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Abstract: Owing to the disparity between the computing power and hardware development in elec-
tronic neural networks, optical diffraction networks have emerged as crucial technologies for various
applications, including target recognition, because of their high speed, low power consumption, and
large bandwidth. However, traditional optical diffraction networks and electronic neural networks
are limited by long training durations and hardware requirements for complex applications. To
overcome these constraints, this paper proposes an innovative opto-electronic hybrid system that
combines optical diffraction networks with electronic neural networks. Using scattering layers to re-
place the diffraction layers in traditional optical diffraction networks, this hybrid system circumvents
the challenging training process associated with diffraction layers. Spectral outputs of the optical
diffraction network were processed using a simple backpropagation neural network, forming an
opto-electronic hybrid network exhibiting exceptional performance with minimal data. For three-
class target recognition, this network attains a classification accuracy of 93.3% within a substantially
short training time of 9.2 s using only 100 data samples (training: 70 and testing: 30). Furthermore,
it demonstrates exceptional insensitivity to position errors in scattering elements, enhancing its
robustness. Therefore, the proposed opto-electronic hybrid network presents substantial application
prospects in the fields of machine vision, face recognition, and remote sensing.

Keywords: scattering layer; opto-electronic hybrid network; target recognition

1. Introduction

Advancements in technology, particularly in computing, during the 21st century have
propelled humanity toward significant progress in intelligent fields, such as intelligent
production, living, and manufacturing. Significant advancements have been achieved in
the field of artificial intelligence (AI), which is based on computer technology. Neural
networks, supporting target detection, play an indispensable role in machine vision, face
recognition, remote sensing, and license plate detection [1–4]. Increasing demands for
efficient neural network technology across various domains has led to the emergence of
numerous related techniques.

However, a disparity exists between the development of physical hardware and the
practical application requirements, limiting the use of neural networks in computationally
intensive applications, such as complex target recognition [5]. To address this limitation,
optical neural networks have been proposed as viable alternatives owing to their advan-
tages of low latency, low power consumption, and large bandwidth [6]. These attributes
render them suitable for applications where computational resources are constrained.

However, the implementation of neural networks using optical methods presents
challenges in terms of complex hardware infrastructure, leading to increased hardware
costs and complexity. To address these challenges, integrating neural networks with optical
networks has been considered a new and promising approach.
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In traditional integration methods, electronic neural networks are used to train diffrac-
tion media, enabling them to acquire the necessary generalization capability for fully optical
target classification. This process involves dividing the diffraction media into multiple sub-
regions and optimizing the transmittance of each sub-region as a variable. However, this
approach introduces a significant number of variables, which in turn slows the optimization
process and imposes high hardware requirements.

To address the challenges presented by the time-consuming training process of diffrac-
tion media in conventional optical diffraction networks, this paper proposes a novel method
in which the diffraction layers in optical diffraction networks are replaced with fixed scat-
tering media for target preprocessing. By adopting this approach, target discrimination
is accomplished through a simple electronic neural network, which not only ensures a
sufficient recognition speed but also mitigates the need for high hardware requirements
associated with diffraction layers in optical diffraction networks. Artificial neural networks
are connection models that emulate the human neural network in information processing
and possess robust parallel data processing capabilities. The network comprises numerous
nodes that resemble human neurons, responsible for transmitting and processing data.
Specific models are constructed by adjusting the weights and biases of neurons in the
network. The activation function in the network imparts strong generalization capabilities,
rendering it highly suitable for applications such as target recognition.

Different types of neural networks offer broad prospects in various applications,
such as target recognition, classification, autonomous driving, translation, and clinical
medicine [7–12]. In the field of optics, the continuous advancement of neural networks has
led to the development of new optical technologies. These developments present significant
possibilities for further improvements and innovation in the field.

The integration of neural networks with optical technologies is a significant milestone
in the field of optics, resulting in intelligent optics. This advancement has notably im-
proved the bandwidth-related performance in wave-front detection and prediction [13–15],
infusing new vitality into related fields. However, for the practical applications of neural
networks, their ability to process scene variability is crucial, challenging their generalization
and parallel computing capabilities.

Currently, various approaches, including increasing training data, regularization,
and convex optimization [16], are employed to enhance the generalization ability of the
networks. However, they lead to an increase in the data volume, posing potential structural
challenges in the network. Achieving a balance between the enhancement of generalization
and the maintenance of the network efficiency remains a key consideration for practical
implementation. As data volume increases, the need for additional nodes and layers for
data processing increases accordingly. However, this expansion leads to a heavy computing
load, which, in turn, decreases the processing speed and leads to new demands regarding
the network bandwidth. Consequently, in electronic platform-based neural networks, the
growing bandwidth requirements of the network and electronic hardware development
gradually become mismatched owing to physical hardware limitations. This results in a
significant widening of the gap between these two aspects over the years.

Optical computing methods have extensive applications in various fields, including
data storage and image recognition, owing to their numerous advantages, such as low
latency, large bandwidth, low power consumption, and robust parallel processing capabili-
ties [17–19]. These methods can be broadly categorized into two main types: analog and
digital optical computing.

Digital optical computing primarily relies on optical logic gates, whereas analog optical
computing constructs networks through matrix multiplication and nonlinear functions [20].
The realization of neural networks using optical methods represents a new and promising
direction that has emerged because of the continuous development of neural networks.
This innovative approach presents new possibilities and potential advancements in the field
of optical computing and its integration with neural networks. This approach inherits the
potent nonlinear fitting capability of neural networks while benefiting from the low latency
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and large bandwidth characteristics in optics, offering an efficient method to address the
challenge of balancing extensive computation requirements with the physical structure
development of electronic platforms [21,22]. However, when compared with electronic
platforms, photonic platforms are more complex in terms of hardware and generally exhibit
lower accuracy in certain applications, such as target recognition, creating a significant
gap between this technology and electronic neural networks. To bridge this gap, the
introduction of a full optical diffraction network that connects neural networks with optical
networks has been proposed [23].

Through the training of multiple layers of diffraction media using neural networks, the
method achieves non-linear mapping effects [24,25], enabling comprehensive optical target
classification. The approach involves employing the optical backpropagation algorithm [26]
to continuously update the transmittance of each diffraction element in the diffraction
media during the training process. Increasing the number of diffraction elements and
diffraction layers, along with the implementation of differential algorithms, can lead to
improved target classification accuracy in complex target classification scenarios [27].

The generalization ability of optical diffraction networks is closely related to the num-
ber of diffraction elements, necessitating a large number of such elements to achieve rapid
target classification at the speed of light. However, this leads to a significant time require-
ment and high hardware demands during the training of diffraction layers, particularly in
multi-layer diffraction networks.

Scattering, a common phenomenon in daily life, is often considered an error source
owing to its distortion and attenuation effects on incident light in practical applications.
In 2010, an article on super-resolution imaging triggered a surge in research on scattering
media [28], leading to increased interest and exploration in the field.

Scattering media currently have extensive applications in various fields, such as super-
resolution imaging, multispectral imaging, and non-line-of-sight imaging [29,30], exhibiting
its strong control over the optical field as a disordered medium. To overcome the drawbacks
of long training durations and high hardware requirements in purely optical diffraction
networks, this paper introduces an opto-electronic hybrid system. In the proposed method,
the diffraction layers in optical diffraction networks are replaced with scattering media that
do not require pre-training.

Benefitting from the powerful generalization capability of scattering media for the
white light input, this method enables efficient target preprocessing. The resulting spectral
data are then processed using a simple electronic neural network, enabling rapid and
accurate target discrimination. This opto-electronic hybrid strategy combines the strengths
of scattering media and electronic neural networks, offering a promising method to address
the challenges associated with traditional optical diffraction networks.

In this opto-electronic hybrid network framework, fixed scattering layers were used to
effectively replace the diffraction layers, eliminating the need for long training durations
and high hardware requirements. Owing to the significant differences between spectral
data of different target categories, accurate classification can be achieved using a simple
neural network. This results in the realization of a near-light processing speed, similar to
that of traditional optical diffraction networks, with modest hardware configurations.

Furthermore, unlike traditional convolutional neural networks (CNNs) that require
a lot of time for operations such as convolution and pooling during training, the optical
network part of this structure can perform target preprocessing at the speed of light,
thereby shortening the overall training time of the network. The adoption of simple
electronic components further contributes to rapid target recognition, as illustrated in
Figure 1. Therefore, this structure combines the advantages of high-speed optical diffraction
networks with low power consumption and large bandwidth, achieving target classification
through a simple electronic network.
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and mainly play a role in feature extraction. The output layer is considered a classifier. (b) Photoe-
lectric hybrid network based on scattering layer: The hidden layer is composed of optical diffraction 
network composed of scattering layer and micro-lens array, while the output layer is composed of 
electrical network to complete the classification judgment. 

2. Principles 
In the optical diffraction network configuration, two layers of scattering media and 

one layer of micro-lens array are utilized. The introduction of the micro-lens array, instead 
of the scattering layer, allows the incident light to be divided into different parts, enhanc-
ing the generalization capability of the optical diffraction network and leading to a high 
classification accuracy. The configuration is illustrated in Figure 2a. 

The network is directly constructed using the existing scattering layer. Moreover, the 
scalar diffraction theory is employed to describe the transmission of complex amplitudes 
between different components in the optical diffraction model. This theory provides a 
rapid and accurate method for obtaining theoretical results while simplifying the trans-
mission process of light in the system. 
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Figure 2. Photoelectric hybrid network model based on scattering layer. (a) Optical diffraction 
model, with the scattering layer replacing the diffraction layer. Polychromatic light passes through 
the aperture stop, target, micro-lens array, two layers of scattering media, and focusing lens and is 
finally received by the spectrometer. There is no strict limit to the axial distance between the differ-
ent components, which is specified in Section 3. (b) Electrical neural network model. We use a sim-
ple three-layer backpropagation neural network to process the received spectrum of the spectrom-
eter, thus achieving rapid judgment of the target class. 

Figure 1. Overall structure of the optical diffraction network based on scattering layers. (a) Traditional
CNN: The different small squares of the hidden layer represent the structures of the convolutional
neural network, such as the convolutional layer and the pooling layer, which take a long time, and
mainly play a role in feature extraction. The output layer is considered a classifier. (b) Photoelectric
hybrid network based on scattering layer: The hidden layer is composed of optical diffraction network
composed of scattering layer and micro-lens array, while the output layer is composed of electrical
network to complete the classification judgment.

2. Principles

In the optical diffraction network configuration, two layers of scattering media and
one layer of micro-lens array are utilized. The introduction of the micro-lens array, instead
of the scattering layer, allows the incident light to be divided into different parts, enhancing
the generalization capability of the optical diffraction network and leading to a high
classification accuracy. The configuration is illustrated in Figure 2a.

Sensors 2023, 23, x FOR PEER REVIEW 4 of 17 
 

 

 
(a) (b) 

Figure 1. Overall structure of the optical diffraction network based on scattering layers. (a) Tradi-
tional CNN: The different small squares of the hidden layer represent the structures of the convolu-
tional neural network, such as the convolutional layer and the pooling layer, which take a long time, 
and mainly play a role in feature extraction. The output layer is considered a classifier. (b) Photoe-
lectric hybrid network based on scattering layer: The hidden layer is composed of optical diffraction 
network composed of scattering layer and micro-lens array, while the output layer is composed of 
electrical network to complete the classification judgment. 

2. Principles 
In the optical diffraction network configuration, two layers of scattering media and 

one layer of micro-lens array are utilized. The introduction of the micro-lens array, instead 
of the scattering layer, allows the incident light to be divided into different parts, enhanc-
ing the generalization capability of the optical diffraction network and leading to a high 
classification accuracy. The configuration is illustrated in Figure 2a. 

The network is directly constructed using the existing scattering layer. Moreover, the 
scalar diffraction theory is employed to describe the transmission of complex amplitudes 
between different components in the optical diffraction model. This theory provides a 
rapid and accurate method for obtaining theoretical results while simplifying the trans-
mission process of light in the system. 

 
(a) (b) 

Figure 2. Photoelectric hybrid network model based on scattering layer. (a) Optical diffraction 
model, with the scattering layer replacing the diffraction layer. Polychromatic light passes through 
the aperture stop, target, micro-lens array, two layers of scattering media, and focusing lens and is 
finally received by the spectrometer. There is no strict limit to the axial distance between the differ-
ent components, which is specified in Section 3. (b) Electrical neural network model. We use a sim-
ple three-layer backpropagation neural network to process the received spectrum of the spectrom-
eter, thus achieving rapid judgment of the target class. 

Figure 2. Photoelectric hybrid network model based on scattering layer. (a) Optical diffraction
model, with the scattering layer replacing the diffraction layer. Polychromatic light passes through
the aperture stop, target, micro-lens array, two layers of scattering media, and focusing lens and is
finally received by the spectrometer. There is no strict limit to the axial distance between the different
components, which is specified in Section 3. (b) Electrical neural network model. We use a simple
three-layer backpropagation neural network to process the received spectrum of the spectrometer,
thus achieving rapid judgment of the target class.

The network is directly constructed using the existing scattering layer. Moreover, the
scalar diffraction theory is employed to describe the transmission of complex amplitudes
between different components in the optical diffraction model. This theory provides a rapid
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and accurate method for obtaining theoretical results while simplifying the transmission
process of light in the system.

In an optical neural network, the incident polychromatic light Estop_in at the aperture
stop can be represented as follows:

Estop_in(x1, y1, λ) = a(x1, y1, λ)exp(jφ(x1, y1, λ)), (1)

where (x1, y1) is the plane of the aperture stop; a(x1, y1, λ) is the amplitude of the incident
light; j is the imaginary unit; and φ(x1, y1, λ) is the phase of the incident light. Here, the
incident light is assumed as a plane wave propagating perpendicular to the optical axis.
Consequently, φ(x1, y1, λ) = 0. Therefore, the incident light at the aperture stop can be
expressed as follows:

Estop_in(x1, y1, λ) = a(x1, y1, λ) (2)

The complex amplitude transmittance function of the circular aperture stop can be
represented as follows:

tstop(x1, y1) = circ
( r

a

)
, (3)

where r =
√

x2
1 + y2

1 and a is the radius of the circular aperture stop. Therefore, the complex
amplitude behind the aperture stop can be expressed as follows:

Estop_out(x1, y1, λ) = a(x1, y1, λ) tstop(x1, y1)= a(x1, y1, λ) circ(
r
a
) (4)

The propagation of light between different elements follows the scalar diffraction
theory. Therefore, the complex amplitude distribution in front of the target can be written
as follows:

Etarget_in(x2, y2, λ) =
exp(jkλ)

jkz12
exp

(
j k

2z12

(
x2

2 + y2
2
))

ψ
[
Estop_out(x1, y1, λ)

exp
(

j k
2z12

(
x2

1 + y2
1
))

]| fx2=
x2

λz12
, fy2=

y2
λz12

,
(5)

where (x2, y2) is the plane of the target; z12 is the horizontal distance along the optical axis
between the aperture stop and the target; and ψ is the Fourier transform. The complex
amplitude distribution EMLA_in in front of the micro-lens array can be expressed as follows:

EMLA_in(x3, y3, λ) =
exp(jkλ)

jkz23
exp

(
j k

2z23

(
x2

3 + y2
3
))

ψ
[
Etarget_in(x2, y2, λ)ttarget(x2, y2)

exp
(

j k
2z23

(
x2

2 + y2
2
))

]| fx3=
x3

λz23
, fy3=

y3
λz23

,
(6)

where (x 3, y3) is the plane of the micro-lens array; z23 is the distance between the target and
the micro-lens array; and ttarget(x2, y2) is the complex amplitude transmittance function of
the target. The complex amplitude Elayer1_in in front of the scattering layer can be expressed
as follows:

Elayer1_in(x4, y4, λ) =
exp(jkλ)

jkz34
exp

(
j k

2z34

(
x2

4 + y2
4
))

ψ[EMLA_in(x3, y3, λ)tMLA(x3, y3)

exp
(

j k
2z34

(
x2

3 + y2
3
))

]| fx4=
x4

λz34
, fy4=

y4
λz34

,
(7)

where (x4, y4) is the plane of scattering layer 1; z34 is the distance between the micro-lens
array and scattering layer 1; and tMLA(x3, y3) is the complex amplitude transmittance
function of the micro-lens array, which can be expressed as follows:

tMLA(x3, y3, λ) = ∑N
i=1 ∑M

j=1 δ(x3 − id, y3 − jd)
⊗

exp
(
−j

k
2 f

(
x2

3 + y2
3

))
, (8)
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where N and M are the number of micro-lenses in the x3 and y3 directions, respectively; d
is the period of the micro-lens array; f is the focal length of the micro-lens array; and

⊗
is

the symbol representing convolution operation.
When light propagates through a scattering medium, it scatters both forward and

backward. In the case of a relatively thick scattering medium, multiple scatterings can
occur, rendering it challenging to accurately represent light propagation with a single
model. In speckle imaging and related fields, the memory effect of the scattering medium is
a critical research focus. However, this memory effect is limited and inversely proportional
to the thickness of the medium, which hinders the application of methods such as the
cross-correlation method in speckle imaging. Numerous studies are currently exploring
various methods to enhance the memory effect range of the scattering medium [31–33];
however, the mitigation of the aforementioned issue remains challenging.

In addition to the memory effect, the transmission matrix of the scattering medium is
a significant research focus [34–36]. The determination of the transmission matrix of the
scattering medium is crucial for obtaining the control effect of the incident light field. This
issue constitutes the core focus of this research, with an emphasis on time-varying and
non-uniform scattering media, which are associated with significant challenges. Let T_1
and T_2 represent the transmission matrices of scattering layer 1 and scattering layer 2,
respectively. Accordingly, the complex amplitude distribution in front of scattering layer 2
can be written as follows:

Elayer2_in(x5, y5, λ) =
exp(jkλ)

jkz45
exp

(
j k

2z45

(
x2

5 + y2
5
))

ψ
[

Elayer1_in(x4, y4, λ)T1(x4, y4, λ)

exp
(

j k
2z45

(
x2

4 + y2
4
))

]| fx5=
x5

λz45
, fy5=

y5
λz45

(9)

where (x5, y5) is the plane of scattering layer 2, and z45 is the axial distance from scattering
layer 1 to scattering layer 2. The incident complex amplitude in front of the focusing lens
can be written as follows:

Elens_in(x6, y6, λ) =
exp(jkλ)

jkz56
exp

(
j k

2z56

(
x2

6 + y2
6
))

ψ
[

Elayer2_in(x5, y5, λ)T2(x5, y5, λ)

exp
(

j k
2z56

(
x2

5 + y2
5
))

]| fx6=
x6

λz56
, fy6=

y6
λz56

(10)

where (x6, y6) represents the lens where the focusing plane is located, and z56 is the axial
distance between scattering layer 2 and the focusing lens. Finally, the received complex
amplitude at the spectrometer can be represented as follows:

ES(x7, y7, λ) =
exp(jkλ)

jkz67
exp

(
j

k
2z67

(
x2

7 + y2
7

))
ψ
[
Elensin(x6, y6, λ)

]
| fx7=

x7
λz67

, fy7=
y7

λz67
, (11)

where (x7, y7) represents the plane of the spectrometer receiver, and z67 is the axial distance
between the focusing lens and spectrometer receiver. Generally, this distance is equal to
the focal length of the focusing lens. After receiving the spectral data from the target, the
spectrometer inputs the data into an electronic neural network to obtain the category of
the target.

During the training process of this opto-electronic hybrid network, the optical diffrac-
tion network, utilizing the scattering layer, can generate spectral output data with signifi-
cant variations, enabling rapid target classification without an extensive amount of data.
Therefore, the use of scattering layers in the optical diffraction network can reduce the
demand for electronic hardware of the network in complex applications.

Unlike convolutional neural networks that can adjust parameters in real time during
training, once the optical part of this opto-electronic hybrid network determines the scat-
tering layer, the relevant parameters cannot be changed. However, employing scattering
layers and micro-lens arrays facilitates maximizing the values of parameters that can be
adjusted, similar to those achieved using a CNN. Even with a fixed structure, the optical



Sensors 2023, 23, 8212 7 of 16

diffraction network possesses adequate generalization capability for target recognition in
complex scenarios, operating at the speed of light.

In contrast, data processing stages, such as the electronic neural network, involve
discrete data flow, which inevitably introduces the issue of discrete data sampling. The
higher complexity or precision of desired functionality often requires a higher level of
sampling or more parameters. However, this issue does not arise in practical optical paths,
as operations within optical paths are continuous. Consequently, in contrast to the discrete
transmittance during the training process of the traditional optical diffraction network,
using the electronic neural network, the replacement of the diffraction layer with scattering
media, allows target classification based on its inherent properties. Despite its powerful
generalization capability, this approach may not yield definitive results, necessitating the
electronic neural network to provide a definite classification outcome. Benefitting from the
potent target feature extraction capability of the optical diffraction network, this study aims
to use a simple three-layer backpropagation neural network (BPNN) to fulfill the role of
the classifier (Figure 2b).

3. Results
3.1. Experimental Setup

The composition of the entire experimental setup includes: an incoherent light source,
two collimating lenses, an aperture stop, an optical resolution plate, a micro-lens array, two
scattering layers, a coupling lens, a splitting fiber, a CCD, and a spectrometer, as shown in
Figure 3. The light source is a halogen lamp used to generate broad-spectrum incident light.
The focal length of the collimating lens is 100 mm, used to collimate the broad-spectrum
light emitted by the light source. The distance between the first collimating lens and the
light source is approximately equal to its focal length. The light collimated after passing
through the collimating lens is modulated by a circular aperture stop. The size of the
aperture stop is adjusted according to the target on the optical resolution plate to prevent
stray light from entering the system. The micro-lens array is placed behind the aperture
stop. It has dimensions of 30 × 30, a diameter of 300 um, and a focal length of 14.6 mm.
The presence of the micro-lens array not only improves optical energy utilization, as can
be seen in the following sections, but also divides the spatial light with target information
into different parts, enhancing the nonlinear mapping capability of the optical diffraction
network. The scattering layer is the core of the optical diffraction network, mapping
the spatial light with different targets into different spectral information, completing the
preliminary preprocessing step. The coupling lens couples the light field behind the
scattering layer into the splitting fiber. The splitting fiber divides the light into two paths.
One path passes through a collimating lens and is received by a CCD to monitor whether
the spectrometer receives the light field from the target, while the other path is directly
connected to the spectrometer, outputting spectral data. There are no strict restrictions on
the distance and relative positions of the components; the key is to ensure that the light
field behind the scattering layer can be coupled into the splitting fiber.

To verify the specific application potential of the proposed structure, three experiments
were designed. In the first experiment, two targets with the same area but different shapes
were used as inputs to investigate whether the variations in received spectra were caused
by different target intensities. The experiment also analyzed the influence of the relative
positions of the scattering elements on the output results.

In the second experiment, input targets consisting of squares, horizontal lines, and
vertical lines from the same row of the calibration board were utilized. Variations in
the input targets were achieved by altering relative distances or rotating the targets. For
each target, 100 spectral data points were collected to construct a simple electronic neural
network for basic target classification.

In the third experiment, transparent thin plates were used to replace the targets, and a
randomly perturbed tape was attached to simulate scenes with and without turbulence.
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The goal of this experiment was to verify the potential application of the proposed structure
in classifying the turbulence intensity.

In terms of acquiring training data, we used three patterns on the optical resolution
plate: horizontal lines, vertical lines, and squares, as classification targets. During the
collection of training data for each category of targets, the target is changed by changing
the relative position of the optical resolution plate. Based on this approach, we collected
100 spectral data points for each category of targets, with 70 of them used for the training
set, and the remaining 30 for the test set.
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same optical calibration board. After the coupling lens couples the light field, it is divided into two
ways through the beam splitter, one input to the spectrometer, the other input to the CCD, to detect
whether the spectrometer receives the light field from the target.

3.2. Influence of Equal-Area Targets and Relative Positions of the Scattering Layer

In the optical diffraction network, using patterns from the optical calibration board
as inputs may result in varying target areas in many cases. As a result, the generalization
ability of the optical diffraction network might not solely originate from the nonlinear
mapping of the input wavelength intensity by the network. The generalization capability
of the network could also be affected by the different target areas, introducing ambiguity
in the mapping object of the network itself. To address this issue, two input targets, one
square and one triangle, were employed. These targets with different shapes have the same
area. In addition, we also analyzed the output spectra of targets with different areas and
the same shape.

We used squares and triangles with the same area but different shapes to verify
the influence of shape on the output spectrum of the optical diffraction network, and
we also used two horizontal lines with the same shape but different areas to verify the
influence of area on the output spectrum. The spectral data are displayed in Figure 4. When
considering equal target areas (Figure 4a), the output spectra of both targets appear similar
for wavelengths below 600 nm and above 800 nm. However, in the spectral range between
600 and 800 nm, the triangle target spectrum exhibits a peak, whereas the square target
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spectrum shows a decreasing trend. Consequently, the generalization ability of the optical
diffraction network does not solely originate from variations in target areas. Instead, it
arises from the diverse mappings of different wavelengths at different positions due to
the presence of scattering media. When considering the same shape, the output spectra of
vertical targets under different areas have strong similarity, as shown in Figure 4b. This
means that this scattering layer-based optical diffraction network is sensitive to shape
changes, while changes in area only scale the output spectrum accordingly, which has no
impact on classification.
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Figure 4. Optical diffraction network output for equal target areas and same target shape. (a) Output
spectra of targets with the same area but different shapes: The blue curve represents the output
spectrum of the square target, whereas the red curve represents the output spectrum of the triangle
target. (b) Output spectra of targets with different areas and the same shape. The blue curve
represents the output spectrum of the target with a small area, and the red curve represents the
output spectrum with a large area.

In traditional optical diffraction networks, the relative position error of the diffraction
layer can be introduced during training to compensate for the decrease in network clas-
sification accuracy caused by assembly errors in the actual hardware structure [24]. This
indicates that the relative positions of the diffraction layer in traditional optical diffraction
networks impact the accuracy of target classification to a certain extent. Therefore, it needs
to be further determined whether the relative position of the scattering layer affects the
output spectrum in our proposed structure.

In the experiment, changes in the output spectra were examined by adjusting the
position and rotation angle of the second scattering layer. The axial displacement ∆z was
varied within ±10 mm, and the rotation angle ∆θ was varied from 0◦ to 30◦. The output
spectra at the initial, maximum, and minimum positions were compared.

When the axial distances between the scattering layers change continuously, no signif-
icant alterations are observed in the output spectra, as illustrated in Figure 5b. However, as
the angle of the scattering layer gradually increases from 0◦ to 30◦, the peak in 670 nm of
the output spectra also increases, whereas the overall shape remains similar, as shown in
Figure 5b.

A possible reason for this outcome is that the output of the optical diffraction network
is a spectrum, and the impact of the axial displacement between the diffraction layers on
the output spectrum is substantially smaller compared with the influence of the scattering
layers themselves. In this context, the spectral changes caused by the axial displacement
between the diffraction layers are obliterated by the effect of the scattering layers on the
output spectrum. When the angle of the scattering layer changes, the impact on the output
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spectrum exhibits a linear relationship. Consequently, the shape of the output spectrum
remains consistent even with changes in the angle of the scattering layer.

In the optical diffraction network, different targets yield different output spectra, and
the subsequent electronic neural network determines the target categories based on these
distinct output spectra. When the relative positions of the optical network change, the
output spectra change proportionally; however, the spectral shape remains unchanged.
Therefore, the optical diffraction network is not sensitive to the position errors of the scatter-
ing layers and other components, which is advantageous for installation and adjustment.
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Figure 5. Influence of relative positions of the scattering layers. (a) Output spectra at varying axial
distances: the blue, red, and black curves represent the output spectra at ∆z = −10, 0, and 10 mm,
respectively. (b) Output spectra at changing angles: the blue, red, and black curves represent the
output spectra at ∆θ = 0◦, 15◦, and 30◦, respectively.

3.3. Target Recognition Using the Opto-Electronic Hybrid Network

In traditional optical diffraction networks, 3D printing technology or other methods
can be used to convert the diffraction layers trained by the electrical network into actual
hardware, and then build the actual optical path. After obtaining result data, the target
category can be determined by processing the results with differential algorithms. However,
when the diffraction layer is replaced with a scattering layer, the generalization ability
provided by the scattering layer becomes less deterministic. As a result, an electronic neural
network is required to act as a classifier for target classification during data processing,
forming the fundamental concept of using opto-electronic hybrid networks for target
recognition.

In the optical diffraction network, a micro-lens array is incorporated to partition the
incident light into different segments, enhancing the nonlinearity of the network. In the
experiment, the output spectra with and without the micro-lens array were compared
to determine whether introducing the micro-lens array in the optical diffraction network
could increase the level of differentiation in the output spectra and improve the accuracy of
target classification. The output spectra are presented in Figure 6.

Although the output spectra with and without the micro-lens array exhibit similar
shapes, the intensity of the output spectra obtained with the micro-lens array is higher
than that acquired without it. Notably, clear turning points are observed in the spectra at
approximately 650, 800, and 850 nm. The increased intensity of the spectra obtained with
the micro-lens array is primarily attributed to the focusing effect of the micro-lens array,
which effectively harnesses the input light energy. As a result, the opto-electronic network
with a micro-lens array enhances differentiation in the output spectra while improving the
utilization of light energy. This approach effectively enhances the accuracy of classification
in target recognition and other relevant fields.
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After confirming that the introduction of the micro-lens array can improve the nonlin-
ear mapping ability of the network, we built a complete optical diffraction network, and
established the data set according to the data acquisition process described in Section 3.1.
The electronic neural network is then utilized to perform the classifier function for target
recognition. In the experiments, a three-class opto-electronic hybrid network was imple-
mented for square, horizontal line, and vertical line classification (Figure 3). Changes in
targets were achieved by moving and rotating the optical calibration board. The spectral
data for the three categories are displayed in Figure 7a.

Notably, the output spectra of squares differ significantly from those of the other tar-
gets, whereas the output spectra of horizontal lines and vertical lines are similar but exhibit
certain variations in the peak intensity and corresponding wavelengths. A comparison of
the output spectra of the three categories in the same graph clearly reveals the distinctions
between the spectra of different targets.

During spectral reception, a CCD camera was employed to monitor the reception
status of the spectral end, as shown in Figure 7b. The presence of a spot image in the CCD
indicates that the spectral input has passed through the target.

For implementing the classifier, a three-layer BPNN was employed, as illustrated in
Figure 8a. The input comprised 2048 discrete spectral data; the hidden layer had 1024 nodes;
and a Dropout layer with a probability of 0.3 was introduced after the middle layer to
prevent overfitting. The output layer consisted of three nodes, each corresponding to one
of the three target categories. The training results are displayed in Figure 8b,c.

Utilizing the opto-electronic hybrid network with scattering layers, an appreciable
classification accuracy of 93.3% was achieved for the three target categories. Notably, when
compared with traditional CNNs and optical diffraction networks, the proposed network
exhibited a slightly lower training accuracy. This discrepancy could be attributed to the
similarity between the horizontal and vertical lines used in the experiment. The limited
number of samples for these two targets resulted in a decreased accuracy in distinguishing
them effectively.
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Figure 8. Electrical neural network classifier. (a) Three-layer BPNN structure: A network structure
with 2048 inputs and 3 outputs. Hidden layer has 1024 nodes, and a Dropout layer with a probability
of 0.3 is used. (b) Loss function of the training set. The light red curve represents the actual result,
while the red curve represents the fitted result. (c) Accuracy of the test set. The light red curve
represents the actual result, while the red curve represents the fitted result.

The use of the proposed opto-electronic hybrid network structure eliminates the
time-consuming convolution and pooling operations in traditional electronic CNNs via
optical diffraction networks, resulting in a significantly reduced training time and less
sophisticated hardware requirements during training. A comparison of the traditional
electronic CNN, traditional optical diffraction network, and improved opto-electronic
hybrid network (Table 1) demonstrates that the opto-electronic hybrid network structure
achieves rapid training and high accuracy even under suboptimal hardware conditions.
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Table 1. Time and accuracy comparison of the three networks in various scenarios.

Category Data Size Time Accuracy Rate Hardware

CNN (3 classes) [37] 2400 Long time 99.74% Ubuntu 16.04 with a GTX
1080 GPU

CNN (14 classes) [38] 200 67 h 99% I7
Optical diffraction network1

(2 classes) [24] 12,500 5 h 99.53% I9-7900X with RTX 3090

Optical diffraction network2
(10 classes) [39] 8000 20 h 84% E5-2650 with RTX

1080Ti
Opto-electronic hybrid

network
(3 classes)

100 9.2 s 93.3% I5-7300H with RTX 1050Ti

3.4. Application Potential of Opto-Electronic Hybrid Networks in Turbulent Scenes

In certain applications, the optical path exposed to air is often affected by atmo-
spheric turbulence, which can adversely impact precision measurements, geodesy, and
guidance operations. Hence, assessing the strength of turbulence in the measurement area
is necessary to guide relevant practical operations. Traditional methods for measuring the
turbulence intensity rely on meteorological parameters, beam propagation, laser radar, and
others, but they either have high costs or involve complex data processing.

To address these challenges, a new approach is essential for simple turbulence intensity
measurement. The emergence of neural networks has revitalized various fields, including
turbulence measurement, leveraging big data in their applications. To verify the potential
application of the proposed opto-electronic hybrid network in measuring the turbulence
intensity, relevant experiments were conducted to distinguish between scenes with and
without turbulence.

The transparent region of the optical calibration board represents a turbulence-free
scene, whereas the area covered with blue tape indicates the turbulent region (Figure 3a).
Figure 9 displays the output spectra of the two scenes. An evident distinction in output
spectra between scenes with and without turbulence was observed, confirming the high
differentiation capability of the opto-electronic hybrid network. However, the simulation
of scenes considered herein is simplified, and practical scenarios may introduce numerous
uncertainties. Consequently, the next step involves the use of a phase screen to quantify
the turbulence intensity and evaluation of the practical applicability of the network under
real-world condition.
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4. Discussion

To overcome the drawbacks of traditional optical diffraction networks and electronic
neural networks, which involve high hardware requirements and long training durations,
this study proposes an innovative opto-electronic hybrid network. In this architecture, the
pre-training requirement of the diffraction layer in traditional optical diffraction networks
is circumvented by replacing it with a scattering layer. The electronic neural network acts
as a classifier for target classification.

In opto-electronic hybrid networks, it can be considered that time-consuming op-
erations such as convolution and pooling in traditional convolutional neural networks
are achieved at the speed of light. This integration enables the rapid extraction of target
features, while the retained simpler components effectively serve as a classifier for target
classification.

This opto-electronic network architecture achieves network training with lower hard-
ware configurations and requires fewer data than the traditional networks, while retaining
the advantages of traditional optical diffraction networks, such as a high speed, low power
consumption, and large bandwidth. Before constructing the network, output spectra from
two targets with equal areas but different shapes were compared. The findings revealed
that the generalization ability of the opto-electronic hybrid network is not solely dependent
on different target areas but rather on the distinct mappings of various wavelengths from
different parts of the target by the scattering layer.

Subsequent experiments were conducted to confirm the performance of this opto-
electronic hybrid network. In a three-class application with similar targets, the network
achieved a significant training time of 9.2 s and an appreciable accuracy of 93.3% when
utilizing a CPU I5-7300H and GPU RTX 1050Ti. These results were obtained with 100 data
points (70 for training and 30 for testing) collected for each target. This approach effectively
reduces the training time while easing hardware requirements. For the improved optical
diffraction network, the influence of the relative positions of the scattering layers on the
output spectra was extensively investigated. The results indicated that changes in the axial
displacement did not significantly affect the output spectra, whereas changes in the angle
of the scattering layers had a linear impact on the output spectra. This insensitivity to the
relative positions of the scattering layers in the optical diffraction network is advantageous
for optical alignment. However, it also suggests that enhancing the generalization ability of
the network through adjustments in the positions of the scattering layers is not feasible.
Instead, the generalization ability can be improved by increasing the number of scattering
layers or utilizing highly complex scattering layers. Finally, the potential application of
the proposed opto-electronic hybrid network in classifying the turbulence intensity was
demonstrated through experiments. Although uncertainties exist in the experimental setup,
such as those related to environmental conditions, the experiment provides a basis for
verifying the performance of the proposed architecture in turbulence intensity classification
using a phase screen.

5. Conclusions

In this paper, we designed an opto-electronic hybrid network based on scattering
layers and verified its performance using a three-target classification task. In the optical
diffraction network section, we studied the effects of target shape and area on the output
spectrum, and explored the effects of the relative position of the scattering layer on the
output spectrum. The results show that the network can respond well to changes in target
shape and is insensitive to errors in the relative position of components. During the training
process of the entire network, we used a total of 300 sample data, and finally completed the
training of the network in 9.2 s under low hardware conditions, achieving a classification
accuracy of 93.3%. The results show that this opto-electronic hybrid network can quickly
complete training under low hardware conditions and has high accuracy. This research has
application value in the fields of target detection, machine vision and turbulence intensity
measurement.
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