
Citation: Zhao, S.; Wu, H.; Ye, H.; Hu,

J.; Hu, M.; Zhang, X. A

Multi-Objective Local Optimization

Method for Imaging Optical Systems.

Photonics 2023, 10, 1218. https://

doi.org/10.3390/photonics10111218

Received: 19 September 2023

Revised: 23 October 2023

Accepted: 29 October 2023

Published: 31 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

photonics
hv

Article

A Multi-Objective Local Optimization Method for Imaging
Optical Systems
Shangnan Zhao 1,2,3,4, Hongbo Wu 1,3,4,*, Haokun Ye 1,2,3,4, Jingaowa Hu 1,2,3,4, Mingyu Hu 1,3,4

and Xin Zhang 1,2,3,4

1 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences,
Changchun 130033, China; 18810575846@163.com (S.Z.); yehaokun19@mails.ucas.ac.cn (H.Y.);
hjgw0617@163.com (J.H.); 15501265032@163.com (M.H.); optlab@ciomp.ac.cn (X.Z.)

2 University of the Chinese Academy of Sciences, Beijing 100039, China
3 State Key Laboratory of Applied Optics, Changchun 130033, China
4 Key Laboratory of Optical System Advanced Manufacturing Technology, Chinese Academy of Sciences,

Changchun 130033, China
* Correspondence: wuhongbo.cool@163.com

Abstract: Addressing the inherent limitations of conventional local optimization methodologies
such as damping least squares (DLS) and adaptation algorithms, this study proposes a novel ap-
proach to multi-objective optimization for imaging optical systems. The proposed method entails
the formulation of a multi-objective optimization mathematical framework, where the objectives are
established upon lateral aberration and wave aberration criteria. Subsequently, enhancements are
made to the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) by implementing a directional
initial population strategy and parallel optimization with multiple-trajectory planning. The genesis
of the initial population is rooted in the gradient direction information extracted from the starting
positions. This strategic foundation precludes potential efficiency limitations in subsequent optimiza-
tion stages arising from undesirable initial population quality. By employing mechanisms such as
differentiation and mutation to sustain population diversity, the trajectory of evolution is guided by
the first- and second-order derivatives of the optimal individual, thereby elevating the quality of
the evolutionary offspring population. The fusion of the parent and offspring populations yields a
composite population, which undergoes rapid and non-dominated sorting, crowding calculation,
and elite strategies. Empirical results illustrate the validation of the proposed methodology. The
proof-of-concept paradigm demonstrates high efficiency in multi-objective local optimization for
imaging optical systems.

Keywords: multi-objective optimization; imaging optical systems; error function; NSGA-II

1. Introduction

In optical design, optimization constitutes a systematic endeavor to attain optimal
outcomes under specified conditions. This pursuit aims to minimize the error function
subject to certain constraints. Advanced, automatic optimization methods play a piv-
otal role in effectively and accurately determining the feasibility of achieving exemplary
design results.

The current imaging optical systems are marked by increasing demands, propelled by
advances in optical technology. These optical systems are expected to deliver exceptional
image quality, evolving toward the large field, large aperture, and wideband to meet the
diverse demands. Moreover, optical systems have grown increasingly complex, transi-
tioning from coaxial and off-axis configurations to partial-axis ones, and from spherical
and aspheric surfaces to freeform surfaces. Consequently, the task of seeking the increas-
ingly untraceable initial structure of optical systems, whether in existing systems or patent
libraries, has become infeasible.
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Complex optical systems inherently involve a multitude of structural parameters
for optimization, comprising continuous and discrete variables. Aberrations manifest as
nonlinear functions of these variables, impeding the derivation of analytical expressions.
Additionally, aberrations are asymmetric in an optical system with freeform surfaces [1–3].
The types of aberrations are also increasing and lack orthogonal relationships, resulting in
a number of local minima within the multidimensional variable space, rendering the quest
for optimal solutions in imaging optical systems a hard effort. Commercial optical design
software, like CODE V and Zemax, predominantly employs the DLS method for automated
local optimization of imaging optical systems, focusing on one specific objective, such
as RMS spot, wave aberration, or MTF. Alternatively, users can achieve optimization by
constructing complex error functions, such as combining lateral aberration with wavefront
aberration to form a complex error function, and then performing optimization. However,
this approach transforms multiple objectives into a single objective, which achieves the
optimization process through a single objective algorithm, essentially. As a result, recent
research in imaging optical systems has concentrated on single-objective optimization [4–6].
However, conventional single-objective local optimization methodologies, such as DLS and
adaptive methods, may prove inadequate for complex optical system types that necessitate
the simultaneous optimization of multiple targets.

Numerous multi-objective optimization algorithms have been proposed to solve
problems that single-objective optimization algorithms cannot overcome. David Goldberg
proposed a multi-objective optimization technique named genetic algorithm (GA) [7].
Subsequently, Srinivas and Deb devised NSGA, grounded in the concept of non-dominated
sorting [8]. Deb et al. enhanced NSGA with NSGA-II [9], which adopts the congestion
and crowding comparison operator as the winning criterion in peer comparison after fast
sorting and maintaining the diversity of populations. The proposed method also introduces
the elitist strategy, enlarges the sample space, prevents the loss of the best individual,
and improves the computing speed and robustness of the algorithm. The algorithm is
highly suitable for processing multi-objective optimization problems with ≤3 objective
dimensions. R Furtuna et al. designed a method based on NSGA-II to improve the multi-
objective optimization problem in the chemical synthesis process. However, the application
is not universal as it requires high parametric conditions during chemical reactions [10].
Hossein et al. proposed an enhanced version of NSGA-II to solve the fuzzy bi-objective
assembly line balancing problem, where the objective function is to minimize the number
of workstations and the fuzzy cycle time [11]. Khettabi et al. first proposed a reconfigurable
manufacturing system for cost, time efficiency, and environmental awareness. Adaptive
dynamic NSGA-II and NSGA-III were developed for this system [12].

The objective optimization algorithms mentioned above are all based on genetic
algorithms. Nevertheless, these algorithms remain somewhat specialized, being tailored
to specific multi-objective problems such as allocation [13–15], vehicle routing [16–18],
the traveling salesman problem [19], and scheduling dilemmas [20–22]. Their universal
applicability is limited because a generic problem-solving approach may not surpass
a technique specifically tailored to the given problem. The precision and efficiency of
these algorithms would not meet the application requirements in the complex operating
environment of the target to be optimized, such as the multi-objective optimization of
imaging optical systems. Therefore, this paper makes improvements to the traditional
NSGA-II multi-objective optimization algorithm to make it suitable for optimizing imaging
optical systems.

This paper investigates the use of the multi-objective local optimization method—an
algorithm that does not require transforming multiple objectives into one—with optical
systems. It can directly optimize multiple objectives simultaneously and provide a non-
dominated solution set as the output. This solution set allows designers to find the optimal
solution according to their optimization target and strategy. This approach significantly
improves the efficiency of optical design and the quality of design results, which has both
theoretical significance and practical value for developing optical optimization technology.
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2. Methods
2.1. Mathematical Model of Multi-Objective Optimization

Optimizing optical systems involves minimizing error functions in the multidimen-
sional nonlinear space of structural parameters. The error function of an optical system
reflects the imaging quality of the system and is a complex nonlinear function associated
with structural parameters. Considering the requirements for system design—including
focal length, magnification, image distance, and exit pupil position—the error function
is subject to constraints that can be mathematically expressed as linear and nonlinear
equations related to the structural parameters of the system.

Traditional optimization for optical systems usually adopts single-objective optimiza-
tion methods, such as the DLS and adaptation methods. The mathematical model is shown
in Equation (1).

min Φ(X)

s.t.
gi(X) ≤ 0(i = 1, 2, . . . , m)
hj(X) = 0(j = 1, 2, . . . , l)

, (1)

where Φ(X) is the objective error function; g(X) is the inequality constraint; h(X) is the
equality constraint; and X = [x1, x2, x3, . . ., xn] are variables of the optical system.

Facing various requirements of the upcoming design, the multi-objectives, usually
featuring trade-offs, should simultaneously be minimized to a desirable level. However,
even if one error function has fallen into the required level, it poses a challenge to achieve
the simultaneous decline of multiple objectives. For instance, commercial imaging optical
software—such as CODE V and Zemax—can effectively optimize the system when com-
bined with one error function, including lateral aberration, wavefront aberration, and MTF,
all of which can reflect the imaging quality of the optical system from different perspectives.
However, the single-objective optimization process based on such software cannot guar-
antee other error function reduction. Here, the mathematical model of the multi-objective
framework is listed in Equation (2).

min Φ1(X)
min Φ2(X)
· · ·

s.t.
gi(X) ≤ 0(i = 1, 2, . . . , m)
hj(X) = 0(j = 1, 2, . . . , l)

, (2)

where Φ1(X) and Φ2(X) are the error functions; g(X) is the inequality constraint; h(X) is the
equality constraint; and X = [x1, x2, x3, . . .. xn] are variables of the optical system.

In essence, multi-objectives need to be optimized simultaneously for optical systems
that pursue the ultimate performance of these aberrations. In this study, we constructed a
double objective error function associated with lateral and wave aberration for this purpose.

The lateral aberration error function represents a center-weighted RMS spot size,
where the function is calculated by ray tracing through the ray grid of each weighted
wavelength and field. As the sum of squares of the aberration function, the structure of the
function is conducive to the convergence of subsequent models [23]. The calculation for
the lateral aberration error function is shown in Equation (3).

Φ1 = ∑
F

∑
λ

∑
R

[
(WF·Wλ·WR·∆η)2 + (WF·Wλ·WR·∆δ)2

]
=

M

∑
1

f 2
i , (3)

where Φ1 is the lateral aberration error function; WF is the weight of field; Wλ is the weight
of wavelength; ∆η and ∆δ are lateral aberrations of meridian and sagittal directions; WR
is the weight of the aperture’s position; fi is the sum of aberrations for each field and
wavelength; and M is the product of the number of fields and working wavelength.

Specifically, lateral aberration is calculated by tracing the rays of sampling points for
each field and wavelength to obtain the x and y coordinate values of each ray at the image
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plane. The coordinate value pertaining to the principal ray on the image plane from the
previously acquired coordinate value is to be subtracted. The lateral aberration ∆x and ∆y
can be obtained in the x and y directions.

The weight of the aperture represents the proportion of light rays with different
apertures. The weight increases as the aperture position of the light decreases. The weight
of the aperture can be calculated using Equation (4).

WR =
1(

ρ2
X
+ ρ2

Y

) , (4)

where WR is the weight of the aperture, and (ρx, ρY) represents the coordinates of the light
rays in the pupil.

The wavefront aberration error function is used for characterizing the difference
between the actual wavefront and the ideal wavefront. Here, the optical path difference is
calculated by tracing the sampled rays at each wavelength and field, and

Φ2 = ∑
F

∑
λ

∑
R

[
(WF·Wλ·WR·opd)2

]
, (5)

where Φ2 is the wavefront aberration error function; WF is the weight of field; Wλ is
the weight of wavelength; WR is the weight of aperture position; and opd is the optical
path difference.

2.2. Method Design
2.2.1. Establishment of Directional Initial Population

Initializing the population is the first step in optimization methods and serves as
the foundation of the overall strategy. Optimizing the initial population can improve
subsequent convergence efficiency. In the population initialization stage, the traditional
strategy usually adopts random steps to construct the initial population, which has a
relatively high possibility of causing a deterioration in the imaging quality of the optical
system because the solution may fall into a local optimum. Meanwhile, the strategy would
initially form many infeasible schemes, thereby reducing the computational efficiency
of the algorithm. This study proposes establishing an initial population based on the
gradient direction information in order to address this issue. This approach helps to
avoid the problem of low-quality initial populations, leading to improved efficiency in
subsequent optimization.

First, the improved Levenberg–Marquardt (LM) method [24] is adopted to confirm
the initial population direction. According to the initial variables and error function
information, the second-order Taylor expansion [25] approximates the error function Φ1 at
xk, as shown in Equation (6).

Φ1(xk + d) = Φ1(xk) +∇Φ1(xk)
T d + 1

2 dT∇2Φ1(xk)d
∇Φ1(xk) = (xk)

T f (xk)

∇2Φ1(xk) = J(xk)
T J(xk) +

M
∑

i=1
fi(xk)∇2 fi(xk)

, (6)

where error functions are characterized by vectors f = [f 1, f 2, . . . f N]; J(xk) is the Jacobi
matrix of f (xk) at xk; and ∇2 fi(xk) is the Hessian matrix of f (xk) at xk.

By taking the derivative of Equation (6), Equation (7) can be obtained as follows:

d = −
(

JT J + HT f
)−1
·JT f , (7)

where f is the error function vector matrix for each field and each band; J is the Jacobi
matrix of f ; H is the Hessian matrix of f ; and d is the step for variable changes, which causes
the error function to decrease.
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The initial population is established based on the descending direction, d, as shown in
Equation (8).

vi = v0 + (i− 1) · d, (8)

where v0 is the initial variable vector; vi is the i-th value of the initial population, i ∈ (1, M);
M is the total number of populations; and d is the step calculated by Equation (7).

As a result, an initial population is established along the determined direction, pro-
viding a reliable initial guess for the subsequent evolution process. This approach can
effectively accelerate population convergence and improve the accuracy of solutions.

2.2.2. Multi-Trajectory Parallel Evolution

The evolution operation is the core step of optimization algorithms based on GA,
which directly inherits excellent individuals to the next generation through selection, or
generates new individuals through pairing, crossover, and mutation. This step determines
the quality of the offspring population. The traditional NSGA-II algorithm often generates
offspring through tournament selection algorithms. Binary tournaments involve extracting
two individuals from the population at once, selecting the optimal individual from the pair,
and placing it into the next generation population. This selection mechanism is unsuitable
for specific multi-objective problems since it lacks a clear evolutionary direction, making it
challenging to drive the optical system to a desirable optimal level. To address this issue,
this paper further proposes a multi-trajectory parallel optimization strategy to improve the
quality of the offspring population and ensure diversity through various means.

The evolutionary process for offspring generation is divided into two strategies—the
LM strategy and the differential strategy. The LM strategy is adopted in order to improve
the quality of the offspring population, and the differential strategy is used to enhance the
diversity of the offspring population.

For the LM strategy, the individual with the best quality in the parent generation is
selected as the reference point in each offspring evolution process, and its descent direction
is calculated as the evolution direction. During evolution, 50% of the parent generation’s
population is added to the step length in the descending direction to achieve evolution.

For the differential strategy, a particular offspring evolution mechanism is achieved by
randomly selecting three individuals from the parent population and differentiating two
of them. The differentiated results are then combined with other individuals by setting a
scaling factor and a particular mutation rate to obtain new offspring individuals.

vi =

{
vi

1
+ F ·

(
vi

2
− vi

3

)
ifrand(0, 1) ≤ R

vi
0 otherwise

, (9)

where v0
i is the i-th initial variables; vi is the i-th variables of the offspring population; v1

i,
v2

i, and v3
i are the i-th variable of three individuals randomly selected from the parent

population, respectively; F is the scaling factor; and R is the mutation rate.
The offspring population obtained through differential strategy evolution accounts for

50% of the total population. Therefore, for the parent population with a quantity of M, one
half of the offspring population is evolved through the LM strategy, and the other half is
evolved through the differential strategy. The parent and offspring populations are then
merged into a population of 2M, and the best M individuals are selected to enter the next
generation population.

2.2.3. Method Process

This paper proposes a multi-objective optimization method for imaging optical sys-
tems by improving NSGA-II. The schematic diagram of the proposed multi-objective
optimization method is shown in Figure 1. In Figure 1, L1 . . . Lm represents non-dominated
levels; LC1 . . . LCn represents population individuals within the same non-dominated level,
in descending order of crowding; Pt represents the original population; and Pt+1 represents
a new population after evolution for one generation. Specifically, the initial population
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is established based on the gradient direction information of the optimized initial value,
which helps in avoiding low efficiency in subsequent optimization due to poor initial
population quality. Additionally, multi-trajectory parallel evolution is made to enhance the
quality and diversity of the offspring population.
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Figure 1. Schematic diagram of the proposed multi-objective optimization method.

The algorithmic process is depicted in Figure 2. Initially, a population comprising M
individuals is established based on predefined error functions and gradient information
pertaining to the initial variables. The computational procedure can be referenced via
Equations (7) and (8). The generation of offspring is accomplished through the crossing of
parent individuals, resulting in N offspring. After setting the crossover probability CR, the
offspring population quantity N is the product of the parent population quantity M and the
crossover probability, i.e., N = M × CR. Subsequently, the evolutionary process is divided
into two parallel strategies. Half of the N offspring populations undergo evolution using the
LM strategy, while the remaining half evolve through the differential strategy. Consequently,
N offspring populations are generated by employing the parallel evolutionary approaches.
In the next phase, the parent and offspring populations are amalgamated to form a new
population consisting of (M + N) individuals. The population level is established and
individuals are sorted within the level through non-dominated sorting and crowding
calculation. The elimination operation is performed, retaining only the first M individuals
to update the population. The iteration termination condition is evaluated by reaching the
maximum number of iterations.
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3. Experiments and Results

To evaluate the validation of the proposed method, two sets of multi-objective op-
timization experiments are conducted using a Cooke optical system (Case 1) and a self-
developed telescope system (Case 2). In Case 1, the system has been optimized for spot size
using commercial software CODE V (version: CODE V 11.5), which is a minor aberration
system, as shown in Figure 3. For Case 2, the image quality has not been optimized, which
has a relatively large aberration compared with Case 1, as shown in Figure 4. Double
objective optimization upon lateral and wave aberration error functions is performed. The
variables of the system are labeled in Figures 3 and 4, including curvatures and thicknesses,
respectively marked with “C” and “d”. The multi-objective error function and optimization
program is coded by Matlab R2017a, and the ray tracing of CODE V software is invoked
to achieve the optimization iteration process. The number of individuals in the initial
population, M, is set as 50; the number of offspring population, N, is 30; the scaling factor,
F, is set as 0.5; and 0.5 of the variation rate (R) is adopted in Equation (9).
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Figure 4. Self-developed telescope system (Case 2).

Table 1 shows the basic parameters of the optical systems used in the two cases. A sin-
gle wavelength for both lenses is employed to simplify the experimental parameters and ex-
clude the influence of chromatic aberration factors, such as the secondary spectrum. These
parameters were carefully selected to ensure accurate and reliable experimental results.

Table 1. Basic parameters of the optical systems used in two cases.

Parameters of Lens Cooke Optical System Self-Developed Telescope System

Entrance pupil diameter 10 mm 63 mm
Focal length 51 mm 180 mm
Field of view 28◦ 11◦

Wavelength 550 mm 587 mm

3.1. Experiment with the Cooke System

The initial parameters and variables of the Cooke optical system are shown in Table 2.
We have set nine variables in this system, labeled with “v” in the table. Through calculation,
the lateral aberration error function of this system is 18.236, and the wavefront aberration
error function is 1.435. We attempted to increase the thickness of surface 4 and the curvature
of surface 1 of the Cooke system, in order to characterize the mapping relationship between
the optical system variables and the error function. Then, the lateral aberration error
function and wavefront aberration error function under the corresponding optical system
parameters are calculated.
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Table 2. Initial parameters and variables of Case 1.

Surface Curvature Thickness (Unit: mm) Glass

1 0.0454 v 3.259 SK16
2 −0.00323 v 7.174 v
3 −0.0462 v 1.007 F2
4 0.0574 v 6.451 v
5 0.0137 v 2.788 SK16
6 −0.0551 v 43.24 v

Figure 5 shows the relationships between the variation of the double objective and
both the thickness of surface 4 and the curvature of surface 1. These results provide
insights into the impact of optical system variables on error functions and a hint for guiding
the optimization process. As shown in Figure 5a, the lateral aberration and wavefront
aberration error functions exhibit a similar increasing trend with the thickness of surface 4
in the interval from 6.5 to 9. However, for the curvature variable, as shown in Figure 5b,
the trends of the two error functions are consistent in the interval of curvature from 0.05 to
0.08. In contrast, in the interval of curvature from 0.08 to 0.082 and from 0.086 to 0.009, the
wavefront aberration error function decreases while the lateral aberration error function
increases. These results suggest that the trends of the lateral aberration and wavefront
aberration error functions are generally consistent. However, there are also situations
where their trends are contradictory. It should be noted that the thickness of surface 4
and the curvature of surface 1 are randomly chosen. We can obtain similar conclusions by
modifying the variables to other surfaces and performing this process again.
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Figure 5. Mapping the relationship of the double objective function with respect to the variables.
(a) Trend of the double objective function with thickness of surface 4; (b) Trend of the double objective
function with curvature of surface 1.

Since the image quality of this system has already reached a better standard than
the initial state, it is easy to deteriorate the originally better image quality again if the
initial population is established by randomly adding step length with this initial vari-
able into the 9-dimensional variable space. By using the proposed method of establish-
ing a directional initial population, we calculated the direction vector s = [5.591 × 10−7,
−1.706 × 10−7, −1.002 × 10−8, −5.435 × 10−8, −2.238 × 10−7, 2.702 × 10−7, 0.0005946,
−0.001302, 0.001457], which refers to the direction of evolution when establishing the popu-
lation. The variables in Table 2 were used as initial values, while the direction vector s was
used as the step length to create an initial population with a number of 50 by Equation (8).
Figure 6 shows the Pareto fronts for different evolutionary stages. The initial position and
Pareto front for evolutionary generations 25, 50, 75, 100, and 200 are also labeled in the
figure. Since this is a multi-objective analysis, the final result is not unique, but a set of
non-dominated solutions, and the final optimal solution can be selected from the solution
set according to the design needs.
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Figure 6. Optimization results of different algorithms. (a) Pareto front for the evolutionary process
of NSGA-II; (b) Pareto front for the evolutionary process of the proposed multi-objective optimiza-
tion method.

As shown in Figure 6, the proposed multi-objective optimization method achieves
much better double-objective function reduction compared to the original NSGA-II algo-
rithm for the same number of evolutionary generations. Figure 6a shows that the optimized
results of the original NSGA-II algorithm are worse than they were in the initial position.
In contrast, the Pareto fronts of the proposed method continue converging to the lower
left as the number of evolutionary generations increases, and the optimization results
continue to improve with respect to the initial results. Although CODE V has previously
optimized the Cooke optical system, our proposed method further improves its perfor-
mance. Optimization results of 200 generations are selected as the final Pareto solution
set. If we choose a lateral aberration error function value of 16.522 in this solution set as
an acceptable position, the wavefront aberration error function is 1.077. The initial and
optimized variables and error functions of the Cooke system are shown in Table 3. After
this optimization, there is a reduction of 12.26% in the lateral aberration error function and
24.94% in the wavefront aberration error function. It should be noted that our criterion for
selecting acceptable positions is the desire to have an effective balance between the lateral
aberration error function and the wavefront aberration error function values. In practical
applications, designers can define the judgement criteria of acceptable positions according
to the design needs of different optical systems.

Table 3. Initial and optimized variables and error functions of Case 1.

Comparative Content The Initial Value of the System Optimized Value

Variables

C1 0.0454 0.0450
C2 −0.00323 −0.00188
C3 −0.0462 −0.0445
C4 0.0574 0.0553
C5 0.0137 0.0133
C6 −0.0551 −0.0524
d2 7.174 mm 8.182 mm
d4 6.451 mm 6.590 mm
d6 43.24 mm 43.897 mm

Objectives Lateral aberration 18.236 16.522
Wavefront
aberration 1.435 1.077

Figure 7 shows the comparison of wavefront aberration before and after optimization,
with RMS values of 0.0644λ, 0.286λ, and 0.172λ for the three fields of the system before
optimization. After optimization, the RMS values of the three fields of the system are:
0.0465λ, 0.303λ, and 0.107λ. Although the wavefront aberration of the second field has
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slightly increased compared to before optimization, the overall wavefront aberration value
of the entire system has improved. These results demonstrate that the proposed method
effectively converges the error function of the minor aberration system, resulting in a
significant enhancement of image quality.

Figure 7. Comparison of image quality before and after optimization. (a) Wave aberration before
optimization; (b) wave aberration after optimization.

3.2. Experiment of the Self-Developed Telescope System

The image quality of the self-developed telescope system has not been optimized
previously. The initial image quality is poor due to its large aberration. The number of
variables in this system is 21, and the variables are labeled with “v” in the table. The initial
parameters of this telescope system are shown in Table 4.

Table 4. Initial parameters and variables of Case 2.

Surface Curvature Thickness (Unit: mm) Glass

1 0.011914 v 10.5918 PK2_SCHOTT
2 −0.00303 v 1.905 v
3 −0.00561 v 5.969 F5_SCHOTT
4 0.003302 v 4.6482 v
5 0 3.048
6 0.023713 v 9.398 FPL53_OHARA
7 0.013124 v 5.461 SF1_SCHOTT
8 0.015359 v 26.0604 v
9 0.009632 v 5.5626 LLF6_SCHOTT

10 −0.00233 v 16.6878 v
11 −0.0238 v 7.5184 K10_SCHOTT
12 −0.0352 v 3.6576 SF1_SCHOTT
13 −0.01353 v 17.907 v
14 −0.02429 v 4.4958 ZK1_SCHOTT
15 0.011279 v 8.4074 SF5_SCHOTT
16 −0.01426 v 43 v



Photonics 2023, 10, 1218 12 of 16

Figure 8 shows the Pareto front curve after 200 generations of optimization using
the proposed multi-objective optimization method and NSGA-II. The results demonstrate
that this algorithm optimized the telescope system more effectively compared to NSGA-II.
Utilizing the proposed algorithm, both the lateral aberration and wavefront aberration
were greatly improved as a result of the optimization. If we choose a lateral aberration error
function value of 19.230 as an acceptable position, the final wavefront aberration is 1.709.
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Figure 8. Optimization results of the proposed multi-objective optimization method compared with
NSGA-II.

Comparisons of variable values and error functions before and after optimization are
shown in Table 5. The initial lateral aberration error function was 20,957.51, and the initial
wavefront aberration error function was 106.24 before optimization. After optimization,
the values of the double objective functions were reduced to 19.230 and 1.709, respectively.
These results demonstrate a significant reduction in error functions by about two to three
orders of magnitude compared to the initial state. The results highlight the effectiveness of
our proposed method for optimizing large aberration systems.

Table 5. Initial and optimized variables and error functions of Case 2.

Comparative Content The Initial Value of the System Optimized Value

Variables

C1 0.011914 0.01188
C2 −0.00303 −0.00302
C3 −0.00561 −0.00559
C4 0.003302 0.00333
C6 0.02268 0.0237
C7 0.023713 0.0131
C8 0.013124 0.0154
C9 0.015359 0.0096

C10 0.009632 −0.0023
C11 −0.00233 −0.0237
C12 −0.0238 −0.0347
C13 −0.0352 −0.0138
C14 −0.01353 −0.0244
C15 −0.02429 0.0103
C16 0.011279 −0.0142
d2 1.905 mm 2.262 mm
d4 4.6482 mm 4.967 mm
d8 26.0604 mm 25.899 mm
d10 16.6878 mm 16.568 mm
d13 17.907 mm 17.609 mm
d16 43.00 mm 41.723 mm

Objectives Lateral aberration 20957.51 19.23
Wavefront
aberration 106.24 1.709
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A comparison of the RMS geometry spot and MTF before and after optimization is
shown in Figure 9. Before optimization, the average RMS spot diameter of the optical sys-
tem was 0.404 mm. After optimization, this value was significantly reduced to 0.00729 mm.
Additionally, the MTF at the feature frequency of 60 lp/mm was less than 0.1 before opti-
mization, but increased to more than 0.6 for the full field after optimization. These results
demonstrate that the proposed method effectively converges the error function of the large
aberration system, resulting in significant improvements in image quality.

The above experiments have revealed that the method proposed can optimize two
objective functions simultaneously. To further demonstrate the applicability of the proposed
method, we constructed the third error function based on distortion in this section. Among
them, Objective 1 is the lateral aberration error function, and Objective 2 is the wave
aberration error function. The construction of these two error functions has been described
in Section 2.2.1. Target 3 is the error function based on distortion, which represents the
deformation between the actual image plane and the ideal image plane after imaging by
an optical system. The calculation for the error function based on distortion is shown in
Equation (10).

Φ3 =
L′p − L′

L′
× 100% (10)

where Φ3 represents the error function based on distortion, L′ is the paraxial image height,
and L′p is the main ray image height in the current field.
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Figure 9. Comparison of image quality before and after optimization. (a) RMS spot field map before
optimization; (b) RMS spot field map after optimization; (c) MTF before optimization; (d) MTF
after optimization.

The test cases and optimization variables in three objective optimization experiments
are consistent with those of the dual objective experiment, and the number of individuals
in the initial population and offspring population parameters are also consistent with
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those of the dual objective experiment. The Cooke system (Case 1) and the self-developed
telescopic system (Case 2) have been optimized for 200 generations using the proposed
method. Comparisons of three error functions before and after optimization are shown in
Table 6. The results demonstrate that this algorithm optimized three error functions for
the Cooke and telescope system effectively. For Case 1, if we choose a lateral aberration
error function value of 18.19 as an acceptable position, the final wavefront aberration
error function value is 1.41 and the distortion error function value is 0.0266. Compared
with the initial value, the lateral aberration, wavefront aberration, and distortion were
greatly improved after optimization. For the large aberration system, Case 2, the proposed
algorithm has also improved the three objectives, ultimately achieving ideal image quality
for the large aberration optical system.

Table 6. Comparison of three error functions before and after optimization.

Comparative Content
Error Function

of Lateral
Aberration

Error Function
of Wavefront
Aberration

Error Function
of Distortion

Case 1
Before

optimization 18.235 1.435 0.0275

After
optimization 18.195 1.413 0.0266

Case 2
Before

optimization 20957.51 106.24 0.0147

After
optimization 11.849 1.548 0.0126

4. Discussion

Simulation experiments are conducted to demonstrate the effectiveness and reliability
of the proposed multi-objective local optimization method. Firstly, error functions based on
lateral and wavefront aberrations are established, and the mapping relationship between
the two error functions and variables is analyzed. The results show that the variation
trend of lateral and wavefront aberration error functions with the same variable is not
always consistent. Sometimes, the lateral aberration and wavefront aberration trends are
contradictory. Subsequently, two sets of multi-objective optimization experiments were
conducted using small and large aberration systems, respectively. For the small aberration
system (Case 1), although the image quality of the system has been optimized previously,
the proposed method can still further improve it. For the large aberration system (Case 2),
the lateral and wavefront aberrations of the system have been greatly improved after
optimization, and the Prato front solution set is provided as output. By taking one set of
acceptable values as the final result, the average RMS spot diameter of the optical system
before optimization is 0.404 mm, and the value after optimization is 0.00729 mm. The MTF
at the feature frequency of 60 lp/mm before optimization is less than 0.1, and the value
after optimization is higher than 0.6. Therefore, this method has excellent universality
for small and large aberration optical systems. For time efficiency, the implementation
process of this algorithm mainly takes up two periods of time: one is the time for invoking
CODE V from Matlab, and the other is the running time for the optimization algorithm
in Matlab. The running time of pure optimization algorithms is much lower than that of
invoking CODE V from Matlab, and the data transfer between software interfaces takes
up a lot of time. Taking self-developed telescope systems for example, when iterating for
25 generations, the optimization algorithm time is 3.2 s, while the time for invoking CODE
V from Matlab is 163.7 s, which takes up 98.08% of the total program running time. If only
one type of software is used for achieving the entire optimization process, the optimization
efficiency will be greatly improved. It should be further noted that since the method made
enhancements to NSGA-II, non-dominated sorting and crowding calculation operations
are still preserved. Therefore, this proposed method is more suitable for situations where
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the number of optimization objectives is ≤3. In addition, the proposed method is currently
applicable to unconstrained multi-objective optimization for imaging optical systems, and
methods based on penalty function or searching for feasible solutions can be employed
to handle cases with constraints. However, by effectively improving the performance of
optical systems, the proposed method can contribute to the development of high-quality
optical systems for a range of applications. Meanwhile, the idea of directional calculation
of initial population and multi-trajectory parallel evolution proposed in this study has a
certain reference value in other multi-objective optimization algorithms based on search
or evolution.

5. Conclusions

In order to address the inherent limitations of conventional local optimization method-
ologies, such as DLS and adaptation algorithms, we have proposed a multi-objective
optimization method suitable for imaging optical systems, where the objectives are es-
tablished upon lateral aberration, wave aberration, and distortion criteria. Subsequently,
enhancements were made to the NSGA-II algorithm by implementing a directional initial
population strategy and parallel optimization with multiple-trajectory planning. These
enhancements help to identify the direction of evolution and ensure the diversity of the
population. The parent and offspring populations are merged into a new population, and
fast and non-dominated sorting, crowding calculation, and elite strategy are performed
on the population. Experimental results demonstrate the effectiveness of the proposed
method. With the initial parameters optimized by CODE V, our method further reduces the
lateral and wavefront aberration error functions of the Cooke system by 12.26% and 24.94%,
respectively. For the self-developed telescope system, the average RMS spot diameter of
the optical system before optimization is 0.404 mm, and the value after optimization is
0.00729 mm. The MTF at the feature frequency of 60 lp/mm before optimization is less
than 0.1, and the value after optimization is higher than 0.6. This study provides essen-
tial guidance for applying multi-objective optimization in imaging optical systems, and
contributes to the development of high-quality optical systems for a range of applications.
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