
Citation: Zhao, X.; Li, M.; Nie, T.;

Han, C.; Huang, L. An Innovative

Approach for Removing Stripe Noise

in Infrared Images. Sensors 2023, 23,

6786. https://doi.org/10.3390/

s23156786

Academic Editor: Dragan Indjin

Received: 13 June 2023

Revised: 13 July 2023

Accepted: 28 July 2023

Published: 29 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

An Innovative Approach for Removing Stripe Noise
in Infrared Images
Xiaohang Zhao 1,2, Mingxuan Li 1, Ting Nie 1, Chengshan Han 1 and Liang Huang 1,*

1 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences,
Changchun 130033, China; zhaoxiaohang21@mails.ucas.ac.cn (X.Z.); limingxuan17@mails.ucas.ac.cn (M.L.);
nieting@ciomp.ac.cn (T.N.); hanchengshan@ciomp.ac.cn (C.H.)

2 University of Chinese Academy of Sciences, Beijing 100049, China
* Correspondence: hezqxfk9@126.com

Abstract: The non-uniformity of infrared detectors’ readout circuits can lead to stripe noise in infrared
images, which affects their effective information and poses challenges for subsequent applications.
Traditional denoising algorithms have limited effectiveness in maintaining effective information.
This paper proposes a multi-level image decomposition method based on an improved LatLRR
(MIDILatLRR). By utilizing the global low-rank structural characteristics of stripe noise, the noise
and smooth information are decomposed into low-rank part images, and texture information is
adaptively decomposed into several salient part images, thereby better preserving texture edge
information in the image. Sparse terms are constructed according to the smoothness of the effective
information in the final low-rank part of the image and the sparsity of the stripe noise direction. The
modeling of stripe noise is achieved using multi-sparse constraint representation (MSCR), and the
Alternating Direction Method of Multipliers (ADMM) is used for calculation. Extensive experiments
demonstrated the proposed algorithm’s effectiveness and compared it with state-of-the-art algorithms
in subjective judgments and objective indicators. The experimental results fully demonstrate the
proposed algorithm’s superiority and efficacy.

Keywords: infrared images; stripe noises; multi-level image decomposition method; multi-sparse
constraint representation (MSCR); Alternating Direction Method of Multipliers (ADMM)

1. Introduction

The non-uniformity of infrared detectors often appears as stripe noise in images,
which directly affects image quality and even impedes subsequent image processing tasks,
such as image classification, target detection, and recognition [1–3]. Therefore, removing
stripe noise while retaining fine image details is particularly important. This paper aims
to separate the stripe noise component from the target infrared image and preserve the
delicate texture details of the effective information in the image.

Currently, methods for removing stripe noise can be roughly divided into four cate-
gories: filter-based, statistics-based, optimization-based, and neural-network-based. The
method proposed in this paper belongs to the optimization-based approach.

Q.U.A.R.M.B.Y. introduced the filter-based method for removing stripe noise in
1987 [4]. Subsequently, various filtering methods were developed, such as Fourier filters [5],
wavelet analysis [6], and wavelet-Fourier combined filters. Boyang Chen proposed an adap-
tive wavelet filter to quickly and accurately learn appropriate wavelet filter coefficients [7].
Ende Wang proposed a stripe removal algorithm based on wavelet decomposition and
gradient equalization [8]. However, no filter can perfectly accommodate all frequencies of
stripe noise, and some image components containing information will inevitably be filtered
out, causing the resulting clean image to lose some information or produce “artifacts”.

Statistics-based methods for removing stripe noise are often widely used in engi-
neering practices. This method statistically assumes that all infrared detectors’ response
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expectations and variance are consistent. For example, Carfantan proposed a new self-
calibration and stripe removal technique for push-broom satellite imaging systems that
does not require specific training data but instead assumes linear responses based on
statistical estimates of the gain of each detector in the observed image [9]. The algorithm of
the statistics-based stripe noise removal method is relatively simple and highly applicable,
but its effectiveness in removing stripe noise in infrared images is poor.

Optimization-based stripe noise removal methods are currently the most effective
method in all of the research. Leonid I. Rudin initially proposed a numerical algorithm for
removing image noise based on constrained optimization [10]. Subsequently, Fa Rsiu S
used L1 norm minimization and robust regularization to deal with different data and noise
models [11]. Yong Chen proposed a new stripe removal method that fully considers the
inherent characteristics of stripe noise and image features [12]. According to the researchers’
in-depth exploration, stripe noise has global sparsity and gradient sparsity along the stripe
direction. Li Mingxuan used the L1 norm to sparsely represent stripe noise, forming
a regularization term in the energy function, and used a sparse representation of clean
images across stripes as fidelity terms to separate and minimize stripe noise, combined
with methods such as the wavelet transform, resulting in a good denoising ability [13,14].

The initial application of neural network methods in infrared image non-uniformity
correction was proposed by Scribner in 1991 [15]. Subsequently, Vera proposed an adaptive
scene-based non-uniformity correction technique [16]. Rossi proposed using the image
obtained by filtering with a bilateral filter as the expected image [17]. K Xu et al. proposed
a deep multi-scale dense connection convolutional neural network (DMD-CNN) [18].
However, the neural-network-based stripe noise removal method is highly required to select
implicit target images in the algorithm and design loss functions in the correction layer.

Noise removal is a prerequisite for contrast or detail enhancement in infrared im-
ages [19]. Existing stripe noise removal methods for infrared images rarely consider the
global low-rank characteristics of the stripe noise itself. Therefore, many stripe noise
removal algorithms for infrared images currently either have an insufficient denoising
ability, resulting in processed images still containing stripe noise, or they are over-denoised,
resulting in the loss of effective texture information. Based on previous research, this paper
aims to remove stripe noise while ensuring that the effective information in non-stripe noise
areas of the image is not affected, fully utilizing the structural information of stripe noise
and proposing a more practical algorithm for removing stripe noise in infrared images.

The latent low-rank representation (LatLRR) [20] is usually used for clustering anal-
ysis tasks. Some scholars have proposed better subspace recovery methods based on
LatLRR [21]. The authors of [20] also mentioned that LatLRR can extract salient and low-
rank components from input data. Based on the detail extraction capability of LatLRR,
several scholars have proposed various image decomposition and fusion strategies. Liu
et al. proposed a fusion method based on multi-decomposition LatLRR. They combined it
with a dual-simplified pulse-coupled neural network (D-SPCNN) to improve the fusion of
detail layers [22]. Li et al. proposed a new infrared and visible image fusion method based
on saliency detection and LatLRR-FPDE [23].

In this paper, based on the globally low-rank structure of stripe noise, MIDILatLRR
was proposed, which adapts the selection of decomposition levels to extract different
levels of delicate texture information from the salient components at each level, while the
low-rank components at the last level focus on extracting all the stripe noise and low-rank
smooth parts in the image. Based on this, an optimal model called the MSCR of stripe
noise was constructed according to the sparse difference in directionality and smoothness
between the stripe noise and effective information in the last-level low-rank part of the
image and used the L1 norm to constrain sparse terms. The alternating direction multiplier
method (ADMM) was used to solve this model [24,25].

The main contributions are summarized as follows:

(a) We experimentally demonstrate and analyze the effectiveness and underlying mecha-
nisms of using LatLRR decomposition to extract the low-rank component containing
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stripe noise in noisy infrared images while preserving the rich texture information
in the salient component. Based on this, MIDILatLRR was proposed to fully extract
the effective texture information in infrared images, separating the stripe noise from
useful information. This approach only requires denoising the final low-rank part
image while maintaining the texture details in salient part images.

(b) A denoising model was proposed based on MSCR to address the difference between
the effective smooth and stripe noise parts in the final low-rank part image obtained
through MIDILatLRR. The MSCR model takes advantage of the sparsity of stripe
noise, the smoothness of effective information present in the final low-rank component,
and the sparse difference in gradients in different directions to impose the sparsity
constraint and extract the noise component.

(c) In solving MIDILatLRR, an adaptive level decomposition was established based on the
richness of the detail features in different input noisy images, making it an adaptive
cut-off in the decomposition, and the chosen level of decomposition is convergent. In
the MSCR model, the L1 norm was used to constrain the directional gradient sparsity
of stripe noise and the edge sparsity of low-rank smooth information, which generates
a non-convex optimization model. This model is solved using the ADMM.

The remainder of the paper is organized as follows: Section 2 presents the proposed
method’s theoretical principles. Section 3 describes the main content flow of the algorithm.
Section 4 selects noisy images and several state-of-the-art algorithms to experimentally
validate the performance of the proposed algorithm through ablation experiments and
comparative experiments. Finally, Section 5 provides the conclusion.

2. Preliminaries

In this chapter, the core mechanism of MIDILatLRR was experimentally and mathe-
matically validated by demonstrating and analyzing the ability of LatLRR to separate stripe
noise and complicated texture information in noisy infrared images, laying the foundation
for the method in the next chapter.

2.1. Latent Low-Rank Representation

In 2010, LIU et al. [26] proposed the LRR subspace segmentation theory, in which the
input data matrix itself is chosen as the dictionary. However, this method brings a series
of issues, such as the dictionary needing to contain sufficient data vectors sampled from
subspaces, and the input data cannot be corrupted. Otherwise, the subspace segmentation
may fail.

Therefore, in 2011, the authors [20] proposed the LatLRR theory, which can decompose
the original data into low-rank and significant structural components. The formulation of
the LatLRR problem is as follows:

min
Z,L,E ‖Z‖∗ + ‖L‖∗ + λ‖E‖1

s.t. X = XZ + LX + E (1)

In the equation, λ > 0 is a balance coefficient, ‖ ‖1 represents the L1 norm, and ‖ ‖∗
represents the nuclear norm, the sum of the matrix singular values. X represents the
observed data matrix, Z is a matrix of low-rank coefficients, L is a projection matrix named
a salient coefficients matrix, and E is a sparse, noisy matrix. Equation (1) is solved by the
inexact Augmented Lagrangian Multiplier [20], and then the XZ low-rank component and
LX salient component can be obtained based on the equation.

The LatLRR algorithm, which possesses an unsupervised feature extraction capability
and non-dimensionality reduction property, was initially discovered by its author, Liu. The
salient component of LatLRR holds discriminative power for essential data information in
a matrix. Although this non-dimensionality reduction property is not conducive to feature
information extraction in application domains, it has a relatively wide range of applications
in the field of image processing.
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The original authors did not provide much explanation for the feature extraction
capability of the LatLRR algorithm itself. Yaming Wang et al. [27] have explained and
conducted further studies on the feature extraction characteristics of LatLRR. The feature
extraction capability of LatLRR finds wide use in image fusion. Hui Li et al. [28] proposed
a multi-level decomposition strategy (MDLatLRR) based on LatLRR that extracts basic
parts and significant features at different levels of the image, improving the performance of
image fusion and fully utilizing the feature extraction capacity of LatLRR.

In addition to feature extraction and image fusion, this study reveals that LatLRR
can potentially remove stripe noise in infrared images. The stripe noise caused by the
non-uniformity of the readout circuitry in infrared images demonstrates globally low-rank
structure characteristics. Through the LatLRR decomposition, stripe noise can be extracted
into low-rank components.

2.2. Experimental Verification and Analysis

In Equation (1), if an infrared image containing stripe noise is input into X, it will be
discovered through experiments that the stripe noise can be decomposed into an XZ low-
rank component by LatLRR. The XZ part primarily contains the low-frequency component
of the image, which reflects the main body of the original image after LatLRR decomposition.
Meanwhile, the high-frequency information component of the image, reflecting the local
detailed texture part of the original image, can be primarily extracted by the LX part.
Since the stripe noise in the infrared image has continuity in the vertical direction and
low-frequency characteristics, it belongs to the global structure. Therefore, the XZ low-
rank component can always extract the stripe noise in the noisy infrared image after
LatLRR decomposition.

From Figure 1, it is evident that the main information of the image and the stripe
noise are contained in the decomposed low-rank component, while the salient component
primarily reflects the local information of the image. Furthermore, the sparse noise matrix
E exhibits a significant sparsity level and is typically used for separating blind elements and
salt-and-pepper noise in infrared images. However, the current infrared images have few
elements in this part, and the λ coefficient selection further restricts the extraction of the
sparse noise component E for image elements. As a result, the extracted image information
from the E component displays high sparsity. In these experiments, the L1 norm of each
column of the sparse noise component E compared to the original image with a λ value of
1 was plotted, as depicted in Figure 1.

From Figure 1d,e, it can be observed that the impact of the sparse noise matrix on
the original image is minimal. Therefore, to facilitate the verification and analysis of the
stripe noise within the low-rank component, the LatLRR problem was simplified to the
following equation:

min
Z,L,E‖Z‖∗ + ‖L‖∗
s.t.X = XZ + LX

(2)

This equation only decomposes the input data into the low-rank component, XZ, and
the salient component, LX, making it easier to analyze the principle of LatLRR for feature
extraction. Zhang et al. analyzed this equation [29] and derived a closed-form solution for
noiseless LatLRR. In the following theorem, we reaffirm the main result of noiseless LatLRR.

X = UXΣXVT
X, Z = VXWZVT

X,
L = UX(1−WZ)UT

X
(3)

where UX and VT
X are the left and right singular matrices of input matrix X, respectively,

while ΣX is the singular value matrix of X, and WZ is any block diagonal matrix satisfying: 1.
If [ΣX]ii 6= [ΣX]jj then [WZ]ij = 0; 2, both WZ and (1−WZ) are positive semi-definite [29].
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Notice that in practice, the singular values of X are usually distinct; therefore, WZ
becomes a diagonal matrix diag{z1, z1, ..., zr} with 0 ≤ zi ≤ 1 for all i.

Then, XZ and LX can be viewed as obtained through formula manipulation, which
can be expressed as follows:

XZ = UXΣXWZVT
X

= UX

z1σQ1 · · · 0
...

. . .
...

0 · · · zrσQr

VT
X

(4)

LX = UX(1−WZ)ΣXVT
X

= UX

l1σX1 · · · 0
...

. . .
...

0 · · · lrσXr

VT
X

(5)

here li = 1− zi, and σQi is i th largest singular value of X.
In this, we can observe that the fundamental principle underlying the separation of

the low-rank and salient parts in the decomposition Formula (3) is the weighted processing
of the singular values of the original image based on their relative magnitudes. Mappings
of li and zi with different weights for singular values of diverse magnitudes are utilized;
meanwhile, WL = 1 −WZ suppresses the weight component associated with a larger
σXi. Afterward, the weight ratios of zi and li separated from a noisy infrared image are
illustrated in Figure 2.
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Figure 2. The proportion of the singular value weighted of salient and low-rank components to the
original image matrix.

Through an examination of Figure 2, it can be observed that the weight ratio of the
salient component, li, is relatively small in the first several singular values. Meanwhile,
detailed texture information of the image is contained in the singular values with smaller
numerical values and occurs later in the order [30]. Subsequently, experiments are con-
ducted to analyze which singular values in the LatLRR decomposed image matrix represent
the stripe noise information captured in the original image. It is worth noting that the left
and right singular matrices utilized for the singular value decomposition of the stripe noise
matrix at this stage are the same as those used for the singular value decomposition of the
original image.
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By performing a singular value decomposition of the stripe noise presented in the
Figure 3, it can be concluded that the noise in images exhibiting stripe noise primarily
manifests in the relatively large singular values of ΣX. It can be inferred that the stripe
noise present in infrared images comprises one of the main constituents of the image and
exhibits relatively low-frequency characteristics. Additionally, through a comparison of
Figures 2 and 3, it is observed that the salient components extracted by LatLRR fail to
capture the primary information contained in the large singular values corresponding to
the stripe noise. Moreover, this Figure 3 illuminates that LatLRR decomposes the image
using varying weights for singular values of distinct magnitudes.
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In the forthcoming section, a qualitative analysis will be conducted by contrasting the
low-rank and salient components presented in Figure 4. As the salient component matrix
comprises negative elements, a normalization technique is implemented to scale the values
to the range from 0 to 1 for visualization.
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Figure 4. (a) Low-rank component. (b) Normalization of salient component.

The salient component of Figure 4, after normalization, demonstrates excellent capabil-
ities for extracting details in both fine texture information and vertical texture information
in the background while completely separating the stripe noise. Although the normal-
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ization results successfully extract image detail texture information, this global technique
inevitably causes distortion in part of the mapped image. Additionally, extracting salient
components from a single LatLRR decomposition cannot extract all of the image’s detailed
information. Therefore, MIDILatLRR was proposed by further improving the algorithm
based on the detail extraction and stripe noise separation abilities of LatLRR. MIDILatLRR
can completely extract the fine texture details of the image while concentrating the stripe
noise in the final low-rank part image, making it more conducive to subsequent denoising
algorithm processing. The main flowchart of the proposed algorithm is illustrated by
Figure 5 as follows:
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3. Primary Algorithms

In the previous chapter, the ability of LatLRR to separate stripe noise and effective
texture information was validated. Based on this characteristic, a more effective multi-
level graphic decomposition method, MIDILatLRR, is constructed in this chapter. After
decomposition, an analysis of sparse terms is conducted in the final low-rank part image.
An MSCR model for removing stripe noise is established and solved.

3.1. Multi-Level Image Decomposition Method Based on Improved LATLRR

As previously mentioned, a single LatLRR decomposition has limited capability in
extracting salient information, and direct normalization of the salient component leads
to image distortion. Hence, MIDILatLRR has been designed to fully extract the detailed
information of the image and concentrate the stripe noise in the low-rank component image
of the final level. This approach is more conducive to protecting useful information and
separating stripe noise in noisy infrared images. Moreover, it fully utilizes the property
that stripe noise exists only in the low-rank component after LatLRR decomposition. The
algorithm formula is presented below:

Di = Ki
(
Ep
(
LXi

+
))

(6)

s.t.min(Xi −Di − Ei) = 0

Xi+1 = Xi −Di (7)

The extraction of positive matrix elements from the salient component matrix LX is
represented by Ep

(
LXi

+
)
, which is followed by a linear mapping to the [0-1] interval. The

mapping scale factor for Ep
(
LXi

+
)

is defined as the coefficient Ki, which ranges from 0
to 1. To ensure that the extracted images are not distorted, the value of Ki is chosen to
satisfy Formula (6)‘s condition while being maximized. Details are extracted from the
image without distortion using this method, as illustrated in Figure 6. Repetitive multi-
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level image decomposition is performed by subtracting the extracted information from
the original image using Xi+1 = Xi −Di, and they are using it as an input for the next
level of LatLRR decomposition. As a result, the image details that are contained in the
negative elements of the salient component matrix that were not extracted in previous
levels are continuously extracted in subsequent levels. Hence, this method effectively
extracts maximum information from noisy infrared images without distortion.
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The positive elements of the salient component matrix LXi are extracted, and the
distortionless linearly mapped matrix Di, which represents the i-th level salient part image,
is obtained. The Xi − Di part of the image where stripe noise is more concentrated is
referred to as the i-th level low-rank part image, Vi. As shown in Figure 6, multi-level
image decomposition is performed using MIDILatLRR. With increasing levels, texture
detail information gradually reduces in the low-rank part, Vi, resulting in a smoother
image. In V4, smooth blocks and stripe noise represent most of the image information;
further, MIDILatLRR image decomposition is not meaningful. Therefore, different image
decomposition levels should be selected for images with different texture richness.

3.2. Establishment of Sparse Regularization Terms for MSCR

After image decomposition, the proposed MSCR denoising algorithm in this section
only targets the final low-rank part image, avoiding the processing of complex texture
information in salient part images.

In the final low-rank part image, the stripe noise was observed to have strong direc-
tional characteristics. In contrast, the non-noisy effective information component of the
final low-rank part image presented relatively smooth characteristics and extensive block
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features. In light of this, the corresponding regularization terms for stripe noise removal
were designed in the final low-rank part image by constraining the features of noise or
effective information to represent the stripe noise based on the difference between stripe
noise and effective information in the image. Figure 7 illustrates some characteristics of the
stripe noise and effective information in the final low-rank part image. Here, the difference
between stripe noise and smooth information can be observed.
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rank part image. (b) Effective information components. (c) Noise components. (d) Edge sharpening
of effective information. (e) Edge sharpening of the original image. (f) Horizontal gradient of noise
component. (g) Horizontal gradient of effective information. (h) Proportion of the L1-norm for
each row of information components in the L1-norm for the edge gradient of the original image.
(i) Proportion of the L1-norm for each row of information components in the L1-norm for the
horizontal gradient of the original image. (j) Proportion of the L1-norm for each column of the
original image.

3.2.1. Smoothness of Effective Information

In this paper, the stripe noise matrix is represented as N, and the final low-rank
part image of the nth level is denoted as Vn. The effective information component of the
final low-rank part image is represented by Vn −N. As shown in Figure 7b,d,e, there are
noticeable differences in smoothness between the effective information and the stripe noise
in the final low-rank part image, Vn. Moreover, the texture information has been fully
extracted by salient part images of MIDILatLRR. Therefore, this image component appears
relatively smooth, and it does not contain prominent texture information in the absence of
stripe noise. Figure 7d,e demonstrates that the effective information component becomes
sparse when convolved with the Laplace edge detection operator, which leads to a large
difference in the L1 norm between the effective information component and the original
image. The smoothness of the effective information component in the final low-rank part
image, Vn, was used as a fidelity term and enforced sparsity using the L1 norm:

P1(N) = ‖dLVn − dLN‖1 (8)
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In this Laplace operator, dL was utilized for image edge detection, while N represented
the stripe noise component present in both the Vn image matrix and the original image. To
calculate the sparsity of N, the L1 norm was adopted since it is easier to implement than
the L0 norm.

Additionally, as Figure 7i shows, the effective information component in the final low-
rank image, Vn, had a smaller proportion of L1 norms per row after being convolved with
the edge detection operator. This finding indicated that the constraint term enforced by the
L1 norm could ensure the overall smoothness of the effective information after denoising.

3.2.2. The Sparsity and Directionality of Stripe Noise

As can be seen in Figure 7c, the stripe noise in the infrared image is present in a
columnar form. The pixels in the regions without stripes have a value of zero, which makes
the stripe noise component sparse and suitable for sparsity constraints. The L1 norm was
utilized to represent this regularization term to avoid excessive denoising, as it has better
non-convexity. The representation is shown below:

P2(N) = ‖N‖1 (9)

Furthermore, Figure 7j reveals that the L1 norm of each column in the noise component
is comparatively smaller than that of the original image, indicating that a sparse constraint
can be introduced.

Due to the strong directionality of stripe noise, the horizontal gradient of the final
low-rank component image, Vn, predominantly originates from the stripe noise, as depicted
in Figure 7f,g. In the stripe noise component image, clear vertical stripes can be observed in
the gradient domain along the horizontal direction. Conversely, the effective information
component exhibits a lower proportion of the original image, Vn, in the horizontal gradient
domain and is relatively sparse along the horizontal gradient domain. Hence, the difference
between the horizontal gradients of the final low-rank component image and the stripe
noise component was employed as a fidelity term and applied to the L1 norm to enforce
sparsity constraints, as shown below:

P3(N) = ‖dxVn − dxN‖1 (10)

In addition, Figure 7i demonstrates that the proportion of the L1 norm of the horizontal
gradient of the effective information component relative to that of the original image is
relatively small. Thus, horizontal smoothing of the denoised image can be achieved using
this regularization term.

3.3. Multi-Sparse Constraint Representation Model

As analyzed above, significant differences exist in structure and directionality between
the stripe noise component and information component in infrared images. Combined
with the three components above, P1(N), P2(N), P3(N), the final optimization model for
stripe noise was obtained:

N = argmin
N

λ1‖dLVn − dLN‖1 + λ2‖N‖1 + λ3‖dxVn − dxN‖1 (11)

The equation incorporates three regularization parameters, λ1, λ2, and λ3, which are
utilized to balance each term. The minimum stripe noise component, N, that minimizes
Equation (11) is solved for and extracted first. Finally, the denoised information components
Vn’ can be estimated through the transform below:

Vn’ = Vn −N (12)
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3.4. Solution Process

The denoising mathematical model has been established in the previous section. This
section will use the adaptive determination method for MIDILatLRR and solve the MSCR
model using the ADMM method.

3.4.1. Adaptive Determination of the Decomposition Level for MIDILatLRR

The i-th level salient part image Di, which contains the details and texture information
of the image, was decomposed by the MIDILatLRR algorithm. To verify that most of
the texture information in the image can be extracted by the first several levels of image
decomposition, convergence experiments were conducted. The i-th level salient part image
Di from the first n levels was summed up to obtain the image DSn, which contains more
texture detail information.

DSn = ∑n
i=1 Di (13)

Convolutions with the Laplace edge detection operator [31] were separately performed
on DSn and the original image. The ratio of L1 norms after convolution was used to
represent the richness of the salient part images extracted from the first n levels. As all
the salient part images do not contain stripe noise, the L1 norm of the convolved sum
of the salient component images, DSn, must be smaller than that of the original image.
Theoretically, when reaching a certain level of decomposition, this ratio will be fixed around
a certain value, fluctuating around this value but not approaching 1. The difference between
this ratio and one mainly comes from the L1 norm difference caused by stripe noise in the
original image after convolution with the operator.

As depicted in Figure 8, the richness of DSn has achieved approximately 0.65 of the
original image after undergoing four to five decompositions with MIDILatLRR, and the sub-
sequent increase is comparatively insignificant. The maximum richness of DSn is achieved
at the seventh decomposition level. However, the texture information contained in the
salient components is neutralized due to the relatively smooth information extracted in the
later decomposition levels, which results in a minor decrease in the richness ratio of DSn.
Based on an extensive experimental analysis, it was decided to terminate MIDILatLRR
decomposition once the richness increase dropped below 5%. In this case, the decomposi-
tion level of this image was established at four. Through extensive image experiments, it
has been verified that upon reaching this termination condition, the difference in richness
between DSn and the original image is mainly due to the absence of stripe noise. At the
fourth decomposition level, the low-rank part image V4 contains almost solely stripe noise,
and further decomposition only marginally affects the detail extraction of the salient compo-
nents. Besides the stripe noise, V4 constitutes large-area blocky smooth information, which
attests to the salient components’ sufficient extraction of image details in MIDILatLRR.

Sensors 2023, 23, x FOR PEER REVIEW 13 of 26 
 

 

3.4.1. Adaptive Determination of the Decomposition Level for MIDILatLRR 
The i-th level salient part image 𝑫𝒊 , which contains the details and texture infor-

mation of the image, was decomposed by the MIDILatLRR algorithm. To verify that most 
of the texture information in the image can be extracted by the first several levels of image 
decomposition, convergence experiments were conducted. The i-th level salient part im-
age 𝑫𝒊 from the first n levels was summed up to obtain the image 𝑫𝑺𝒏, which contains 
more texture detail information. 𝑫𝑺𝒏 = ෍ 𝑫𝒊𝒏𝒊=𝟏  (13)

Convolutions with the Laplace edge detection operator [31] were separately per-
formed on 𝑫𝑺𝒏 and the original image. The ratio of L1 norms after convolution was used 
to represent the richness of the salient part images extracted from the first n levels. As all 
the salient part images do not contain stripe noise, the L1 norm of the convolved sum of 
the salient component images, 𝑫𝑺𝒏, must be smaller than that of the original image. The-
oretically, when reaching a certain level of decomposition, this ratio will be fixed around 
a certain value, fluctuating around this value but not approaching 1. The difference be-
tween this ratio and one mainly comes from the L1 norm difference caused by stripe noise 
in the original image after convolution with the operator. 

As depicted in Figure 8, the richness of 𝑫𝑺𝒏 has achieved approximately 0.65 of the 
original image after undergoing four to five decompositions with MIDILatLRR, and the 
subsequent increase is comparatively insignificant. The maximum richness of 𝑫𝑺𝒏  is 
achieved at the seventh decomposition level. However, the texture information contained 
in the salient components is neutralized due to the relatively smooth information ex-
tracted in the later decomposition levels, which results in a minor decrease in the richness 
ratio of 𝑫𝑺𝒏. Based on an extensive experimental analysis, it was decided to terminate 
MIDILatLRR decomposition once the richness increase dropped below 5%. In this case, 
the decomposition level of this image was established at four. Through extensive image 
experiments, it has been verified that upon reaching this termination condition, the dif-
ference in richness between 𝑫𝑺𝒏 and the original image is mainly due to the absence of 
stripe noise. At the fourth decomposition level, the low-rank part image 𝑽𝟒 contains al-
most solely stripe noise, and further decomposition only marginally affects the detail ex-
traction of the salient components. Besides the stripe noise, 𝑽𝟒  constitutes large-area 
blocky smooth information, which attests to the salient components’ sufficient extraction 
of image details in MIDILatLRR. 

 
Figure 8. Illustration of the richness of 𝑫𝑺𝒏. 

After denoising 𝑽𝟒, the subsequent stripe noise removal algorithm requires an image 
as the separation of the image detail texture and low-rank information has been accom-
plished. In this section, sufficient complex texture information has been extracted from 
the original image through MIDILATLRR, as demonstrated in Figure 9b, where numerous 
detailed features, such as the texture of the trousers and facial features, have been 

Figure 8. Illustration of the richness of DSn.



Sensors 2023, 23, 6786 14 of 26

After denoising V4, the subsequent stripe noise removal algorithm requires an image as
the separation of the image detail texture and low-rank information has been accomplished.
In this section, sufficient complex texture information has been extracted from the original
image through MIDILATLRR, as demonstrated in Figure 9b, where numerous detailed
features, such as the texture of the trousers and facial features, have been appropriately
extracted by MIDILATLRR. Solely the final low-rank part image V4 necessitates denoising,
thus avoiding any loss to the pre-extracted salient component DS4.
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3.4.2. ADMM Optimization for MSCR

The most direct approach for solving optimization problems involves a convergence
matrix, whereby some Equation uses second-order differentiation. However, for regulariza-
tion models like Equation (7), which are based on L1 norm regularization, the regularization
term is not continuously differentiable and therefore poses difficulties for differentiation.
The ADMM algorithm is currently widely used in machine learning and other fields. Its
essence is to optimize the unconstrained part using the block coordinate descent method. It
is an effective method for solving the L1 norm regularization term. Therefore, this method
is used to solve Equation (11). The solution process is shown as follows:

To address the three regularization terms, three auxiliary variables are introduced:
H = dlVn − dlN, R = N, and M = dxVn − dxN, so that the minimization of Equation (11) is
equivalent to minimizing the following:

arg min
N,G,T,U

{λ1‖H‖1 + λ2‖R‖1 + λ3‖M‖1}

s.t.H = dyN, R = N, M = dxVn − dxN
(14)

The convex optimization problem in the form of Equation (13) can be further trans-
formed into an augmented Lagrangian function, i.e.,

arg min
N,G,T,U

λ1‖H‖1 + λ2‖TR‖1 + λ3‖M‖1 + mT
1 (dLVn − dLN−H) + mT

2 (N−R) + mT
3 (dxVn − dxN−M)

+ ρ1
2 ‖dLVn − dLN−H‖2

2 +
ρ2
2 ‖N−R‖2

2 +
ρ3
2 ‖dxVn − dxN−M‖2

2

(15)

In this case, m1, m2, m3 are the Lagrange multipliers for each constraint term while
ρ1, ρ2, ρ3 are the penalty term parameters. At this point, Equation (15) can be transformed
into four different sub-items to be iteratively solved:

a. H problem

H = argmin
G

λ1‖H‖1 + mT
1 (dLVn − dLN−H) +

ρ1

2
‖dLVn − dLN−H‖2

2 (16)
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According to Formula (11) in Reference [32], for solving for X such that the following
Formula is minimized:

argmin
X
‖X− B‖2

2 + 2λ‖X‖1 (17)

It can be derived directly that

X = so f t(B, λ) = sign(B)max(|B| − λ, 0) (18)

Therefore, Equation (16) can be converted into the following:

H = argmin
H

λ1‖H‖1 +
ρ1

2

∥∥∥∥dLVn − dLN−H +
m1

ρ1

∥∥∥∥2

2
(19)

Following the solution principle of Formula (17), it can be solved by the following:

Hk+1 = so f t

(
dLVn−dLNk +

mk
1

ρ1
,

λ1

ρ1

)
(20)

where k represents the number of iterations.

b. R problem.

R = argmin
R

λ2‖T‖1 + mT
2 (N−R) +

ρ2

2
‖N−R‖2

2 (21)

Likewise, for the G problem, the solution is obtained as follows:

Rk+1 = so f t

(
Nk +

mk
2

ρ2
,

λ2

ρ2

)
(22)

c. M problem.

M = argmin
U

λ3‖U‖1 + mT
3 (dxVn − dxN−M) +

ρ3

2
‖dxVn − dxN−M‖2

2 (23)

The solution is obtained as follows:

Mk+1 = so f t

(
dxVn−dxNk +

mk
3

ρ3
,

λ3

ρ3

)
(24)

d. The N problem.

N = argmin
N

mT
1 (dLVn − dLN−H) + mT

2 (N−R) + mT
3 (dxVn − dxN−M)

+ ρ1
2 ‖dLVn − dLN−H‖2

2 +
ρ2
2 ‖N−R‖2

2 +
ρ3
2 ‖dxVn − dxN−M‖2

2

(25)

It can be simplified as follows:

N = argmin
N

{
ρ1

2

∥∥∥∥dLVn − dLN−H +
m1

ρ1

∥∥∥∥2

2
+

ρ2

2

∥∥∥∥N−R +
m2

ρ2

∥∥∥∥2

2
+

ρ3

2

∥∥∥∥dxVn − dxN−M +
m3

ρ3

∥∥∥∥2

2

}
(26)

This is a quadratic optimization with differentiability. It is equivalent to solving the
following linear system. Through the direct derivation of Formula (26):

ρ1dL
T ⊗dL

⊗
Nk+1 + ρ2Nk+1 + ρ3dx

T ⊗dx
⊗

Nk+1

= ρ1dL
T ⊗(dLVn −Hk+1 + m1

ρ1

)
+ ρ2

(
Rk+1 − m2

ρ2

)
+ ρ3dx

T ⊗(dxVn −Mk+1 + m3
ρ3

) (27)
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where
⊗

denotes convolution. It is not easy to solve a formula involving convolution. This
paper introduces the Fourier transform to convert the convolution in the time domain into
a multiplication in the frequency domain:[

ρ1F
(

dL
T
)

. ∗ F (dL) + ρ2 + ρ3F
(

dx
T
)

. ∗ F (dx)
]
. ∗ F

(
Nk+1

)
= ρ1F

(
dL

T
)

. ∗ F
(

dLVn −Hk+1 + m1
ρ1

)
+ ρ2F

(
Tk+1 − m2

ρ2

)
+ρ3F

(
dx

T
)

. ∗ F
(

dxVn −Uk+1 + m3
ρ3

) (28)

By left division of the matrix, we obtain the following:

F
(

Nk+1
)
=
[
ρ1F

(
dL

T) · ∗F(dLVn − Hk+1 + m1
ρ1

)
+ ρ2F

(
Rk+1 − m2

ρ2

)
+ρ3F

(
dx

T) · ∗F(dxVn −Mk+1 + m3
ρ3

)]
.

/
[
ρ1F

(
dL

T) · ∗F (dL) + ρ2 + ρ3F
(
dx

T) · ∗F (dx)
] (29)

Then, the inverse Fourier transform of Formula (29) was implemented to obtain the
expression for stripe noises N:

Nk+1 = F−1
{[

ρ1F
(
dL

T) · ∗F(dLVn − Hk+1 + m1
ρ1

)
+ ρ2F

(
Rk+1 − m2

ρ2

)
+ ρ3F

(
dx

T) · ∗
F
(

dxVn −Mk+1 + m3
ρ3

)]
· /
[
ρ1F

(
dL

T) · ∗F (dL) + ρ2 + ρ3F
(
dx

T) · ∗F (dx)
]} (30)

where .* is the point multiplication of two matrices; “./” is the point division of two
matrices; “F ()” is the Fourier transform; “F−1()” is the inverse Fourier transform. Note
that the complete convolution of a matrix will change its size. It is highly necessary to
conduct normalization during computing. After each iteration, the Lagrange multipliers
must be updated by the following [33]:

mk+1
1 = mk

1 + ρ1

(
dLVn−dLNk+1 −Hk+1

)
mk+1

2 = mk
2 + ρ2

(
Nk+1 −Rk+1

)
mk+1

3 = mk
3 + ρ3

(
dxVn−dxNk+1 −Mk+1

) (31)

Finally, the noise component Nk+1 in the original image is obtained, and the final
low-rank part image Vn’ with the striping noise removed is obtained by subtracting Nk+1

from Vn.
The following equation can ultimately obtain the denoised image matrix of the original

input image:
IC = DSn + Vn’ (32)

where IC Is the denoised image. As the denoising algorithm was only applied to the final
low-rank part image Vn. In this chapter, the detailed texture information preserved in DSn
remains unaffected by the denoising algorithm.

4. Experimental Results

The proposed method was compared with four state-of-the-art methods on three
different image datasets in experimental comparisons. The contrastive methods were as
follows: multi-scale guided filter (MSGF) [34] for stripe noise, wavelet transform coupled
with gradient equalization (WAGE) [8], Effective Strip Noise Removal for Low-Textured
Infrared Images Based on 1D Guided Filtering (1D-GF) [35], and FPN-Based Learning
Convolutional Network (FLCN) [36]. To further demonstrate the effectiveness of the
proposed method, we conducted ablation experiments in the comparative experiment.
Specifically, we performed denoising experiments using an optimization model on images
subjected to one round of LatLRR decomposition without noise extraction, referred to as
the Non-MIDILATLRR method.
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All the image data were shot using a LUSTER TB640-CL refrigerated medium wave-
front infrared camera. All experiments were run in M.A.T.L.A.B. (R2020b) on a computer
with an Intel i7 9750H six-core twelve-thread processor @4.5 GHz and 16 GB of RAM.

We focused on evaluating the denoising effectiveness of the experimental data in terms
of edge details and overall noise reduction, using both subjective and objective methods.
Due to a lack of available real images for reference, we selected no-reference evaluation
metrics, including noise reduction (NR) [37,38], mean relative deviation (MRD) [37,39],
and image distortion (I.D.) [40,41]. The NR metric, defined by Equation (33), reflects the
overall performance of the denoised image. The MRD metric, defined by Equation (34),
reflects the ability to preserve image information in non-stripe regions. The ID metric, as
defined by Equation (35), indicates the level of distortion present in the resulting denoised
image. The effectiveness of denoising is positively correlated with the NR and ID metrics
and negatively correlated with the MRD metric. Therefore, these metrics enable accurate
evaluation of the denoising performance without the need for reference images.{

NR = N0/N1
N = ∑k

i=0 meanP(ui)
(33)

where N0 and N1 stand for the value of N in the original and de-striped images, respectively.
ui is the frequency component produced by stripes. N corresponds to the total power of
the noise produced by stripes in the mean power spectrum.

MRD =
1

MN

MN

∑
i=1

|zi − gi|
gi

× 100 (34)

where gi and zi are the pixel values of point i in the original image and the image after
stripe noise removal, respectively. Additionally, MN represents the number of all pixels in
the selected area. {

ID = S1/S0
S = ∑N−1

j 6=1 meanP(ui)
(35)

where S0 and S1 stand for the value of S in the original image and the de-striped image,
respectively. ui stands for the raw image caused by the frequency component without
stripes. S stands for the total power of the clean image in the mean power spectrum.

4.1. Parameter Analysis

Using image x as an example, a sensitivity analysis was conducted on the coefficients
of the three regular terms in the multi-sparse constraint representation model to verify the
importance of the key parameters for the proposed method. We selected the peak signal-to-
noise ratio (PSNR) as the representative full-reference evaluation index for this experiment to
evaluate the effectiveness of parameter selection. For MIDILatLRR decomposition, we chose
four times based on the adaptive decomposition level to balance the speed of operation and
the denoising effect. The sparse noise item parameter λ in LatLRR decomposition was set to
1, and the λ1 parameter in the multi-sparse constraint representation model was also set to
1 based on experimental experience. The relationship between PSNR and the regular terms
λ2 and λ3 is shown in Figure 10 [42]. The results in Figure 10 demonstrate that the selected
λ2 and λ3 significantly impacted the denoising performance. According to the experimental
results, λ1 was determined to be 1, while λ2 and λ3 should be set to 0.8 and 1.2, respectively.
After experimentation, the penalty coefficient was set as ρ1 = ρ2 = ρ3 = 0.15.
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4.2. Experimental Contents

Four different infrared images were selected as experimental objects to demonstrate
the universality and effectiveness of the proposed method. The first image, as shown
in Figure 11a, contains a human figure with a significant grayscale difference from the
background and an object with vertical edge features with a small grayscale difference
from the background. In the second image, depicted in Figure 11b, the main structure of a
wall in a building is included, in which the texture details have a small grayscale difference
when compared to the stripe noise, and there are numerous small vertical detailed textures
in the windows and wall structures. The third image, illustrated in Figure 11c, contains a
vehicle with relatively smooth information and fewer vertical texture features. Lastly, the
fourth image, displayed in Figure 11d, depicts a complex scene comprising human figures,
vehicles, trees, and the ground, in which the texture information is intricate and subtle
objects with vertical texture features exist. All four images contain various stripe noises
with different grayscale and intensity, and large amounts of effective texture information
have low contrast with the stripe noise. Resultantly, it is sufficiently demonstrated that the
proposed method can attain excellent results.
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4.2.1. Ablation Experiments

In this section, the ablation experiment of the proposed method is presented. The
results from the Non-MIDILatLRR method are shown, where only the first-level LatLRR
decomposition is used, and the MSCR algorithm is directly utilized for subsequent denois-
ing. As shown in Figure 12, the Non-MIDILatLRR and proposed method exhibit good
denoising performance. However, Figure 10a highlights that the information on vertical
edge features in the image is relatively blurred with low contrast, and there is a loss of
information of micro-texture details (enclosed by the red line), where the MIDILatLRR
method shows superiority in preserving image details and texture.
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Figure 12. Denoising effects of ablation experiment on an image of a person: (a) Non-MIDILatLRR;
(b) proposed method.

As demonstrated in Figure 13a,b, good denoising performance is exhibited by both the
Non-MIDILATLRR method and the proposed method. Nonetheless, significant blurring of
texture details on building walls (enclosed by the red line), as well as the substantial loss
of micro-texture details, particularly those with vertical edge features such as doors and
windows, is revealed by Figure 13a for the Non-MIDILATLRR method. In contrast, the
proposed method performs excellent denoising and preserves the details and texture of
buildings in the image.
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As demonstrated in Figure 14, excellent performance in removing stripe noise is
exhibited by both the Non-MIDILatLRR method and the proposed method. However,
it can be observed in Figure that the texture of the tree (enclosed by the red line) in the
image’s background becomes more blurred after denoising with the Non-MIDILatLRR
method. The complex texture is lost, and a substantial loss of edge information can be
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observed, particularly for effective information with vertical edges (enclosed by the red
line), which also suffers from some contrast loss.
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illustrates that FLCN caused over-smoothing of the original image in the horizontal direc-
tion, leading to relatively blurry edges of the person and vertical features of objects (en-
closed by the red line). 

On the other hand, Figure 16d presents the 1D-GF method, which also had a good 
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person. Additionally, there was a slight loss of detailed texture in some areas of the image 
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Figure 14. Denoising effects of ablation experiment on an image of a car: (a) Non-MIDILatLRR;
(b) proposed method.

As depicted in Figure 15, the stripe noise in the original image has been effectively
removed by both the Non-MIDILatLRR method and the proposed method. Nevertheless,
it can be observed in Figure 15 that there is a severe loss of effective information with
the vertical edge features (enclosed by the red line) when using the Non-MIDILatLRR
method, and a limited preservation of details, such as the folds on the person’s clothing, is
observed. In contrast, the proposed method preserves detailed information with vertical
texture features and effective information with smaller edge texture features.
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4.2.2. Comparison Experiments

To validate the effectiveness of the proposed method, a series of experiments were
conducted on images that contained stripe noise. Figure 16 shows the results of the first ex-
periment. As demonstrated in Figure 16a, the denoising effect of MSGF was relatively poor
as it could not effectively identify and remove irregular stripe noise with small horizontal
gradient changes. Similarly, as shown in Figure 16b, the WAGE method retained a small
amount of stripe noise, resulting in incomplete denoising. Furthermore, Figure 16c illus-
trates that FLCN caused over-smoothing of the original image in the horizontal direction,
leading to relatively blurry edges of the person and vertical features of objects (enclosed by
the red line).



Sensors 2023, 23, 6786 21 of 26

Sensors 2023, 23, x FOR PEER REVIEW 21 of 26 
 

 

line). In contrast, Figure 16e shows that the proposed method can effectively remove var-
ious types of stripe noise while preserving edge texture information as much as possible. 
This comparison fully demonstrates the superiority of the proposed method in removing 
stripe noise and validates its effectiveness. 

   
(a) (b) (c) 

 
(d)                                            (e) 

Figure 16. Denoising effects of different methods on an image of a person: (a) MSGF; (b) WAGE; (c) 
FLCN; (d) 1D-GF; (e) proposed method. 

The second experiment is presented in Figure 17, which depicts an original image 
containing the main structural components of a building with numerous vertical struc-
tures and nearly vertical effective texture information. As shown in Figure 17a and b, de-
spite preserving the edges and details of the image to some extent, the MSGF and WAGE 
algorithms exhibited poor denoising performance, leaving partial stripe noise in the im-
age. Figure 17c illustrates that excessive smoothing by FLCN caused some detailed texture 
information to be lost, including the disappearance of vertical edge features, such as the 
windows of the building, during the denoising process. 

   
(a) (b) (c) 

 
(d)                                                                   (e) 

Figure 17. Denoising effects of different methods on an image of a single building: (a) MSGF; (b) 
WAGE; (c) FLCN; (d) 1D-GF; (e) proposed method. 

Compared to the previous methods, Figure 17d demonstrates that the 1D-GF method 
preserved the details of the building to a certain extent. However, there were still 

Figure 16. Denoising effects of different methods on an image of a person: (a) MSGF; (b) WAGE;
(c) FLCN; (d) 1D-GF; (e) proposed method.

On the other hand, Figure 16d presents the 1D-GF method, which also had a good
denoising effect. However, two white lines (enclosed by the red line) appeared above the
person. Additionally, there was a slight loss of detailed texture in some areas of the image
and a larger loss of information in certain vertical texture features (enclosed by the red line).
In contrast, Figure 16e shows that the proposed method can effectively remove various
types of stripe noise while preserving edge texture information as much as possible. This
comparison fully demonstrates the superiority of the proposed method in removing stripe
noise and validates its effectiveness.

The second experiment is presented in Figure 17, which depicts an original image
containing the main structural components of a building with numerous vertical structures
and nearly vertical effective texture information. As shown in Figure 17a and b, despite
preserving the edges and details of the image to some extent, the MSGF and WAGE
algorithms exhibited poor denoising performance, leaving partial stripe noise in the image.
Figure 17c illustrates that excessive smoothing by FLCN caused some detailed texture
information to be lost, including the disappearance of vertical edge features, such as the
windows of the building, during the denoising process.

Compared to the previous methods, Figure 17d demonstrates that the 1D-GF method
preserved the details of the building to a certain extent. However, there were still significant
losses in some vertical edge feature information, such as the gaps between windows, as
enclosed by the red line. As demonstrated in Figure 17e, the proposed method not only
effectively removed stripe noise but also achieved outstanding performance in preserving
the edges and details of the building. These results further support the superiority of the
proposed method.

The third experiment is presented in Figure 18, which includes the side view of a car
and background elements, such as trees and pillars. As illustrated in Figure 18a,b, poor
denoising performance was exhibited by MSGF and WAGE among all the methods tested.
Although they preserved the edges and details of the image to some extent, the noise was
not entirely eliminated. Figure 18c shows that although FLCN performed well in denoising,
it significantly attenuated the edge features, as evidenced by the visible blurring of the tree
branches circled in Figure (enclosed by the red line).
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(d) 1D-GF; (e) proposed method.

Although the 1D-GF method had decent denoising performance, there were still
certain losses in the detailed features with vertical edge characteristics, as clearly seen in
the pillar region of the image. Moreover, blocky grayscale losses were observed at the
intersection between the pillars and the car, as enclosed by the red line. As demonstrated
in Figure 18e, the proposed method not only preserved the edge information but also
effectively removed stripe noise. These results provide further evidence of the superiority
of our method.

The final experiment, as illustrated in Figure 19, consists of elements such as people,
vehicles, trees, and the ground. It is observed from Figure 19a,b that the other methods
outshined MSGF and WAGE, as they failed to remove some stripe noise. As highlighted
in red, Figure 19c indicates that FLCN induced blurring of the detailed edge parts of the
denoised image to a certain extent (enclosed by the red line). Meanwhile, Figure 19d
reveals that the 1D-GF method performed better than the previous methods in denoising
and preserving details. However, it still fell short of retaining information with vertical
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textures, resulting in blocky blurriness or information loss enclosed by a red line. The
proposed method, presented in Figure 19e, demonstrated outstanding performance in
denoising and preserving details with vertical edge features. These results fully reflect the
superiority of our method, which has promising potential for practical applications.
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(b) WAGE; (c) FLCN; (d) 1D-GF; (e) proposed method.

Table 1 compares the NR, MRD, and ID values of the images denoised by the four
methods. The optimal value of each metric is shown in bold.

Table 1. Metrics of different methods on different images.

Image Indices MSGF WAGE FLCN 1D-GF Non-
MIDILATLRR

Proposed
Method

Person
NR 2.03 2.49 3.72 4.05 4.02 4.08

MRD (%) 2.92 3.68 3.95 4.12 4.12 3.09
ID 0.999 0.995 0.978 0.972 0.984 0.988

Building
NR 2.43 2.75 3.67 3.86 3.89 3.98

MRD (%) 3.94 4.33 4.87 4.30 4.28 4.13
ID 0.999 0.992 0.978 0.979 0.983 0.986

Car
NR 3.29 3.35 3.42 3.49 3.47 3.52

MRD (%) 2.76 2.57 3.40 2.81 2.86 2.47
ID 0.999 0.992 0.976 0.986 0.985 0.991

Complex
scene image

NR 3.08 3.16 3.43 3.39 3.38 3.43
MRD (%) 3.18 2.75 4.12 2.62 2.59 2.28

ID 0.999 0.992 0.981 0.991 0.989 0.994

Table 1 presents the results for different denoising methods regarding NR, MRD, and
ID. The proposed method achieved the best results regarding NR and MRD, indicating
its effectiveness in denoising images with stripe noise. Our method also showed good
performance in ID, which suggests its ability to preserve useful information from the
original image while removing noise. In contrast, some methods produced higher ID
values than ours but failed to eliminate noise completely. The subjective evaluation of
Figures 16–19 shows that the proposed method effectively removes stripe noise without
introducing severe distortion. Moreover, it preserves edge details with an ID value close
to 1 and distinguishes between useful information and noise with vertical edge textures.
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These results demonstrate that the proposed method effectively removes stripe noise while
retaining edge details and preserving the maximum amount of information in the image.

5. Conclusions

This paper verifies that LatLRR is applicable for separating stripe noise and proposes
a multi-level image decomposition method, MIDILatLRR. Our method fully utilizes the
global low-rank properties of stripe noise and adaptively decomposes noisy images into
multiple levels to separate noise from useful information. By concentrating stripe noise in
the final low-rank part image through MIDILatLRR, denoising the last low-rank partial
image is required. In contrast, salient part images are retained by preserving the extracted
edge details.

The differences in smoothness and directionality between stripe noise and effective
information in the last-level low-rank partial image are used simultaneously to construct
sparse terms of the MSCR model by adopting the L1-norm for the sparsity constraint. To
solve the proposed optimization model, the ADMM algorithm is introduced. Extensive
experiments demonstrate the superiority of our method. However, our method still has
some shortcomings, such as its relatively slow computational speed. In the future, we will
concentrate on resolving these concerns.
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