � F max − F min| |2

mean ∑
w,h

Fw,h − F min( )2( ) (18)

WhereFmax,Fmin andFw,h represent themaximum response value,
the minimum response value, and the response value of the element in
row w and column h, respectively, in the feature response map R.

3 Experimental results and discussion

3.1 Experimental setup

The training and testing environment for the algorithm in this
article is Ubuntu 18.04 with Python 3.7 and PyTorch 1.2. ResNet-50
with the same parameters as the baseline algorithm SiamCAR served as
the backbone network. The training set consisted of ImageNet DET
[22], COCO2017 [23], YouTube - BB [24], and LaSOT training set [25].
Randomly chosen images from the training set were used as static
template frames and search image frames, respectively, with a 50-pixel
distance between them. For the purpose of acquiring a dynamic
template, a random frame between the initial template frame and
the search image frame was chosen as the prototype dynamic template
image frame. The network optimiser was trained for 50 iterations
utilizing the ADAM optimiser, with an initial learning rate of
0.01 scaled down to 0.2 times the original every 10 iterations. A and
B in the loss function were respectively set to 1 and 3.
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3.2 Ablation experiments

In order to assess the efficacy of the Transformer module and
the dynamic template update module, three sets of control
algorithms were established in this section: SimCAR algorithm,
Renew algorithm and Ours algorithm. The results of the ablation
analysis using the OTB100 dataset for the three categories of
algorithms previously mentioned in Figure 6.

Figure 6 demonstrates that TrD-Siam (Ours) obtains the highest
success rate and accuracy, with 71.3% and 92.6%, respectively. In
terms of success rate, Renew improves the baseline algorithm
SiamCAR by 0.012, while Ours improves it by 0.008 relative to
Renew; in terms of accuracy, Renew improves the SiamCAR
algorithm by 0.007, while Ours improves it by 0.009 relative to

Renew. The structure and template update modules enhance the
efficacy of the SiamCAR base algorithm.

3.3 Quantitative experiments

3.3.1 Experimental results for the OTB100 dataset
For the OTB100 dataset, TrD-Siam was compared to several

dominant and representative tracking algorithms, such as SiamCAR,
SiamFC, SiamRPN, MDNet [26], SiamDW [27], SiamFC++ [28],
Ocean [29], SiamBAN [30], and SiamAttn [31].

Figure 7 depicts the success and accuracy profiles of the
algorithms derived from the OTB100 dataset using the OPE
evaluation strategy. TrD-Siam obtains success and accuracy

FIGURE 5
Dynamic template update process. Adaptedwith permission from, “Zebras Grazing by Taryn Elliot, https://www.pexels.com/zh-cn/video/5146558/.

FIGURE 6
Results of ablation experiments. (A)Success plots of OPE omn OTB100 (B)Precision plots of OPE on OTB100.
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rates of 71.3% and 92.6%, respectively, substantially
outperforming the other nine algorithms compared. TrD-
Siam’s tracking success rate and precision are both enhanced
by 1.6% compared to SiamCAR. The aforementioned results
demonstrate that the dynamic template and Transformer
structure’s effectiveness in this chapter’s algorithm TrD-Siam
mitigate the degradation of tracking performance when the
target’s appearance drastically changes.

3.3.2 Experimental results for the VOT2018 dataset
Five sets of tracking algorithms, SiamCAR, SiamFC, SiamRPN,

SiamRPN++, and SiamBAN,were introduced and evaluated using three
evaluation metrics from the VOT2018 benchmark: A (Accuracy), R
(Robustness), and EAO (Expected Average Overlap). Additionally, the
Lost Number was utilized as a secondary metric. A greater value of A
indicates that the algorithm is more precise, a lesser value of R indicates
that the tracking algorithm is more robust, and a greater value of EAO
indicates that the tracking algorithm is more exhaustive. Table 1
provides the results.

As shown in Table 1, TrD-Siam demonstrated excellent tracking
performance, achieving the second maximum accuracy (0.599),
robustness (0.169), and EAO (0.44). Compared to the baseline

algorithm SiamCAR, TrD-Siam demonstrated an enhancement of
1.2%, 1.8%, and 4% in accuracy, robustness, and expected mean
expected overlap, respectively, demonstrating its efficacy.

3.3.3 Ground-based large-aperture telescope
experiment

To visualize the tracking results, optoelectronic detection equipment
is used to track long-distance trailing targets, and Figure 8 shows the
ground-based large-aperture optoelectronic detection equipment, and the
results of the visualisation are presented in Figure 8. For qualitative
analysis, TrD-Siam was compared to SiamRPN, SiamFC.

As illustrated in Figure 9. Red, ground truth; bule, the proposed
TrD-Siam; green, SiamRPN; yellow, SiamFC. The data collected by the

FIGURE 7
Quantitative comparison results on the OTB100 dataset. (A) Success plots of OPE omn OTB100 (B) Precision plots of OPE on OTB100.

TABLE 1 Performance comparison of the algorithms on the VOT2018 dataset.

A↑ R↓ EAO ↑ Lost number

SiamFC 0.503 0.585 0.187 125.0

SiamRPN 0.586 0.276 0.383 59.8

SiamRPN++ 0.601 0.234 0.415 50.0

SiamBAN 0.590 0.178 0.447 38.0

SiamCAR 0.578 0.197 0.427 42.0

TrD-Siam 0.599 0.169 0.467 36.0

FIGURE 8
Ground-based large aperture telescope.
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ground-based large-aperture optoelectronic detection detection
equipment, at 25 frames, all three algorithms can successfully track
the target, at 37 frames, due to the interference of stars around the target,
the SiamFC algorithm loses the tracking target, at the same time, the
SiamRPN and the proposed TrD-Siam successfully track the target, at
100 frames, due to the target being blocked by the stars, the SiamRPN
and the SiamFC algorithms lose tracking the target and the algorithm of
this article algorithm can successfully track the target when the target is
obscured, at 123 frames, all algorithms realize to track the target, in
summary, the algorithm of this article has better tracking performance.

4 Conclusion

In this article, we carry out research on the poor target tracking
performance of optoelectronic detection system in space-based
background, and propose a TrD-Siam algorithm based on image
processing and transformer, which improves the overall quality of
the star atlas by using image processing techniques for the problems of
long distance and weak energy of space-based targets. For the problems
of high false alarm rate and low efficiency of space-based target tracking,
transformer is introduced into the SiamCAR framework to enhance the
image feature extraction capability. Comparison experiments are
conducted on OTB100 and VOT100 datasets respectively, and the

experimental results prove that the algorithm in this article performs
better in the three evaluation indexes of accuracy, robustness and EAO.
And the TrD-Siam algorithm is verified by the data collected by the
ground-based large aperture telescope, and compared with the
comparison algorithm, the TrD-Siam algorithm has a better tracking
performance and has a good application value.
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