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A B S T R A C T   

In order to quantify dynamic forces/moments on the ground, a high-performance platform is necessary. This 
article improves the performance of the measurement platform from both structure and calibration. The plat
form’s loading capacity and base frequency have been significantly increased by the introduction of an inno
vative load sharing ring, which also allows the platform to have other important and practical characteristics. 
Further improvements in platform performance are then achieved by optimizing the platform parameters using a 
multi-island genetic algorithm (MIGA). In addition, the calibration method is improved. The maximum relative 
error and cross-coupling error for the novel non-linear support-vector-regression-based (SVR) method are 3.42% 
and 6.54%, respectively, which are much superior than the 9.98% and 15.39% for the traditional linear least- 
squares-based (LS) calibration method, indicating better accuracy and decoupling performance of the SVR- 
based dynamic calibration. This has important implications for measuring dynamic forces and improving the 
stability of equipment in spacecraft.   

1. Introduction 

The demands on the performance of the China Space Station Tele
scope (CSST) continue to increase as the requirements for research in 
space continue to grow. For instance, stellar radial velocities with an 
accuracy of 2–4 km s− 1 can be provided by the CSST for AFGKM-type 
stars [1], aiming at high spatial resolution targets imaging of approxi
mately 0.15′′ covering a huge area of the vision about 17,500 deg2 and a 
wide wavelength range from NUV to NIR [2]. Small dynamic distur
bance forces can then have a significant effect on the performance of the 
telescope; thus, there is a need for an accurate ground-based measure
ment device for measuring the dynamic disturbance forces of vibration 
sources from the telescope. Additionally, vibrating components on 
spacecraft are becoming heavier and larger [3]. With other mounting 
equipment, the measuring devices are typically required to hold loads in 
excess of 1 ton in a test [4], and each functional module has a diameter 
of over 1 m. In summary, a dynamic force measurement platform with a 
larger mounting surface, higher load capacity, high fundamental fre
quency, and good measuring accuracy is required. 

There are a number of previous studies that improve the performance 
of measurement devices structurally [5–13]. For instance, traditional 

devices based on the Stewart platform [5–7] are loosely structured, 
making it difficult to guarantee high stiffness and good fundamental 
frequency under heavy loads, and they are costly to manufacture and 
install. Li [8] therefore used a four-point support structure for the sensor 
design, which is simple and offers good properties in terms of heavy 
loading measurements and base frequency. However, as the mounting 
surface and load increase, the fundamental frequency of the four-point 
support structure decreases significantly. Xia [3] then proposed an 
eight-point-support platform that is capable of measuring dynamic 
forces/moments from huge sources, but its measurement principle leads 
to redundant measurement, which inevitably introduces systematic er
rors. After that, Li [9–11] designed a four-point supported force sensor 
with a load sharing ring that has good decoupling performance and can 
provide excellent load capacity with a high fundamental frequency. 
Once the basic structure was determined, the structural parameters 
would be optimized to further improve the performance of the mea
surement device. Take Sun [14] and Han [15] for example, they used 
response surface methodology (RSM) and design of experiments (DOE) 
to obtain optimal sensor parameters, allowing the stiffness and sensi
tivity of the sensors to be optimized. Despite the fact that DOE makes the 
computational complexity of optimization much lower, it makes the 
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optimization results inaccurate. Structural optimization based on multi- 
objective optimization algorithms [16–18] gives relatively better opti
mization results, with which the multi-island genetic algorithm (MIGA) 
is widely used due to its global optimization capability and good 
robustness. 

Furthermore, the performance of the measuring device, mainly in 
terms of measurement accuracy, can be improved by modifying the 
measurement method. Liu [19] and Li [8,11], for example, derived 
theoretical models of measurement after the structural design of the 
measuring device, but many of the theoretical models are based on as
sumptions, making the derivation difficult and error-prone. Xia [3], Sun 
[14], Liu [20], etc. used the least squares (LS) based calibration method, 
which offers acceptable measurement performance. Nonetheless, the LS 
algorithm neglects the nonlinear part of the device by treating it as a 
linear system and suffers from matrix singularity, which makes the 
calibration applications limited and prone to errors. On the other hand, 
calibrations based on intelligent algorithms are gradually being applied. 
By way of example, Liang [21] and Wang [22] used the neural networks 
(NN) algorithm for static calibration of sensors; Oh [23] adopted deep 
learning (DL) for calibration; and least squares support vector machine 
regression (LSSVR) was employed by Li [24] for calibration. These 
intelligent algorithm based calibrations are good at resolving the 
nonlinear terms that appear in the system and perform better in terms of 
accuracy and coupling errors. However, previous research has been 
limited to static calibration. On the one hand, static calibration can not 
eliminate the influence of the fundamental frequency of the large 
equipment itself on the measurement accuracy, and on the other hand, 
research on intelligent algorithms for static calibration cannot be 
directly applied to dynamic calibration. 

Above all, this paper illustrates a load sharing measurement platform 
and improves the performance of the platform through structural opti
mization and the dynamic calibration method. The paper is organized as 
follows: Section 2 presents the structural design of the measurement 
platform, optimizes its structural parameters through MIGA, and com
pares the optimization results of MIGA and ASA. Measurements based on 
LS and support vector regression (SVR) dynamic calibration approaches 
are investigated in Section 3, and the processes of both calibration 
methods are described in detail. The results are discussed in Section 4. 
The work of this paper is summarized in Section 5. 

2. Structural design and optimization 

2.1. Structure design 

A load sharing measurement platform consisting of a load platform, a 
load sharing ring, a base, and four sensors is shown in Fig. 1. The load 
platform’s mounting surface is designed to be 500 × 500 mm, which is 
larger than the majority of measuring platforms on the market. If the 
load platform and the base are connected by sensors only, the rigidity, 
fundamental frequency, and the platform’s load capacity can not be 
guaranteed, and the subsequent dynamic calibration is meaningless. 
Thereby, in addition to the four squarely distributed sensors, a load 
sharing ring is also installed, which is placed in parallel with the sensors. 

The ring increases the platform’s loading capacity and the base fre
quency. Both the ring and the sensors are bolted to the base and the load 
platform. 

The structure of the sensor is shown in Fig. 2, consisting of an 
installation shell, a rigid insulation layer, and force sensing elements. 
Wherein, threaded holes in the installation shell are used for connection 
between the load platform and base. Force sensing elements are 
composed of crystals with compression or shear effects, enabling each 
sensor to output forces in the X, Y, and Z directions. The sensors are 
preloaded during manufacture using preload equipment. 

In order to increase the load sharing capacity of the ring, the material 
is selected as 40Cr [10]. The material properties of the measuring 
platform are shown in Table 1, where the properties of the sensors were 
obtained experimentally. There will undoubtedly be some inaccuracies 
in the ensuing optimization and simulation due to the approximation of 
the experiments. 

2.2. Structure optimization 

The suitable platform parameters can significantly increase the load 
capacity and fundamental frequency, in addition to reducing 
manufacturing costs and assembly requirements. Therefore, the struc
tural parameters of the platform need to be optimized. 

The objective of optimization is to find the seven optimal structural 
parameters in red lettering shown in Fig. 1 to maximize the fundamental 
frequency Fq, minimize the maximum stress σmax under a Z-direction 
force of 1000 N (characterizing the load capacity) and the sum of the 
area of the bottom surface of the sensors and the ring S (characterizing 
the manufacturing cost and assembly difficulty). Based on design and 
machining experience, the optimization weight of S is set to 0.5 and the 
weight of the remaining objective functions to 1. The optimization 
problem can therefore be formulated as equation (1) and Table 2. 

Maximize Fq (weight = 1),

Minimize σmax (weight = 1), S (weight = 0.5),
Design variable b, H, hr, hs, R, rr, rs,

Subject to 3⩽b⩽30 mm, 15⩽H⩽60 mm, 15⩽hr⩽60 mm, 15⩽hs⩽60 mm,

150⩽R⩽290 mm, 5⩽rr⩽40 mm, 5⩽rs⩽30 mm, Fq⩾1000 Hz
(1) 

where seven design variables are the wall thickness of the load 
sharing ring b, the height of the load platform H, the height of the load 
sharing ring hr, the height of the sensor hs, the radius of the sensor dis
tribution R, the radius of the load sharing ring rr, and the radius of the 
sensor rs. 

There are a number of measures to solve the optimization problem, 
of which the multi-island genetic algorithm (MIGA) is an enriched and 
easy-to-execute one based on the traditional genetic algorithm (GA). As 
a pseudo-parallel algorithm, MIGA has superior global solving capability 
and faster convergence than GA. The MIGA is a more suitable way to 
solve problems where gradient information is difficult to obtain and is 
now widely used in structural design. The MIGA has several islands, and 

Fig. 1. The model of the load sharing measuring platform: (a) front view; (b) exploded view.  
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each island has individuals (sub-populations). It is assumed that in
dividuals can migrate between each island, and the ones with the ability 
to migrate are the superior ones (elites) that have better genes and 
perform genetic operations on the new islands, helping the algorithm to 
jump beyond local to global optimum. 

The process of optimizing the platform structure based on MIGA is 
shown in Fig. 3. (1) Generate the initial population P0 and encode the 
individuals. (2) Disperse the P0 on several islands. (3) Use scripts to alter 
the geometric model, modify the finite element model, and perform 
simulations to evaluate the fitness of the individuals. (4) When the 
migration conditions are met, the elites migrate between the different 
islands. (5) Perform the genetic process on each island, including se
lection, crossover, and mutation. (6) If the termination condition is 
satisfied, stop the search and obtain the optimal solution. (7) Repeat 
steps 3 to 6. 

According to Fig. 3, the MIGA code is programmed and embedded 
with three execution scripts. In this study, the number and size of the 
islands are set to 10, the number of generations is 20 (i.e., a = m = 10, 
maxgen = 20), and the crossover rate, mutation rate, and migration rate 
are 1.00, 0.01, and 0.01, respectively. The objective function and pen
alty during the 2000 iterations and 20 generations of the platform 
optimization using MIGA are shown in Figs. 4 and 5, respectively (Fig. 5 
displays the best solution in each generation). It can be concluded that 
the optimal solution has been found at the 15th migration. The optimal 
structural parameters and objective function values based on MIGA are 
shown in Table 3. The measuring platform has a 1st order frequency of 
1020.2 Hz and a maximum stress of 3.8 MPa under a Z-direction force of 
1000 N. 

In addition, a structural optimization code based on the adaptive 
simulated annealing (ASA) algorithm is written for testing. As shown in 
Fig. 6, the optimal solution is found after it is iterated 333 times, with 
the optimal structural parameters and objective function values shown 

in Table 4. The platform optimized by ASA has a slightly higher 
fundamental frequency than that obtained by MIGA, but has a lower 
load capacity, significantly higher manufacturing costs and installation 
requirements. It can be inferred that the optimal solution of MIGA is 
superior to that of ASA, and ASA’s optimal solution may be local rather 
than global. 

To further illustrate the superiority of the design structure of the 
platform, the optimal structural parameters obtained by MIGA are also 
used to model a platform without the ring. As shown in Fig. 7, the model 
is then meshed and subjected to finite element analysis to obtain a 1st 
order frequency of 719.9 Hz and a maximum stress of 6.4 MPa under a Z- 
direction force of 1000 N. Consequently, the base frequency and loading 
capacity of the measuring platform with a load sharing ring increase by 
41.7% and 68.4%, respectively, compared to the platform without a 
ring. From the above analysis, it can be concluded that the performance 
of the platform in terms of fundamental frequency and load capacity is 
significantly improved by optimizing the structure of the measuring 
platform with the load sharing ring. 

In addition, the designed platform has other excellent and unex
pected properties. Finite element simulations of the measurement plat
forms with and without the load sharing ring are carried out, and 
different mass sources are installed on both platforms. The fundamental 
frequency curves for the two platforms are obtained as depicted in Fig. 8. 
According to the diagram, the fundamental frequencies are not the same 
when each platform is fitted with sources of different masses, which 
means that the transfer functions of each platform are not the same 
when different sources are installed onto the platform. It is then neces
sary to re-calibrate the platform dynamically before each measurement 
of a different source to improve the accuracy of the measurement. It is 
worth noting that when the source mass is not large (<20 kg), as shown 
in the green box in Fig. 8, the mass has no essential effect on the 1st 
frequency of the platform with the ring, which facilitates the measure
ment of small mass sources. 

3. Dynamic calibration 

3.1. Traditional calibration method based on LS 

The dynamic calibration equipment, shown in Fig. 9a, consists of a 
load sharing platform, a calibration tool (self-made; the force sensors 

Fig. 2. Schematic diagram of the load sharing measurement platform.  

Table 1 
Platform structural material properties.  

Component E (MPa) ν ρ (kg/m3) 

Load platform & Base 2.06 × 105  0.3 7.85 × 103 

Load sharing ring 2.06 × 105  0.3 7.85 × 103 

Sensors 7.65 × 104  0.32 7.5 × 103  

Table 2 
Structural parameters’ optimization range and objective function.  

Range of variables Target of the objective function 

b (mm) H (mm) hr (mm) hs (mm) R (mm) rr (mm) rs (mm) Σmax (MPa) Fq (Hz) S (mm2) 

3 ~ 30 15 ~ 60 15 ~ 60 15 ~ 60 150 ~ 290 5 ~ 40 5 ~ 30 min Max & 
>1000 

min  
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used in the tool are 208C02, PCB), a portable measuring arm (8725–6, 
Hexagon Absolute Arm 6-Axis [27], not displayed), a vibration source 
[25] (shown in Fig. 9c, relative error: < 3.33%), a charge amplifier 
(YE5853, Sinocera), a digital data acquisition (652u-24 bit, IOtech), and 
a PC. The calibration tool is used to input impulsive forces to the source 
horizontally or vertically [28], the vibration source is employed to 
generate the desired dynamic disturbance forces, and the output signals 
from sensors can be collected by the digital data acquisition in real time. 

Before the calibration, three impulsive forces with different ampli
tudes were input at the same point of the platform using the calibration 
tool, and the three responses of one sensor were recorded. Then the 
transfer functions between the input point and output sensor can be 
obtained, as indicated in Fig. 10. It is shown in the figure that the 
measurement platform’s fundamental frequency is 1096 Hz, which is in 
general accordance with the results of the simulation (1020.2 Hz), 
thanks to the simplicity of the model. 

The platform was then conventionally calibrated. In this study, six 
forces were input using the calibration tool, and the six-dimensional 
forces/moments in space should be covered. Assume the six input 
forces are as follows: 

Finput(ω) = [F1(ω) F2(ω) F3(ω) F4(ω) F5(ω) F6(ω)]T (2) 

where Fi(ω) is one of the six input forces. Then Finput(ω) can be 
converted to Fo(ω) with reference to the center O of the measuring 
platform by the conversion matrix C6×6 [26], which is measured by the 
portable measuring arm [27]: 

Fo(ω) = CFinput(ω) (3) 

Besides, six outputs are expressed as: 

Uc(ω) = [Uc1(ω) Uc2(ω) Uc3(ω) Uc4(ω) Uc5(ω) Uc6(ω)]T (4) 

where Uci(ω) is the 1 × 6 voltage output vector from four sensors as 
shown in Fig. 2, and the subscript c implies calibration. The dynamic 
calibration matrix between the platform inputs and outputs can then be 
obtained as follows: 

G(ω)=Fo(ω)Uc(ω)T
[Uc(ω)Uc(ω)T

]
- 1

= CFinput(ω)Uc(ω)T
[Uc(ω)Uc(ω)T

]
- 1

(5) 

In this case, the dynamic disturbance forces/moments can be 

Fig. 4. 2000 iterations of the MIGA optimization process.  

Fig. 3. Structure optimization process based on MIGA.  
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Fig. 5. 20 generations of the MIGA optimization process.  

Table 3 
Structural optimum parameters and objective functions based on MIGA.  

Optimum parameters Corresponding objective function 

b (mm) H (mm) hr (mm) hs (mm) R (mm) rr (mm) rs (mm) Σmax (MPa) Fq (Hz) S (mm2) 

12 51 33 15 254 32 13  3.819  1020.2  4988.8  

Fig. 6. ASA optimization process.  

Table 4 
Structural optimum parameters and objective functions based on ASA.  

Optimum parameters Corresponding objective function 

b (mm) H (mm) hr (mm) hs (mm) R (mm) rr (mm) rs (mm) Σmax (MPa) Fq (Hz) S (mm2) 

10 54 55 32 243 13 28  4.810  1157.6  10983.0  

Fig. 7. FEA for the platform without the load sharing ring: (a) meshed model; (b) the first order mode of the platform; (c) stress cloud diagram for the platform 
subjected to Z-direction force. 
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measured using the calibration matrix G(ω): 

F(ω) = G(ω) U(ω) (6) 

where F(ω) is the vector of measured forces/moments, and U(ω) 
refers to the vector of actual output voltages. 

After that, the measurements of the z-axis impulsive force and y-axis 
impulsive moment generated by the vibration source (simulator [25]) 
were carried out based on the dynamic calibration method described 
above. The measurement was taken at a sampling frequency of 2048 Hz 
and a sampling time of 16 s, and the results are shown in Fig. 11. The 
reason for choosing impulsive forces as input is to verify the perfor
mance of the platform over the full frequency bandwidth of 1/16 to 800 

Hz. In addition, the same measurements were performed for the 
remaining forces/moments in four directions. The statistics for the 
average relative error rates and cross-coupling error rates are shown in 
Table 5, where the data in bold on the diagonal are relative error rates. 
The maximum relative error rate and cross-coupling error rate are 
9.98% and 15.39%, respectively. Importantly, the average relative error 
rates and cross-coupling error rates for the forces/moments in each 
dimension are calculated according to equations (7) and (8). Where Er-m 
denotes the relative error of the force/moment in the mth dimension, Ec- 

mn denotes the cross-coupling error rate of the nth dimensional force/ 
moment on the mth dimensional force/moment, Fin-m(ωa) denotes the 
input force/moment in the mth dimension at a frequency of ωa, and Fout- 

m(ωa) denotes the output force/moment in the mth dimension at a fre
quency of ωa. 

Er − m =
1

12800
∑12800

a=1

|Fin − m(ωa) − Fout − m(ωa)|
Fin − m(ωa) × 100%(m

= 1, 2,⋯, 6) (7)  

Ec − mn =
1

12800
∑12800

a=1

Fout − n(ωa)
Fin − m(ωa) × 100%(m = 1, 2,⋯, 6; n

= 1, 2,⋯, 6; n ∕= m) (8) 

However, there are a variety of problems with the above least 
squares (LS) approach for measurement. Firstly, it considers the 

Fig. 8. Fundamental frequencies of two platforms with different mass sources.  

Fig. 9. Dynamic calibration equipment for the platform.  

Fig. 10. Transfer functions of the measurement platform.  
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platform as a linear system, ignoring the nonlinear characteristics of the 
platform. Nevertheless, it is clear from Fig. 10 that the dynamic linearity 
of the platform is not ideal due to the increased mounting surface and 
mass of the measurement platform. Additionally, Uc(ω) in Eq. (5) is 
susceptible to the problem of singular matrices, which affects the ac
curacy of the measurement. Thus, there is a need for an alternative 
dynamic calibration method that can overcome these drawbacks. 

3.2. Improved calibration method based on SVR 

The load sharing dynamic measurement platform is a multi-input 
and multi-output nonlinear system. Therefore, the approach of support 

vector regression (SVR) is introduced to solve the cross-coupling prob
lem of the nonlinear system. 

The support vector machine (SVM) nonlinear decoupling model is 
illustrated in Fig. 12. The sequence of the input and output (xi(ω), yi(ω)) 
can be regarded as a set, where xi(ω) is the collected output signal and 
yi(ω) is the input force. Then, the set of training samples can be repre
sented as: 

T(ω) = \{ (x1(ω), y1(ω)), (x2(ω), y2(ω)),⋯, (xk(ω), yk(ω))\} , xi(ω)
∈ R6, yi(ω) ∈ R6, i = 1, 2,⋯, k (9) 

Transformation functions are then used to transform the training 
samples into a high-dimensional vector space: 

ϕ(x(ω)) = (φ(x1(ω)),φ(x2(ω)),⋯,φ(xk(ω))) (10) 

After that, the linear problem in the higher dimension, converted 
from the non-linearity problem in the lower dimension, can be expressed 
as equation (11): 

f (x(ω)) = w(ω)ϕ(x(ω))+ b(ω) (11) 

where w(ω) is the weight in the higher dimensional space and b(ω) is 
the deviation. If w(ω) and b(ω) can be derived, then Eq. (11) can be 
applied to measure. 

The SVR problem can then be formalized as: 

Fig. 11. Comparison of input and output forces based on LS: (a) Fz; (b) My.  

Table 5 
Average relative error rates and cross-coupling error rates for the platform based 
on the LS.  

Forces/Moments (N/ 
Nm) 

Average relative error rates & cross-coupling error rates 

Fx Fy Fz Mx My Mz 

Fx  6.894  0.869  2.537  9.578  13.01  12.78 
Fy  1.563  8.165  5.256  11.72  15.39  9.956 
Fz  3.975  1.167  8.586  10.57  11.67  10.14 
Mx  5.357  4.372  0.153  7.669  8.607  8.871 
My  0.389  3.751  0.152  8.98  6.323  9.743 
Mz  4.407  1.534  1.286  7.172  8.209  9.982  
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min
w(ω),b(ω)

||w(ω)||2

2
+C(ω)

∑n

i=1
εi(ω) (12) 

where C(ω) is the regularization constant and εi(ω) is penalized using 
an insensitive loss function. The introduction of the slack variables al
lows equation (12) to be rewritten as: 

min
w(ω),b(ω),ξi(ω),ξ∗ i(ω)

||w(ω)||2

2
+ C(ω)

∑n

i=1
(ξi(ω) + ξ∗i(ω))

s.t. f (xi(ω)) - yi(ω)⩽εi(ω) + ξi(ω),

yi(ω) - f (xi(ω))⩽εi(ω) + ξ∗i(ω),

ξi(ω)⩾0, ξ∗i(ω)⩾0, i = 1, 2,⋯, n

(13) 

By introducing the Lagrangian operators ɑ(ω), ɑ*(ω), β(ω), β*(ω), the 
optimization problem can be transformed into a pairwise problem. Since 
ε(ω) and C(ω) are artificially given parameters, and ζ(ω),ζ*(ω), β(ω), β* 
(ω) can be offset in the calculation, the pairwise problem can be 
expressed, after reorganizing and using the Gauss radial basis kernel, as: 

By solving equation (14) and considering the mapping relationship, 
w(ω) and b(ω) in Eq. (11) can be derived. Then, Equation (11) can be 
used for dynamic force measurements. 

The input forces shown in Eq. (15) are used as output samples of SVR 
training, and the output voltages shown in Eq. (16) are used as input 
samples of SVR training. Such samples {F(ω), U(ω)} have 120 sets at 
each frequency, i.e., n = 120 (forces of different magnitudes are input 20 
times at each of the 6 input points). The SVR model can be obtained after 
training. 

F(ω) = [Fx(ω)Fy(ω)Fz(ω)My(ω)My(ω)Mz(ω)]T (15)  

U(ω) = [U1(ω)U2(ω)U3(ω)U4(ω)U5(ω)U6(ω)]T (16) 

The flow of the SVR dynamic calibration is presented in Fig. 13, 
where the trained SVR models for each frequency are obtained. The fft is 
the number of sampling points, which equals 12800. 

Based on the above, the six impulsive forces/moments in the previ
ous subsection (no re-input or re-capture required) were re-measured 
using the model obtained by SVR. Set SVR’s maximum number of 

Fig. 12. Structure diagram of the nonlinear decoupling model by SVM.  

Fig. 13. Process for dynamic calibration based on SVR.  

J = -
1
2
∑

i

∑

j
[αi(ω) − α*i(ω)][αj(ω) − α*j(ω)]K(xi(ω)xj(ω)) −

∑

i
[αi(ω) + α*i(ω)]ε(ω) +

∑

i
[αi(ω) − α*i(ω)]f (xi(ω))

s.t. 0⩽αi(ω),α*i(ω)⩽C

(14)   
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iterations to 10,000 and the error of stopping training to 10-3. The 
measured results of the z-axis force and y-axis moment are plotted in 
Fig. 14, and the statistics of the average relative error rates and cross- 
coupling error rates are summarized in Table 6. The maximum rela
tive error rate and cross-coupling error rate are 3.42% and 6.54%, 
respectively. 

4. Results and discussion 

The comparison of the measurements in Sections 3 and 4 reveals that 
the SVR based dynamic calibration has less cross-coupling but higher 
measurement accuracy, which solves the problems arising from 

traditional dynamic measurements perfectly. Therefore, the novel cali
bration and measurement methods are more effective and can be used to 
improve the performance of the load sharing measurement platform. 
There are, of course, a number of factors that affect the performance of 
LS based and SVR based measurements, such as the number of calibra
tions, the accuracy of the input forces, and the choice of kernel function. 
However, no matter how much we improve the performance of LS based 
measurements, it still cannot exceed that of SVR based measurements, 
which further confirms the superiority of the proposed method. Besides, 
the SVR based dynamic calibration also excels in the important aspect of 
efficiency. 

The above study is based on the proposed load sharing measurement 
platform. Thus, it is difficult to compare the measurement performance 
of the novel calibration method applied to the novel measurement 
platform with that of other articles. Also, no studies have been carried 
out on non-linear dynamic calibration and measurement. 

As for model parameter uncertainty, it has a significant impact on, 
for example, the measurement principles in the articles [8,9], but the 
platform presented in this paper is dynamically calibrated so that the 
parameter uncertainty has a minimal impact on its performance. The 
exact effect of parameter uncertainty on both methods is an interesting 
and needed in-depth study, which we will pursue in the future. 

The uses of the proposed platform and method are not limited to 
dynamic force measurements of vibration sources in spacecraft but can 
also be applied to clinical applications [29], precision instruments, 
structural optimization of materials [30–32], etc. 

Fig. 14. Comparison of input and output forces based on SVM: (a) Fz; (b) My.  

Table 6 
Average relative error rates and cross-coupling error rates for the platform based 
on the SVR.  

Forces/Moments (N/ 
Nm) 

Average relative error rates & cross-coupling error 
rates 

Fx Fy Fz Mx My Mz 

Fx  2.563  0.078  0.541  5.374  4.363  6.348 
Fy  0.078  3.219  0.284  6.207  6.535  4.376 
Fz  0.276  0.031  3.418  4.813  5.233  5.876 
Mx  0.735  0.167  0.068  2.264  1.968  2.758 
My  0.091  0.026  0.037  0.879  1.116  0.546 
Mz  0.423  0.611  0.286  1.274  0.465  1.037  
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5. Conclusion 

Lack of load capacity and non-linearity, which influence measure
ment accuracy, are problems with traditional large dynamic force 
measuring platforms. This paper mainly shows a load sharing dynamic 
disturbance force measuring platform aimed at the existing problem. 
The structural optimization and calibration methods are investigated to 
improve the platform’s performance. 

A load-sharing ring and four three-output sensors are distributed in 
parallel to increase the platform’s loading capacity and base frequency. 
To further improve the characteristics of the platform structurally, the 
MIGA algorithm is used to optimize the structural parameters of the 
platform. Compared to the platform optimized by the ASA algorithm, 
the platform based on MIGA has the advantage of lower manufacturing 
costs and installation requirements but better load capacity, which 
demonstrates the superiority of MIGA for structural optimization. 

In addition, the novel dynamic calibration method improves the 
measurement accuracy of the platform by avoiding matrix singularity 
and taking into account platform non-linearity. The maximum average 
relative error rate and cross-coupling error rate in the measurement of 
six-dimensional forces/moments using the conventional LS dynamic 
calibration method are 9.98% and 15.39%, respectively, while the 
corresponding error rates based on the SVR method are 3.42% and 
6.54%. The results demonstrate that the SVR based technique out
performs the LS in terms of measurement accuracy and decoupling 
ability. 

With joint effort, this article improves the measurement performance 
of the measuring platform through both structure and calibration 
method, giving a reference for the design or measurement of measuring 
devices with similar structure or principles. In the future, we will 
investigate in depth the performance differences of various non-linear 
algorithms that can be applied to the dynamic decoupling of vibration 
sources’ disturbance forces. 
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