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Abstract: In this work, we propose a 3D occlusion facial recognition network based on a multi-feature
combination threshold (MFCT-3DOFRNet). First, we design and extract the depth information of the
3D face point cloud, the elevation, and the azimuth angle of the normal vector as new 3D facially
distinctive features, so as to improve the differentiation between 3D faces. Next, we propose a
multi-feature combinatorial threshold that will be embedded at the input of the backbone network to
implement the removal of occlusion features in each channel image. To enhance the feature extraction
capability of the neural network for missing faces, we also introduce a missing face data generation
method that enhances the training samples of the network. Finally, we use a Focal-ArcFace loss
function to increase the inter-class decision boundaries and improve network performance during
the training process. The experimental results show that the method has excellent recognition
performance for unoccluded faces and also effectively improves the performance of 3D occlusion face
recognition. The average Top-1 recognition rate of the proposed MFCT-3DOFRNet for the Bosphorus
database is 99.52%, including 98.94% for occluded faces and 100% for unoccluded faces. For the
UMB-DB dataset, the average Top-1 recognition rate is 95.08%, including 93.41% for occluded faces
and 100% for unoccluded faces. These 3D face recognition experiments show that the proposed
method essentially meets the requirements of high accuracy and good robustness.

Keywords: 3D face recognition; deep learning; multi-feature combination thresholding; face
data generation

1. Introduction

In recent years, two-dimensional facial recognition technologies that use 2D grayscale
or color image information have been widely used in identity identification, security
monitoring, and other fields. However, the measured face is often unconstrained in real
recognition scenarios, and 2D faces are easily affected by ambient light, the shooting posture,
facial makeup, and other factors that reduce the technology’s recognition performance [1].
Studies show that 3D imaging techniques such as structured light and TOF are insensitive
to 3D imaging of the face with lighting and makeup changes [2,3], and multi-pose 3D faces
can also be corrected by different alignment algorithms [4–6]. Therefore, with the rapid
development of 3D imaging devices, the robust depth information and facial geometry
information contained in 3D face data support a comprehensive understanding of facial
features, overcoming the basic limitations of 2D faces in terms of lighting changes, pose
changes, makeup, etc. [7,8].

However, in extreme unconstrained recognition scenarios, faces are often obscured
by random external components (glasses, scarves, palms, etc.). Knowing the location
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and morphology of the occluded object in advance is not feasible; therefore, facial geo-
metric features changes significantly when occlusion occurs, and the contaminated facial
recognition information affects the accuracy of the final recognition algorithm. The higher
inter-class similarity and greater intra-class variation caused by occlusion can impair the
recognition accuracy for the face to be recognized [9]. Large-scale 3D databases are not
widely available, whereas several publicly available large-scale 2D face databases already
exist [10]. From the feasibility point of view, it is difficult to directly obtain a 3D database
that accounts for all facial occlusion possibilities and uses deep learning techniques for
facial recognition [9,11]. Therefore, 3D occlusion facial recognition constitutes a much more
common and difficult problem.

Compared with the 3D recognition of pose and expression changes, there are fewer
related studies on the occlusion problem [12–14]. However, as occlusion recognition in
unconstrained environments has received more and more attention from researchers, some
strategies have been proposed. The strategies for 3D occlusion facial recognition mainly
comprise, on the one hand, methods based on facial curves and, on the other, those using
non-occluded facial regions.

Drira et al. [15] use radial curves to represent 3D faces. They use ICP to detect and
remove the external occlusion points on each curve and retain the high-quality curves using
a quality filter; after that, they use the statistical model in the curve shape’s space to fill
in the missing data for the whole area to achieve facial recognition. Gawali et al. [16] use
indexed sets using radial geodesic curves to represent 3D human faces. They compare facial
curve shapes using elastic shape analysis and process the occluded parts using recursive-
ICP. Yu et al. [17,18] propose a new radial string representation and matching algorithm.
They represent 3D faces with an indexed collection of attributed strings in the radial curve
direction. The occlusion is removed by obtaining the similarity of the corresponding radial
strings using a dynamic programming method, and faces are recognized using the most
discriminative parts. Li et al. [19] use central profile curves in the nasal tip region to form
a rejection classifier to quickly filter dissimilar faces. They segment the facial region that
is most sensitive to occlusions into six blocks and extract the facial deformation curves of
the corresponding blocks, and then discard the occluded regions using an adaptive region
selection strategy to achieve the accurate recognition of faces.

Colombo et al. [20] detect the occluded region by comparing the probe face with
a generic model of the face obtained using the facial feature method. They refine the
local occlusion with morphological filtering and recover the whole face after removing
the occluded part with Gappy PCA. Alyuz [21] first finely aligns the nose region using a
two-step alignment scheme and then identifies and removes the occluded region using
a generic face model; finally, the whole face is recovered using Gappy PCA and the
identity is confirmed using the score-level fusion of LDA classifiers. Similarly, Bagchi [22]
automatically discards the occluded objects using a thresholding method based on a
comparison of the input depth image with the average face; this method then recovers the
occluded part using PCA and extracts the normal face as recognition features. Alyuz [23]
adopts two modal methods for occlusion detection. He uses a Gaussian mixture model
to compare the difference between the queried face and the model face to discriminate
whether the surface pixels are valid values, treating the occlusion problem as a binary
segmentation problem and obtaining the facial region using a spatial graph cut technique.
Zohra [24] uses the connected region with the highest intensity value of the depth image
acquired in Kinect as a potential occlusion region; this method then adjusts the boundary
of the occlusion region and uses LBP to extract the distinguishing features. SVM is used for
facial classification recognition. Ganguly proposes a block-based approach based on the
phenomenon whereby salient parts have higher depth densities over the whole surface.
He progressively computes the depth map depth values of two blocks of different sizes,
scrolling along the row direction on the depth map to identify the occlusion targets. Bellil
et al. [25] use the Gappy wavelet neural network for occlusion rejection. They compare
the wavelet coefficients of probe 3D faces with the wavelet coefficients of average 3D
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faces, thus detecting and removing the occluded objects. Dutta et al. [26] propose a region-
classifier-based recognition strategy. They detect and remove occlusions using fuzzy
C-mean clustering and the shape index (SI) and then represent the whole face depth with
LBP and divide it into three horizontal regions (eyes, nose, and mouth). Then, they create
facial recognition features using HOG descriptors. Dagnes et al. [27] achieve the double
detection of occlusion by detecting the overall difference rate between the left and right
sides of the face and comparing the intensity difference between the query face and the face
model; they then gradually remove the occluded region and use 12 differential geometric
descriptors to recognize the face.

Researchers have also proposed other methods for 3D occlusion facial recognition.
Zhao [28] proposes a 3D statistical facial feature model. The model is used to learn the
variations in global configuration relations of 3D facial landmarks and the local variations in
the texture and geometric aspects of each landmark. Finally, a k-nearest-neighbor classifier
is used to recognize obscured faces. Liu et al. [29] use the method of directly detecting three
nose regions (the whole nose and left and right nasal flaps) based on template matching.
Even if there are facial occlusion regions, nose recognition can be accomplished by matching
the average nose model and the facial depth image. Liu et al. [30] improve the ICP algorithm
for occlusion facial recognition. The geometric surface is represented as a spherical depth
map for fast and uniform sampling. Then, a rejection strategy is embedded in ICP to
eliminate the occluded objects.

When a facial occlusion object is detected, it is usually processed by removing the
occluded part or restoring the occluded area. However, restoring the occluded area de-
creases recognition rates, and using only non-obscured facial surfaces is more beneficial
for facial recognition [31,32]. Meanwhile, rapidly developing deep learning techniques are
receiving more attention in the field of facial recognition [10,33–35]. Deep learning methods
extract the deep features of facial data through large-scale training sets and different neural
network structures and use specific loss functions to achieve the inter-class separation
and intra-class aggregation of facial features. Jan et al. [36] show in an experiment that
combining different texture features and depth features for deep learning is more effective
than considering only a single facial feature.

In this paper, we propose a 3D occlusion facial recognition network based on a multi-
feature combination threshold, hereafter denoted as MFCT-3DOFRNet for convenience.
First, we use the least squares method to solve the optimal transformation matrix from
the input 3D face to the reference face and use this transformation matrix to implement
the pose correction of the face to be recognized. Then, to make better use of the existing
depth recognition network structure, we convert the face 3D point cloud into a depth
image. Additionally, we extract the angular information of the point cloud normal vectors
as features for facial geometry differentiation. We use MobileNet, a lightweight feature
extraction network, as the backbone network, and introduce the Focal-ArcFace loss function
in the training of the network parameters to improve the network model’s ability to extract
the implicit features of human faces. For the redundant occlusion information in the
feature maps, we use a multi-feature combinatorial thresholding technique to remove
the regions of excessive differences between the detected face and the mixed average face
model (mixed AFM). We also introduce missing face data generation methods to expand the
training samples and improve the network’s recognition performance for de-obscured faces.
The experimental results show that the performance of 3D occlusion facial recognition
is effectively improved, since most of the interference information is removed before the
network feature extraction. In general, the main contributions of the proposed algorithm
are as follows:

• We propose a 3D occlusion facial recognition network. We represent the face point
cloud as different geometric feature maps for recognition and de-occlusion tasks. We
use a lightweight network as the backbone network to reduce the size of the model
parameters and use Focal-Arcface loss to enhance the intra-class aggregation of the
recognition network for missing face data.
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• We propose a method for removing facial occlusion from 3D faces based on a multi-
feature combinatorial thresholding method. Compared with relying only on depth
information to determine the occlusion areas, the multi-feature thresholding technique
can remove the occlusion with obvious depth distance from the face and can better
locate the boundary between the face and occlusion. This method does not require
changing the original structure of the model since it only needs to embed the input
side of the neural network.

• A mixed average face model (mixed AFM) construction method is proposed. We
form a new facial representation after characterizing the 3D face point cloud as a
collection of facial features with different feature attributes; then, we construct the
average face and standard deviation of the respective feature channels point by point
(this is conducted offline).

• We propose a missing facial data generation method for convolutional network train-
ing. Compared to the original dataset, the proposed method expands the amount
of data for each face by 23 times. The model parameters trained using this dataset
improve the recognition rate for faces with expression changes, pose changes, and the
removal of occlusions.

The remainder of this paper is organized as follows. Section 2 describes the basic
theory of the proposed method. Section 3 presents the experimental results. The conclusions
are discussed in Section 4.

2. The Proposed Network

In this section, we introduce the whole framework of the proposed 3D occlusion facial
recognition network. We also describe the algorithms used for 3D face pre-processing,
multi-feature description, facial occlusion removal, facial recognition neural networks, and
the generation of missing facial data.

2.1. Overview

Figure 1 describes the basic workflow for the 3D occlusion facial recognition network.
We first capture the 3D shape of the probe face in the scene using 3D sensor devices
(structured light, TOF, etc.) [37–39]. We obtain higher-quality 3D facial information after
noise filtering, face segmentation, and the alignment of the original face point cloud
generated by 3D scanning. Then, we use the facial depth and normal information obtained
by the 3D points as the new geometric representation of the face. The 3D point clouds
are disordered and spatially and rotationally invariant. We interpolate and fit the new 3D
facial representation to a 2D image and use it as a 2D input source for the neural network,
reducing the recognition computational consumption and enabling our network to take
advantage of the existing 2D facial depth recognition techniques.

To extract the occlusions from the new facial features, we remove the redundant
occluded area features in each feature map by using the corresponding face masks generated
by Mask Generator. The mixed AFM and the corresponding mixed standard deviation
(mixed STD) involved in the Mask Generator are generated offline from the original
unobscured 3D points in the Gallery feature faces after preprocessing, alignment, and facial
characterization. This offline generation step is performed only once; for online recognition,
we only need to read the mixed AFM and mixed STD data. Finally, we use a neural network
to automatically extract high-dimensional facial features and use a fully connected layer to
automatically classify facial classes.

The remainder of this section details the specific steps of the 3D occlusion facial
recognition network shown in Figure 1.
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Figure 1. Architecture of our proposed 3D occlusion facial recognition network.

2.2. 3D Face Preprocessing

It should be noted that 3D scanning devices are subject to their own or environmental
interference when capturing facial information, and the obtained 3D faces are susceptible to
noise [40]. Noise removal improves the localization accuracy of a landmark on the face and
reduces the possibility of some of the noise being used as distinguishing features of the face
during the training of the convolutional network. We use a statistical filter to remove sparse
outlier points. The basic principle is to calculate the average distance d(x, y, z) from each
point (x, y, z) to the K nearest points in the original point cloud PO. We remove the outliers
by judging the relationship between each point and the mean µ and standard deviation σ of
the average distance to all points. The equation for obtaining new 3D points by eliminating
noise through the statistical filter is as follows:

{(x, y, z) ∈ PO|d(x, y, z)− µ− α× σ < 0, σ ∈ [1, 5]} (1)

The ideal frontal face model is usually obtained directly from the unconstrained
environment. To reduce the impact of pose variations on recognition performance, we need
to uniformly correct the faces of all poses to the frontal face. The coordinate space of this
frontal face is identified as the reference coordinate space. Positioning facial landmarks
for detection is the first step of pose correction. Many researchers have proposed using
3D facial landmarks detection methods [28,41,42] and alignment methods [6,43] when the
face pose or expression changes or when self-occlusion is present. Figure 2a shows the
locations of the detected facial feature points (yellow dots) when the pose changes (left)
and when self-occlusion is present (right). The computational resources of the alignment
step can be reduced by calculating the transformation matrix between the corresponding
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points and then applying this transformation matrix to the whole uncorrected face. After
obtaining N pairs of feature-corresponding point pairs, we use the least squares fitting
method proposed by Arun [44] to solve the rotation translation relationship between the
original point set PO and the target point set PT :

[U, S, V] = SVD
(

∑N
i=1
(

Pi
O − PO

)(
Pi

T − PT
))

R′ = VUT , t′ = PT − R
′PO

(2)

where PO and PT are the centers of mass of PO and PT , respectively, and N is the number
of 3D points. Then, we coarse align the point set using the rotation matrix R′ and the
translation matrix t′. To make the system robust to small alignment errors, this system
does not use the ICP algorithm for fine alignment. In the left column of Figure 2b,c are the
spatial relative relations before alignment between the frontal face model (blue) and the
model to be aligned (red). Figure 2b shows the face alignment of the pose variation, and
Figure 2c shows the face alignment of self-occlusion.
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Figure 2. (a) Probe faces in different states (pose variation and self-occlusion) marked with 3D facial
landmarks. The left columns of (b,c) are before alignment, and the right columns are after alignment;
(b) facial alignment of pose variation; (c) face alignment of self-occlusion.

The resulting 3D model includes facial information and also redundant object infor-
mation such as the neck, ears, and hair. Usually, we take the detected nose-tip point as the
center of the circle and take the 3D points in the fixed radius length sphere space as reliable
facial information. The facial points after the above alignment and cropping operations are
shown in the right columns of Figure 2b,c.
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2.3. 3D Face Representation

Figure 3a shows the 3D face model. In feature classification, classical methods usu-
ally consider extracting specially designed global features or local features from 3D faces.
However, handcrafted features have been proven to be suboptimal compared to depth
features [45]. The development of CNN networks has made it possible to generalize well
for various types of vision tasks, so that the conversion of 3D faces to 2D can borrow
mature network structures to achieve recognition tasks and uses transfer learning tech-
niques to speed up the efficiency of network training. The use of multiple facial encoding
strategies enhances the discrimination between classes [46], so to improve the recognition
performance of the network. Inspired by [10,36,47], we compute and extract the depth
information, elevation, and azimuth angle of the normal vector of each 3D coordinate
point as the new 3D facial representation. The three geometric data points are generated
and interpolated into the three channels of the 2D image using a grid-fitting algorithm (as
shown in Figure 3b). Specifically, the 3D face of the pose variation is first aligned to the
reference coordinate space in order to calculate the facial feature information; then, the
depth information of each point of the 3D face can be directly determined by the spatial
coordinate points (x, y, z). Next, the discrete 3D face points in space are meshed by the
Delaunay algorithm, and the face point cloud is transformed into a mesh model consisting
of small multivariate objects. Finally, we calculate the normal angle information using grid
points. The norm N fK of the polygon surface formed by the mesh vertex Pi and the adjacent
points Pj, Pj+1 is obtained using Equation (3).

N fK =

(
Pi − Pj+1

)
×
(

Pi − Pj
)

‖
(

Pi − Pj+1
)
×
(

Pi − Pj
)
‖

(3)

NPi =
∑ A fK N fK

‖∑ A fK N fK‖
(4)

azimuthNPi
= arctan

(
NPiY, NPiX

)
(5)

elevationNPi
= arctan

(
NPiZ,

√(
NPiX

)2
+
(

NPiY
)2
)

(6)
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The normal NPi of the face’s surface point can be obtained by averaging the normal
of all small polygons sharing the point Pi using Equation (4) [48], where A fK is the area
of polygon fK. Thus, the azimuth angle azimuthNPi

and elevation angle elevationNPi
of the

facial surface can be obtained by converting the Cartesian coordinates (NPiX, NPiY, NPiZ)
of the normal NPi to spherical coordinates using Equations (5) and (6). After processing
the z-value, azimuth, and elevation angles of each discrete point in the space by grid
interpolation, the desired depth map (see Figure 3c), elevation map (see Figure 3d), and
azimuth map (see Figure 3e) can be obtained.

2.4. Mixed AFM Construction

After the probe face generates a multi-feature facial map, as shown in Figure 3b, it is
applied to online recognition or offline training, which can be used as a new input to the
backbone network instead of the traditional RGB image channel. Multi-feature facial maps
are used for the offline construction of the average face model and its standard deviation
map. Considering the different facial region variations and the inconsistency of different
image channels for each object, we propose a mixed AFM construction method. The AFM
Generation module is shown in Figure 4. A gallery of 3D faces generates multi-feature
faces by pre-processing and facial characterization steps. We separate each channel of the
multi-feature face and calculate the mean face IC(x, y) and its standard deviation SC(x, y)
for each channel of the gallery face on a channel-by-channel, pixel-by-pixel basis, as shown
in the middle region of Figure 4. The generation formula is as follows:

IC(x, y) = ∑N
i=1 IC

i (x, y)/N (7)

SC(x, y) =

√
∑N

i=1

(
IC
i (x, y)− IC(x, y)

)2
/N, C = 1, 2, 3 (8)

where (x, y) represents the 2D image pixel coordinates, N is the number of all multi-feature
gallery faces, and C is the number of image channels. Finally, the obtained depth AFM,
elevation AFM, and azimuth AFM are combined into one hybrid AFM face image. This
hybrid AFM face model is involved in the subsequent occlusion removal work.
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2.5. The Proposed Facial Occlusion Removal Method

Facial occlusion changes the local geometry of the face, which causes a reduction in
the intra-class aggregation and inter-class separation properties of the recognition network
model. Therefore, we propose a multi-feature combinatorial thresholding technique to
remove the occluded regions, which is mainly implemented in Mask Generator as shown in
Figure 5. The 3D face mentioned in the previous section is characterized as three geometric
features, and the calculation of each feature is only related to the face’s local surface
points. That is, the occlusion features do not spread globally and do not affect the feature
descriptors in the unoccluded facial region, which is beneficial to our detection of face
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occlusions in space. Firstly, we obtain three faces with different feature attributes with
channel separation of the masked multi-feature face. Then, they are differentiated from
the feature faces of the corresponding attributes in the mixed average face to obtain the
difference face (see in Figure 6). From the difference faces of each channel shown in Figure 6,
we can observe that the main area of the occlusion can be distinguished significantly in
the face with depth difference, while the faces with azimuth and elevation differences
have greater fluctuations at the steep edges of the occlusion. The difference values of each
difference face in Figure 6 have different magnitudes, so the proposed mixed AFM is used
to generate the corresponding standard deviation maps for each channel feature difference
face instead of using the overall standard deviation as the threshold segmentation criterion.
The threshold of each channel to generate the mask MC(x, y) is as follows.

MC(x, y) =

{
1
∣∣∣IC(x, y)− IC(x, y)

∣∣∣ < 3× SC(x, y)
0 otherwise

, C = 1, 2, 3 (9)

where C represents the image channels. Using Equation (9), we generate each correspond-
ing three-channel mask template. Finally, we obtain the final mask by bitwise point-to-point
AND operations for each channel; this is used to locate the obscured feature positions in
the input multi-feature face. Removing the occlusion is more beneficial for recognition than
restoring the occluded face [31,32]. Therefore, when the occlusion region is located, we use
the multiplication operation to remove the facial occlusion features.
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2.6. Recognition Network Architecture

Deep learning methods typically embed features into neural networks for end-to-end
learning, avoiding the need to design various tedious manual feature steps. The method
of mask removal using the proposed Mask Generator module can reduce the interference
of the masking information on the recognition results and improve the quality of the
input faces. Then, we extract the high-dimensional features of faces using convolutional
layers and use the loss function to enhance the intra-class compactness and inter-class
discrepancy of the extracted features. We choose the MobileNet model as our backbone
network [49] but modify the input size of the first conv layer to 112× 112; see Figure 7. This
is a lightweight network for mobile, mainly based on depthwise separable convolution to
reduce the computational effort and model size. Compared with traditional convolutional
neural networks with size weights of hundreds of megabytes, MobileNet’s weight size
is only tens of megabytes. We embed Arcface [50] at the output of the fully connected
layer of the backbone network to increase the decision boundary distance and improve
the stability of training. Occlusion or pose changes can cause missing facial data, and
facial expression changes also cause local changes in intra-class features; these phenomena
can increase the difficulty of distinguishing individual face samples. At the same time,
the focal loss function [51] is used at the end of the network as our trailing loss; this loss
function is mainly used to enhance the contribution of small and hard-to-score samples to
the loss. Based on the adopted Focal-Arcface loss in Equation (10), in the training phase,
we use the multi-feature faces of expression and pose faces generated offline in 3D gallery
faces as the training and validation sets to train the model parameters of our trunk CNN.
For the recognition accuracy tests of the pose face, expression face, occluded face, and
de-occluded face, after loading the training model parameters, we obtain the recognition
results by multiplying the embedded feature output from the fully connected layer by the
normalized weights:

Arcface(yi) =
es(cos (θyi +m))

es(cos (θyi +m))
+∑n

j=1,i 6=yi
es cos θj

, s = 64, m = 0.5

LFocal−Arcface(pt) =
m
∑

i=1

(
−(1−Arcface(yi))

γ log(Arcface(yi))
)
, γ = 2

(10)
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2.7. Missing Face Data Generation Method for Training

Convolutional neural networks are data-driven and depend on the quality and quan-
tity of the data. Compared to datasets for 2D faces, the range of 3D face datasets and
the number of classes of them are relatively small, and the recognition task cannot fully
benefit from deep learning techniques. Moreover, the facial recognition rate for partially
missing face region data is limited by the sample size of the original dataset, and the
model parameters trained by the original samples lack the generalizability to recognize
partially occluded faces. Therefore, we also propose an active face mask coding scheme for
generating large, labeled 3D face training sets. The method generates multi-featured faces
for each identity’s face with their faces missing under different expression changes, thus
simulating the data loss of faces when pose correction or facial occlusion is removed. We
divide the feature faces into 4× 4 grid regions and remove the facial regions block by block
with 2× 2, 1× 4, and 2× 4 mask matrices; the generated results are shown in Figure 8. This
approach enables the feature face dataset for training to be expanded 23 times, enabling
the full performance of the deep technology to be exploited.
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3. Experiments

The following subsections provide the performance evaluation of the partial 3D
occlusion facial recognition network based on a multi-feature combination thresholding
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technique. The experimental system is implemented by Pytorch and trained on a computer
equipped with an NVDIA 3060 GPU and an Intel(R) Core(TM) i7. The SGM optimizer
is adopted for the model with 100 epochs and the initial learning rate is 0.01. We set the
learning rate variation strategy according to He [52]. We divide the expression and gesture
faces in the dataset used for evaluation into a training set, a validation set, and a test
set with a random sampling ratio of 8:1:1. The training set is used to train the network
model parameters, the validation set is used for model selection, and the test set is used to
evaluate the final recognition accuracy. Finally, the trained model parameters are directly
used to test the recognition performance of obscured faces and unobscured faces. To
further leverage existing deep learning techniques and reduce training time, we load the
pre-training weights of the public network in the initial stages of training.

3.1. Dataset

To evaluate the performance of the proposed face recognition network, we conduct
experiments based on the Bosphorus database and the UMB-DB database.

The Bosphorus database is a 3D face dataset collected by Bogazici University that
is used for 3D and 2D face processing tasks [53,54]. The database contains 105 different
subjects with 13 various poses, 7 expressions, and 4 different facial occlusion conditions. A
total of 4666 (1600 × 1200) 3D face samples are scanned using a high-resolution structured
light technique. Each subject has up to 35 face expressions.

The UMB-DB 3D face database is owned by the University of Milano Bicocca and
focuses on facial occlusion in real-world scenarios [55]. It consists of 143 subjects with a
total of 1473 2D + 3D face samples, including 883 non-occluded faces and 590 occluded
faces. The dataset uses laser scanning to capture faces with four expressions and at least six
different occlusion types.

3.2. Model Analysis

We identify the impact of the settings of different module parameters, such as facial
representation, the network input size, and model training, on the proposed 3D face
recognition task to achieve the optimal operation of the proposed obscured face recognition
framework. We use the face data from the Bosphorus database with pre-processing and
multi-feature characterization as input data for our network model analysis; we divide the
data into a training set, a validation set, and a test set with the ratio of 8:1:1. By default,
we only change the structure of the part to be analyzed, and the other network structures
remain the same. We verify the reasonableness of the set parameters based on the results of
the analysis and gradually act on the subsequent experiments.

Figure 9 shows the different face representations. From left to right are the RGB map,
the elevation and azimuth angles of the surface normal, the depth map, the shape index,
and the curvedness. We train the neural network parameters with different combinations
of these facial representations, and then compare the recognition performance when the
facial representations are different. The experimental results of constructing a suitable
data composite representation of the face are shown in Table 1. The network structure
of this experiment is uniformly adjusted to 112 × 112 for the input image, the backbone
network structure is set to MobileNet, and the loss function is set to the cross-entropy loss
function. As seen in Table 1, the construction of the new 3D face representation using depth
information and normal azimuth and elevation information can lead to a better recognition
rate. Better Top-1 and Top-5 facial recognition accuracy is achieved in almost all cases of
pose, expression, and occlusion. It is worth noting that the recognition accuracy of the
RGB faces is higher for the occluded faces of Top-1, since the occlusion of the Bosphorus
database mainly comprises occlusion with the subject’s own arm, with similar RGB skin
tones. Additionally, the experimental results show the same experimental conclusions
as Krizaj [56]. That is, having more face representations is not always optimal, and the
ability of different pieces of representational information to complement each other helps
to improve the recognition rate.
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Figure 9. Different face representations: (a) RGB; (b) elevation of surface normal defined as E; (c) azimuth
of surface normal defined as A; (d) depth map defined as D; (e) shape index; (f) curvedness.

Table 1. Recognition accuracy (%) for the Bosphorus dataset for different facial representation selections.

Face Representation Size/Loss
Posture and Expression Occlusion Average

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

[RGB] 112×112/cross-entropy 94.89 97.11 97.09 98.41 95.89 97.71
[D] 112×112/cross-entropy 96.00 97.56 91.27 97.35 93.84 97.22

[D, SI, C] 112×112/cross-entropy 95.33 97.11 94.71 98.41 95.05 97.71
[D, A, E, SI, C] 112×112/cross-entropy 96.00 97.33 94.97 97.62 95.53 97.46

[D, A, E] 112×112/cross-entropy 97.11 98.89 96.56 99.47 96.86 99.15

Table 2 shows the effect of different input image dimensions and setting different
loss functions on the recognition accuracy of the network model. The backbone network
of this experiment is kept as MobileNet; we fix the loss as Focal-Arcface and change the
input image dimensions to 96 × 96, 112 × 112, 160 × 160, and 224 × 224. The posture
and expression accuracy, occlusion accuracy, and average accuracy do not simply vary
linearly with the input size. The experiments show that the output size has the best Top
recognition rate when it is set to 112 × 112. Similarly, we fix the input image dimension to
112 × 112 and set the loss functions for training as cross-entropy, Focal and Focal-Arcface.
Using Focal-Arcface as the loss function for training helps to improve our Top-1 and Top-5
recognition accuracy. Therefore, our proposed MFCT-3DOFRNet recognition network
keeps the input 3D facial representation as a multi-featured face with a combination of
depth information and azimuthal and elevation information of the normal. The input
dimension is 112 × 112 and the loss function for training is Focal-Arcface.

Table 2. Recognition accuracy (%) for the Bosphorus dataset under different input dimension and
loss parameter settings.

Size Loss
Posture and Expression Occlusion Average

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

224×224 Focal-Arcface 98.89 99.56 94.97 98.68 97.10 99.15
160×160 Focal-Arcface 98.00 99.33 93.39 98.41 95.89 98.91

96×96 Focal-Arcface 98.89 99.33 96.03 98.68 97.58 99.03

112×112 Cross-entropy 97.11 98.89 96.56 99.47 96.86 99.15
112×112 Focal 98.67 99.33 92.06 97.88 95.65 98.67

112×112 Focal-Arcface 99.33 99.78 98.15 99.47 98.79 99.64

3.3. The Proposed Thresholding Technique

To illustrate the accuracy of the proposed multi-feature combinatorial thresholding
method for occlusion localization, we compare it with the traditional methods based
on directly localizing occlusion regions based on depth information [21,24,57,58]. After
locating the occlusion, we directly remove the occlusion. Figure 10 shows the results
of removing the hand occlusion and hair occlusion using the proposed method and the
traditional method for the two occlusion cases. The results of removing the hand occlusion
using the two methods are shown in Figure 10a region I. The enlarged view of the local



Appl. Sci. 2023, 13, 5950 14 of 21

area (red box area) shows that the proposed method can remove more occluded areas. To
understand the difference between the two removal methods more intuitively, we highlight
the difference between the two de-obscured faces; see region II in Figure 10a. It can be
seen from region II in Figure 10a that the depth-based method tends to miss the occlusions
close to the face’s surface, while the proposed method can reduce the residual occlusions.
To fully illustrate the accuracy of the proposed method in locating the occluded region,
we compared the hair occlusion case in the same way as shown in Figure 10b. The depth-
based method in Figure 10b region III is unable to remove the hair that sits closely to the
face, while the proposed method can remove most of the hair, as shown in the red boxed
region in Figure 10b, region III. Similarly, Figure 10b region IV is the result of showing
the difference. Obviously, the proposed method removes more of the occlusion regions
that cannot be removed by depth-based methods. The reason for this is that the proposed
method not only considers the facial depth information but also introduces the normal
information, which is more sensitive to surface variation.
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To demonstrate the robustness of the proposed method, Figure 11 shows the results
on the faces of different occlusion types after removing the occlusion using the depth-based
removal of the occlusion and the proposed method. Figure 11a,b shows hand occlusion,
while Figure 11c,d shows glasses occlusion and hair occlusion, respectively. the first column
of Figure 11 is the multi-featured face under occlusion, the second column shows the depth-
based removal results, the third column shows the removal results based on the proposed
method, and the fourth column shows the difference between the two methods (that is,
in Figure 11, the second column differs from the third column). The proposed method is
robust to the detection of various types of occlusions, and it can remove more residual
occlusions connected to the face than the depth-based method can; it can also reduce the
impact of occlusion features on the facial recognition performance.
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covered by glasses, and (d) the face is covered by hair.

Furthermore, we experimentally explore the impact of these two methods on the
recognition performance. Table 3 shows the recognition of the obscured faces using raw
training data and the missing face data generation method for training. When trained with
the raw training data, the performance of the proposed thresholding technique decreases
a little but is approximately equal in Top-1 recognition accuracy compared to the depth-
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based approach. However, its Top-5 recognition rate is higher by about 1.5%, indicating
that the proposed thresholding technique has higher recognition potential. Moreover,
compared with the obscured face recognition results produced using the same network
structure parameters, as shown in Table 2, the accuracy of facial recognition after processing
with both thresholding techniques decreases to some extent. The main reason for this
phenomenon is the inadequacy of the raw training samples and the insufficient extraction
of face differentiation features, thus making the impact caused by missing face data greater
than the impact of occlusions. To solve this problem, we propose a sample generation
method for missing face data to expand the training samples. Using this data generation
method, the ability of the neural network to extract the key features of faces is greatly
improved. As can be seen from the right area of Table 3, the proposed thresholding
technique shows a significant improvement in both Top-1 and Top-5 recognition accuracy,
with the Top-1 recognition rate increasing from 97.07% to 98.94% and the Top-5 recognition
rate increasing from 98.67% to 99.47%. The proposed sample generation method has a
significant enhancement effect. Moreover, when comparing it with the depth-based method,
even though the samples are enhanced, the recognition rate of the depth-based method
shows limited improvement. This indicates that the residual facial occlusion affects the
intra-class aggregation of faces, so the removal of the residual occlusion can help to improve
the recognition rate.

Table 3. Recognition accuracy (%) under occlusion based on the depth method and the multi-feature
combined threshold method before and after using the training data generation method. The input
size is 112 × 112 and the loss is set to Focal-Arcface.

Raw Training Data Missing Face Data Generation Method for Training

Depth-Based Method Multi-Feature Combined Threshold Method Depth-Based Multi-Feature Combined Threshold Method

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

97.09 97.89 97.07 98.67 97.89 98.15 98.94 99.47

3.4. Recognition Results on the Bosphorus

In this section, we compare the proposed MFCT-3DOFRNet method with the existing
state-of-the-art deep learning methods. All methods are based on the Bosphorus database.
We train each network model parameter using unobstructed faces and select the optimal
model training results by using the validation set as the test parameter for facial recognition
performance. The proposed MFCT-3DOFRNet uses the multiple feature combinatorial
thresholding technique to remove the occluded regions and the missing face data generation
method to train the model. The results of our experiments are shown in Table 4. For the
unobscured face test set (containing only pose changes and expression changes), all the
deep techniques achieve more than 90% for Top-1 and Top-5 recognition accuracy, while
our proposed MFCT-3DOFRNet network achieves 100% accuracy in its recognition rate.
The occlusion of faces will increase the intra-class aggregation and decrease the inter-class
variability, as demonstrated by the experimental results in Table 4. Compared with the
recognition of pose and expression faces, the recognition accuracy of each neural network
for occluded faces decreases to different degrees. Moreover, comparing the recognition
accuracy of each network for obscured and unobscured faces, the network that is better
at recognizing unobscured faces is not necessarily better at recognizing obscured faces.
However, the proposed MFCT-3DOFRNet still maintains the highest Top-1 recognition rate
for obscured faces. Moreover, for the average facial recognition rate under pose change,
expression change, and occlusion change, the proposed network MFCT-3DOFRNet has the
highest Top-1 and Top-5 recognition rates, with 99.52% and 99.76%, respectively.
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Table 4. Recognition accuracy (%) for the Bosphorus dataset using different methods.

Method
Posture and Expression Occlusion Average

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

DenseNet-121 [59] 96.44 98.67 77.78 91.01 87.92 95.17
MobileNet-V3 [60] 96.22 98.22 68.78 83.86 83.69 91.67
EfficientNet-B0 [61] 96.44 98.44 79.37 93.12 88.65 96.01

FaceNet [62] 98.44 99.33 81.75 91.01 90.82 95.53
MobileFaceNet [63] 94.89 97.56 90.48 94.97 92.87 96.38

Sphereface [64] 96.00 97.78 93.39 97.35 94.81 97.58
Cosface [65] 99.11 99.78 90.21 96.56 95.05 98.31
Arcface [50] 99.33 99.55 98.41 99.73 98.91 99.64

MFCT-3DOFRNet 100 100 98.94 99.47 99.52 99.76

3.5. Recognition Results for the UMB-DB

We perform the same experiments on the UMB-DB database to demonstrate the
effectiveness of the proposed method. Similarly, we divide the unobstructed face data in
this database into a training set, a validation set, and a test set. The validation set and
the test set are not involved in the training; the former is used to select the best model
and the latter is used to determine the performance of the model. The experimental
results are shown in Table 5. The proposed method has a 100% recognition rate for both
Top-1 and Top-5 categories for unobstructed pose faces and expression faces. The Top-1
and Top-5 recognition rates for obscured faces are 93.41% and 96.60%, respectively. The
recognition performance metrics are significantly better than other existing state-of-the-art
deep network methods. We can observe that, compared to the experimental results for the
Bosphorus dataset, the recognition rates of the proposed method and other deep networks
on UMB-BD are reduced to different degrees. This is because the occlusion scenario in the
UMB-BD dataset is more complex and diverse, which affects all of the methods to different
degrees. Additionally, the proposed method still maintains a Top-1 recognition rate of over
93%. Moreover, some methods perform better for unobscured faces but perform poorly on
obscured faces. In contrast, the proposed method achieves the best recognition for both
unobscured and obscured faces, showing the robustness of the proposed method.

Table 5. Recognition accuracy (%) for the UMB-DB database using different methods.

Method
Posture and Expression Occlusion Average

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

DenseNet-121 [59] 95.87 98.62 29.15 48.09 50.07 63.82
MobileNet-V3 [60] 89.91 97.71 26.17 43.62 46.17 60.49
EfficientNet-B0 [61] 92.66 98.17 33.83 54.04 52.24 67.73

FaceNet [62] 94.50 98.62 19.79 38.09 43.27 57.02
MobileFaceNet [63] 85.78 92.66 31.28 52.34 48.34 64.83

Sphereface [64] 96.33 98.62 68.30 82.34 76.85 87.12
Cosface [65] 98.17 99.08 82.98 92.98 87.41 94.50
Arcface [50] 99.08 100 85.53 94.89 89.44 96.09

MFCT-3DOFRNet 100 100 93.41 96.60 95.08 97.25

3.6. Ablation Experiments

The improved performance of MFCT-3DOFRNet is mainly attributed to the characteri-
zation of facial features, the design of the network structure, the use of the multi-feature
combinatorial thresholding technique, and the enhancement of face data using the miss-
ing face data generation method. By comparing the experiments in Tables 1–3, we can
demonstrate the effectiveness of each of the proposed parameters or components.

Table 6 demonstrates that the multi-feature combined threshold method can improve
accuracy by 0.49%, which indicates that the effective removal of occlusions can increase
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the recognition rate to some extent. The generation of missing face data can be improved
by 8.06%, since the neural network is data-driven; additionally, by simulating the missing
face data situation, the neural network can focus more on face differentiation features.
In addition, we also experimentally confirm that using Focal-Arcface as the training loss
function can effectively improve the recognition rate by 2.9%.

Table 6. Ablation experiments on the UMB-DB database. This table records the average recognition
rate of occluded and non-occluded faces. The enhance percentage is the influence of the module on
the overall performance.

MFCT-3DOFRNet w/o
Multi-Feature Combined

Threshold Method

MFCT-3DOFRNet w/o
Missing Face

Data Generation

MFCT-3DOFRNet w/o
Focal-Arcface MFCT-3DOFRNet

Avg. 94.62 87.99 92.44 95.08
Enhance Percent 0.49% 8.06% 2.9% /

4. Conclusions

In this paper, we propose a 3D occlusion face recognition network based on a multi-
feature combination threshold (MFCT-3DOFRNet) to solve the problem of robust facial
recognition when 3D faces are occluded in unconstrained environments. This network
transforms the 3D face point cloud into a multi-featured face through a new form of facial
representation that can preserve the geometric information of the face and, at the same
time, draw on existing lightweight deep network techniques. To prevent occlusions from
blending with a face’s distinguishing features, we propose a multi-feature combination
threshold to remove occluded regions from faces, which can increase the inter-class sep-
aration and intra-class aggregation capabilities of the depth features. We also propose
using a missing face data generation method when the network cannot fully utilize the
distinguishing features of faces after de-obscuring a face due to insufficient training sam-
ples using missing face data. The method simulates the situation of face data being lost
after various de-occlusions, which makes the neural network training more focused on
features that can more easily differentiate faces and also reduces the intra-class separation
of features caused by missing data. The experimental results show that the proposed facial
recognition method can effectively improve the final recognition performance and has
strong robustness.

Without prior knowledge of occlusion, the proposed method can automatically remove
the occluded facial area and achieves an average Top-1 recognition rate of 99.52% and
95.08% on Bosphorus and UMB-DB, respectively. However, one limitation of our work
is that the accuracy of facial occlusion localization is affected by the 3D face alignment
performance. In future work, we will consider improving the localization performance of
occlusion face alignment [66] and explore new network architectures [67,68] to improve
the recognition accuracy of occluded faces.
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