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Abstract: Piezo-actuated stage (P-AS) has become the topic of considerable interest in the realm
of micro/nanopositioning technology in the recent years owing to its advantages, such as high
positioning accuracy, high response speed, and large output force. However, rate-dependent (RD)
hysteresis, which is an inherent nonlinear property of piezoelectric materials, considerably restricts
the application of P-AS. In this research paper, we develop a Hammerstein model to depict the RD
hysteresis of P-AS. An improved differential evolution algorithm and a least-squares algorithm
are used to identify the static hysteresis sub-model and the dynamic linear sub-model for the
Hammerstein model, respectively. Then, a hysteresis compensator based on the inverse Bouc–
Wen model is designed to compensate for the static hysteresis of the P-AS. However, the inevitable
modeling error presents a hurdle to the hysteresis compensation. In addition, external factors, such
as environmental noise and measurement errors, affect the control accuracy. To overcome these
complications, a hybrid adaptive control approach based on the hysteresis compensator is adopted
to increase the control accuracy. The closed-loop system stability is analyzed with the help of the
Lyapunov stability theory. Finally, experimental results indicate that the raised control approach is
effective for the accurate positioning of P-AS.

Keywords: piezo-actuated stages; rate-dependent hysteresis; hysteresis compensator; hybrid
adaptive control

1. Introduction

Piezo-actuated stage (P-AS) driven by piezoelectric ceramics are broadly applied to
projection lithography lenses, scanning probe microscopy, astronomical telescopes, modern
optics, other advanced optoelectronic devices, and ultraprecision systems [1–3] owing to
high resolutions and response speeds and the impregnability of the magnetic fields [4,5].
However, the intrinsic rate-dependent (RD) hysteresis of piezoelectric ceramic materials
significantly affects the control and positioning accuracies of P-AS [6–8]. The response of
RD hysteresis characteristic exhibits a special multi-value mapping relationship, where
the P-AS output depends on the current input and the previous output of P-AS [9]. In
addition, the RD characteristic indicates that the frequency of the P-AS input is one of
the important factors affecting their output [10]. Therefore, current research focuses on
developing reasonable control strategies to depress the hysteresis characteristic of the
P-AS [11–13].

At present, the methods for eliminating hysteresis are mainly divided into two cate-
gories: feedforward compensation control methods based on the hysteretic inverse model
and feedback control methods. The feedforward compensation control method needs
to establish the hysteretic model first, then obtain the inverse model of the system via
resolution or identification of the hysteretic model, and finally construct the feedforward
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controller based on the inverse model [14,15]. Common models for characterizing hysteresis
include the Duhem model [16], backlash-like model [17], Bouc–Wen (BW) model [18–20],
Preisach model [21,22], Prandtl–Ishlinskii model [23–25], and Krasnoselskii–Pokrovskii
model [26–28]. In addition, there are various other models in the literature to depict the
complex hysteresis of piezoelectric motors [29–31]. The feedforward compensation control
method proposed in the above literature can effectively suppress the effect of hysteresis on
system accuracy and achieve accurate tracking control. However, the accuracy of modeling
seriously affects the performance of feedforward compensation control methods. The
control effect of feedforward controllers is significantly weakened if modeling errors and
uncertain noise exist. In addition, the feedforward controller has poor robustness to resist
the interference of external disturbances.

To overcome the shortcomings of feedforward compensation control methods, feed-
back control methods have been proposed [32–34]. The common feedback control methods
include PID control [35], sliding mode control [36,37], iterative learning control [38,39],
adaptive control [40], robust control [41,42], model predictive control [43,44], and mod-
ified repetitive control [45]. These control methods can suppress external disturbances
and increase the control accuracy compared with the feedforward compensation control
methods [46].

Adaptive control is a feedback control method that can compensate for the modeling er-
ror and external uncertain noise of the feedforward compensation control methods [47–49].
Exploiting this property, we propose a hybrid adaptive control (HAC) strategy based on
a hysteresis controller to decrease the influence of the hysteresis characteristic for P-AS
and realize precise positioning. First, a Hammerstein model is proposed consisting of
a BW hysteresis sub-model and dynamic linear sub-model to depict the RD hysteresis
characteristic for P-AS. An improved differential evolution algorithm and a least-squares
algorithm are employed to identify the two sub-models, respectively. Then, the inverse BW
model is identified by the improved differential evolution algorithm as a compensator to
handle the RD hysteresis characteristic of P-AS. To reduce the effects of modeling errors
and uncertain noise, a hybrid adaptive controller is proposed, and the stability of the raised
approach is certified by the Lyapunov theory. The effectiveness of the adopted approach
is demonstrated by a series of experiments involving comparisons with the hysteresis
compensation controller based on the inverse BW model and the model reference adaptive
controller (MRAC). The main contribution of this research is the raised HAC method for
the precise positioning of P-AS.

The remainder of this work is organized as follows. The Hammerstein model for P-AS
is presented in Section 2. The design program of a hybrid adaptive controller based on
the hysteresis compensator and the stability proof are presented in Section 3. Experimen-
tal results confirming the efficiency of the raised control strategy are given in Section 4.
Conclusions are presented in Section 5.

2. Hysteresis Modeling

To depict the RD hysteresis characteristic of P-AS, a Hammerstein model consisting of
a BW hysteresis sub-model and a dynamic linear sub-model is established. A schematic di-
agram of the Hammerstein model is shown in Figure 1. Then, the identification algorithms
of these sub-models are introduced.

 !"#$%&'()*+,&-&+.+(

+"/$01!&2(

3*'40.#(2.'&4-(

+"/$0!1&2

5400&-+,&.'(0!1&2

6 7 ! "6 7# " 6 7$! "

Figure 1. Schematic diagram of the Hammerstein model.
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2.1. BW Hysteresis Sub-Model Identification Based on Improved Differential Evolution Algorithm

A generalized BW model that can describe hysteresis as differential equations was
suggested by Bouc and Wen. In this study, the BW model is used as the hysteresis sub-model
to describe the static hysteresis of the P-AS, and its expression is shown as follows:{

yb(t) = dV(t)− H(t)
Ḣ(t) = aV̇(t)− b|V̇(t)|H(t)− cV̇(t)|H(t)| (1)

where V(t) and yb(t) represent the input and output of the BW model, respectively, at time
t. H(t) and d denote the hysteresis term and actuator factor, respectively. a, b, and c are
the identified parameters of the BW hysteresis sub-model, which determine the amplitude
and shape of the BW model. Because of the complexity of the BW hysteresis sub-model,
the conventional algorithms are not suitable for identifying unknown parameters. The
differential evolution algorithm is an intelligent optimization algorithm that is commonly
used in system identification owing to its simple structure and fast convergence. However,
the differential evolution algorithm easily falls into local minima. Therefore, an improved
differential evolution algorithm is proposed to enhance its global search capability; the
evolution of two populations is used, and the algorithm shares the optimum individual
resources by information exchange. In this study, the parameters of the BW hysteresis
sub-model are obtained by the improved differential evolution algorithm. Equation (1) is
rewritten as follows:

yb(t) = F(t, V(t), H(t), Θ) (2)

where Θ = [d, a, b, c] is the vector of unknown parameters to be identified. The pseudo-code
of the improved differential evolution algorithm is presented in Algorithm 1.

Algorithm 1 Improved differential evolution algorithm for obtaining the parameters of the
BW hysteresis sub-model.

Input: Define the current iteration of this algorithm as N, where N ≤ Nmax. The dimension
of parameters that need to be obtained is Nθ . The number of iterations for the two
populations before the exchange of information is Kθ . The range of the unknown-
parameter vector is [Θmin, Θmax]. Define Dθ as the dimension of the population. θ

j
i (n)

represents the i-th individual of the j-th population in the n-th generation, where
i = 1, 2, . . . , Dθ ; j = 1, 2; and n = 1, 2, . . . , Nθ . Define P as the probability of crossover
and mutation for the second population.

Output: The optimal-parameter vector is Θ∗.
1: Initialize Θj(0) = Θj

min + rand(Dθ , Nθ)(Θmax −Θmin), where (Dθ , Nθ) is a matrix with
random element values ranging from 0 to 1.

2: Define a fitness function Fθ(θ
j
i (n)) = 1

2 ∑T
t=1[y(t)− yb(t)], where y(t) represents the

output of the P-AS at time t, and T represents the size of sample. Define F∗j and Θ∗j as
the optimal value of the fitness function and j-th optimal-parameter vector, respectively.

3: Update the two populations. Define αj as the variation factor of the two populations, β

as the crossover probability, and a random number l j
i ∈ [0, 1].

pj
i(n + 1) = θ

j
i1
(n) + αj

(
θ

j
i2
(n)− θ

j
i3
(n)
)

for i 6= i1 6= i2 6= i3.

qj
i(n + 1) = pj

i(n + 1) if l j
i ≤ β, and qj

i(n + 1) = θ
j
i (n) if l j

i > β.

θ
j
i (n + 1) = qj

i(n + 1) if Fθ(q
j
i(n)) ≤ Fθ(θ

j
i (n)), and θ

j
i (n + 1) = θ

j
i (n + 1) if

Fθ(q
j
i(n)) > Fθ(θ

j
i (n)).

Compute the objective function and identify the population whose objective func-
tion is smaller.

4: For the first population, return to the third step until the Kθ-th iteration is reached.
5: For the second population, if P < 0.5, execute the crossover operator; otherwise, execute

the mutation operation. Then, repeat the third step until the Kθ-th iteration is reached.
6: The global best fitness F∗ and the global best individual Θ∗ are calculated as follows
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F∗ = min(F1, F2)
Θ∗ = Θj, where j meets Fj = F∗.

7: Set N = N + 1 and repeat the third step. If N > Nmax, return Θ∗.

A sinusoidal input signal expressed as y(t) = 18sin(2πt− 0.5πt) + 18 was adopted to
identify the parameters of the BW model for the P-AS. The results for the identification via
the proposed algorithm were d = 1.099, a = −0.5257, b = 1.019, and c = −0.208.

2.2. Dynamic Linear Sub-Model Identification Based on Least-Squares Algorithm

To develop an RD hysteresis dynamic linear sub-model that can characterize the P-AS,
a sinusoidal swept signal with the frequency of 1–100 Hz is adopted to drive the P-AS.
A least-squares algorithm is employed to obtain the dynamic linear sub-model using the
MATLAB system identification toolbox, as described in [18]. The dynamic linear sub-model
is expressed as follows:

Gm(s) =
1.58 ∗ 104s + 10

10−3s3 + 3.2s2 + 1.58 ∗ 104s + 10
(3)

3. HAC Design
3.1. Inverse BW Model-Based Hysteresis Compensator Design

To compensate for the RD hysteresis characteristic of P-AS, the inverse compensator is
designed by solving the inverse BW model according to (1) as follows:{

V(t) = d′(yr(t) + HI(t))
ḢI(t) = a′ẏr(t)− b′|ẏr(t)|HI(t)− c′ẏr(t)|HI(t)|

(4)

where V(t) represents the output voltage of the hysteresis compensator, d′ is the actuator
factor, and yr(t) represents the expected displacement. d′ = 1.105, a′ = −0.445, b′ = 1.081,
and c′ = −0.153 were identified by the improved differential evolution algorithm.

3.2. HAC Design Based on Hysteresis Compensator

The open-loop control system based on the hysteresis compensator for P-AS in the
complex field is expressed as follows:

y(s) =
[
u(s)GH

−1 + Γ1

]
GHG0(s) + Γ2 (5)

where u(s) and y(s) represent the input and output of the open-loop control, respectively,
and GH and G0 represent the hysteresis sub-model and linear sub-model of the P-AS,
respectively. GH

−1 is the transfer function for the inverse compensator. Γ1 and Γ2 represent
the input and measurement noise of the P-AS, respectively. Then, the transfer function of
the open-loop control can be denoted as follows:

G(s) =
y(s)
u(s)

=

[
GH
−1 +

Γ1

u(s)

]
GHG0(s) +

Γ2

u(s)
(6)

Define kb f1 = (Γ1GH)/u(s) and kb f2 = Γ2/u(s). Then, (6) can be rewritten as:

G(s) = G0(s)[1 + kb f1(s)] + kb f2(s) (7)

where f1(s) and f2(s) represent the input and output unmodeled dynamics, respectively,
of the P-AS. The scalar parameter kb > 0 represents the rate of the unmodeled dynamic. To
achieve precise tracking control, a hybrid adaptive controller is designed in this section.
First, we exploit two accessorial vectors ω1(s) and ω2(s) and define:{

ω̇1(s) = A1ω1(s) + B1u(s)
ω̇2(s) = A2ω2(s) + B2y(s)

(8)
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where A1 and A2 are two-dimensional matrices, and B1 and B2 are two-dimensional
column vectors. The solution of (8) is as follows:{

ω1(s) = (sI−A1)
−1B1u(s)

ω2(s) = (sI−A2)
−1B2y(s)

(9)

In accordance with (9), the control law is designed as follows:

u(s) =
[

ΦT
1k ΦT

2k Φ3k
] ω1(s)

ω2(s)
y(s)

+ yr(s)

= ΦT
1kω1(s) + ΦT

2kω2(s) + Φ3ky(s) + yr(s)

(10)

where ΦT
k =

[
ΦT

1k, ΦT
2k, Φ3k

]
is the parameter vector of the hybrid adaptive controller,

which is a constant vector at time [tk, tk+1). It is adjusted at time tk+1 for k = 0, 1, 2, . . . , K.
K represents the maximum sampling for the control system.

Theorem 1. Define G0(s) as the reference model of the P-AS control system based on the compen-
sator. Because kb = 0, we have Φk ≡ Φ∗ to equate the transfer function G(s) of P-AS control
system based on the hybrid adaptive controller to G0(s), where Φk =

[
ΦT

1k, ΦT
2k, Φ3k

]
, Φ∗ is a

constant vector.

G0(s) =
ym(s)
yr(s)

= G(s) =
y(s)
u(s)

· u(s)
yr(s)

(11)

Proof. By substituting (9) into (10), the control law is obtained:

u(s) = ΦT
1k(sI−A1)

−1B1u(s) + ΦT
2k(sI−A2)

−1B2y(s) + Φ3ky(s) + yr(s) (12)

Because kb = 0 according to (7), the output of the control system is y(s) = Gm(s)u(s).
Then, (12) can be denoted as follows:

u(s) = [1−Φ∗T1 (sI−A1)
−1B1 −Φ∗T2 (sI−A2)

−1B2G0(s)−Φ∗3G0(s)]−1yr(s) (13)

According to (13), (11) becomes:

Gm(s) =
G0(s)

1−Φ∗T1 (sI−A1)−1B1 −Φ∗T2 (sI−A2)−1B2G0(s)−Φ∗3G0(s)
(14)

Then, by substituting (13) and (14) into (12), we have:

y(s) = Gm(s)[(Φk −Φ∗)Tω(s) + yr(s)] + k∗ f (s)u(s) (15)

where

f (s) = f1(s)− Gm(s)[Φ∗3 + Φ∗T2 (sI − A)−1B]G0(s) f2(s)

+ Gm(s) f2(s)[1−Φ∗T1 (sI − A)−1B]
(16)

We define e1(s) = y(s)− ym(s) as the error between output values of P-AS and the
reference model. By combining (7), (10), and (14), we obtain:

e1(s) = Gm(s)(Φk −Φ∗)Tω(s) + k∗b f u(s) (17)

Because k∗b = 0, it has Φk ≡ Φ∗, so that the error e1(s) = 0.
This completes the proof.

Next, the adaptive law is adopted to modulate Φk online. To facilitate the calculation
of the adaptive law, (17) is rewritten via inverse Laplace transformation:
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y f (t) = −(Φk −Φ∗)TGm(t)ω(t) + Gm(t)(Φk −Φ∗)Tω(t) (18)

where y f (t) is an instrumental variable. We define ξ(t) = Gm(t)ω(t) and η(t) = f (t)u(t),
where ω(t)T = [ω1(t), ω2(t), y(t)]. Next, the augmented error is obtained as follows:

ε1(t) = e1(t)− y f (t)

= (Φk −Φ∗)Tξ(t) + k∗bη(t)
(19)

We define ε(t) = ε1(t)/m(t) and ψ(t) = ξ(t)/m(t), where m(t) satisfies the differen-
tial equation as follows:

ṁ(t) = −δ0m(t) + δ1ERT(t) (20)

Here, E is a three-dimensional identity matrix. Both δ0 and δ1 are positive real numbers,
and R(t) = [|u(t)|, |y(t)|, 1]T . m(0) is the default value of m(t), which satisfies m(0) >
δ0/δ1. According to (20), ε(t) can be rewritten as:

ε(t) = (Φk −Φ∗)Tψ(t) + k∗bη(t)/m(t) (21)

To adjust Φk online, the adaptive law is designed as:

Φk+1 = Φk −
1
Tk

∫ tk+1

tk

σ(t)ε(t)ψ(t)
1 + ψT(t)ψ(t)

dt (22)

where Tk = tk+1 − tk. σ(t) is defined as:

σ(t) =
{

0, |ε(t)| ≤ v0
1, |ε(t)| > v0

(23)

where v0 is a positive constant that satisfies:

2k∗|η(t)|/m(t) ≤ v0 ≤ k∗ρ0, ρ0 > 0 (24)

Then, we can obtain the control law of HAC. A schematic of the HAC design based on
the hysteresis compensator is shown in Figure 2.

( )HG s

( )y s

( )my s

( )u s

Eq.(21) - Eq.(23)
1

s

Piezo-actuator stage

Eq.(4)

Eq.(9)

k

k

( )ry s

Eq.(20)

0 ( )G s

1
2

( )mG s

( )mG s

( )mG s

( )HG s

Figure 2. Structure of the proposed hybrid adaptive controller.
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3.3. Stability Analysis of System

We define the Lyapunov function as follows:

Vk =
1
2

θk
Tθk (25)

where θk = (Φk −Φ∗). The derivation of (25) is as follows:

∆Vk = Vk+1˘Vk

=
1
2

θT
k+1θk+1 −

1
2

θT
k θk

=

[
1
2

θk+1 +
1
2

θk

]T
[θk+1˘θk]

=

[
1
2

θk+1˘θk +
1
2

θk + θk

]T
[θk+1˘θk]

(26)

We define ∆θk = θk+1 − θk. Using (22), ∆θk can be rewritten as:

∆θk = θk+1 − θk

= (Φk+1 −Φk)

= − 1
Tk

∫ tk+1

tk

σ(t)ε(t)ψ(t)
1 + ψT(t)ψ(t)

dt

(27)

By substituting (21) and (28) into (26), we obtain:

∆Vk =−
1
2

[
− 1

Tk

∫ tk+1

tk

σ[θT
k ψ(t) + k∗bη(t)/m(t)]ψ(t)

1 + ψT(t)ψ(t)
dt + 2θT

k

]
·[

1
Tk

∫ tk+1

tk

σ[θT
k ψ(t) + k∗bη(t)/m(t)]ψ(t)

1 + ψT(t)ψ(t)
dt

] (28)

We define η∗(t) = η(t)θT
k
−1. ∆Vk can be rewritten as:

∆Vk = −
1
2

[
− 1

Tk

∫ tk+1

tk

σ[ψ(t) + k∗bη∗(t)/m(t)]ψ(t)
1 + ψT(t)ψ(t)

dt + 2θT
k

]
·[

1
Tk

∫ tk+1

tk

σ[ψ(t) + k∗bη∗(t)/m(t)]ψ(t)
1 + ψT(t)ψ(t)

dt
]

= −1
2

θT
k [2I− Pk]Pkθk

(29)

where

Pk =
1
Tk

∫ tk+1

tk

σ(t)[ψ(t) + k∗b (t)∗/m(t)]ψ(t)
1 + ψT(t)ψ(t)

dt (30)

According to (24), there will be k∗b‖
∗(t)‖

m(t) ≤ ‖ψ(t)‖ and 0 ≤ Pk < 2I. Hence, from (29),
we obtain ∆Vk ≤ 0. Thus, the stability of the closed-loop system under the hybrid adaptive
controller based on hysteresis compensator is demonstrated.

4. Results
4.1. Experimental Setup

To validate the established Hammerstein model and the proposed control approach
for P-AS, a series of experiments was conducted using the experimental testbed shown in
Figure 3, which included a host computer (4 GB of RAM and CPU@3.20 GHz) and a P-AS.
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The travel range of the P-AS was 0–50 µm, the displacement resolution was 5 nm, and the
operating voltage was 0–150 V. Additionally, the testbed included an integrated controller
(PPC-2CR0150) and a data-acquisition card (PCI-1716). The proposed Hammerstein model
and HAC based on the hysteresis compensator were implemented through the MATLAB
software installed on the computer, where the sampling frequency of the system was
10 kHz. The data acquisition card converts the digital signal output from the computer into
an analog signal and outputs it as a digital signal. The integrated controller amplified the
analog signal as a current–voltage to drive the P-AS. A strain-type displacement sensor
in the P-AS measures the current displacement and transmits it to the computer via the
analog-to-digital conversion module of the data-acquisition card.

Host computer

Data acquisition 

card

 Piezo-actuated 

stage

Integrated 

controller

(a)

Data acquisition card

16-bit DAC

16-bit ADC

Integrated controller 

power amplifier

position sensor

Host computer
 Piezo-actuated 

stage

（b）

Figure 3. (a) Picture of the experimental testbed. (b) Schematic of the experimental testbed.

4.2. Modeling Results

The validity of the Hammerstein model was verified by comparing it with the BW
model. Sinusoidal input voltages with different frequencies and an amplitude of 90 V were
employed. The results are shown in Figure 4. The maximum absolute error (MAXAE) and
mean absolute error (MAE) were calculated via (31) and (32), respectively. K represents a
total number of sampling points. y(k) and ym(k) represent the actual output and model
output at the k-th sampling point, respectively. The error analysis of the BW model and the
Hammerstein model are presented in Table 1. The MAXAEs of the Hammerstein model
were 0.5896, 0.8455, and 0.9517 µm, respectively, which were reduced by 7.13%, 7.23%, and
52.42% compared with those of the BW model. In addition, the MAEs of the proposed
model were 0.2847, 0.4469, and 0.4669 µm, respectively, which were reduced by 5.60%,
13.61%, and 61.36% compared with those of the BW model.

This indicates that the presented Hammerstein model can approximate the RD hys-
teresis characteristic of P-AS more accurately than the BW model.

eMAXAE = max(y(k)− ym(k)) (31)

eMAE =
∑K

k=1 |y(k)− ym(k)|
K

(32)
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(a)
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Time (s)
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(b)

Piezo-actuator stage
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Hammerstein model
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Piezo-actuator stage

BW model

Hammerstein model
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2

Figure 4. Modeling results of the Hammerstein model in comparison with the BW model under
sinusoidal input voltages of different frequencies: (a) modeling result at frequency of 1 Hz; (b) modeling
result at frequency of 10 Hz; (c) modeling result at frequency of 50 Hz.

Table 1. The MAXAE and MAE of BW model and Hammerstein model.

MAXAE of the BW Model/ MAE of the BW Model/
Frequency (Hz) the Hammerstein Model the Hammerstein Model Im. % (MAXAE/MAE )

(µm) (µm)

1 0.6349/0.5896 0.3016/0.2847 7.13/5.60
10 0.9114/0.8455 0.5173/0.4469 7.23/13.61
50 2.0004/0.9517 1.2085/0.4669 52.42/61.36

Im.: Hammerstein model precision improvement relative to BW model.

4.3. Tracking Performance under Step Response Input Signal

A step response input signal with a sudden increase from 0 to 18 µm at 0.5 s was
adopted as the reference trajectory to verify the tracking performance of the raised control
approach. The experimental results in Figure 5 demonstrate that the raised controller had
better performance than the compensator based on the inverse BW model and the MRAC.
It is also evident from the experimental results that the steady-state error of the proposed
controller was close to zero and has a shorter settling time compared to the MRAC and the
compensator based on the inverse BW model.
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Figure 5. Tracking performance of the HAC method in comparison with the compensator and MRAC
under step response input signal: (a) control results; (b) tracking errors.
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4.4. Tracking Performance under Different Reference Trajectories

Then, the tracking performance was evaluated with different reference trajectories.
Sinusoidal and triangular reference signals with different frequencies (f = 1, 10, 20, and
50 Hz) were adopted. All the signals had amplitudes of 36 µm. The results are shown
in Figures 6 and 7, and the results of quantitative analysis are presented in Table 2. The
tracking error was evaluated according to the MAXAE and MAE via (31) and (32), respec-
tively. Zd(k) = yr(k) and Z(k) = y(k) represent the actual and desired outputs of the
P-AS, respectively. All the MAXAEs and MAEs for the proposed control method were
smaller than those for the compensator based on the inverse BW model and MRAC under
sinusoidal and triangular reference signals with frequencies of 1, 10, 20, and 50 Hz. In
particular, the MAE of the raised controller was 66.5% and 12.5% smaller than those of the
compensator and MRAC, respectively, for the 50 Hz sinusoidal reference trajectory.
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Figure 6. Tracking performance of the HAC method in comparison with the compensator and MRAC
under sinusoidal reference trajectories of different frequencies: (a) tracking result at frequency of
1 Hz; (b) tracking result at frequency of 10 Hz; (c) tracking result at frequency of 20 Hz; (d) tracking
result at frequency of 50 Hz.
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Figure 7. Tracking performance of the HAC approach in comparison with the compensator and
MRAC under triangular reference trajectories of different frequencies: (a) tracking result at frequency
of 1 Hz; (b) tracking result at frequency of 10 Hz; (c) tracking result at frequency of 20 Hz; (d) tracking
result at frequency of 50 Hz.

Table 2. Tracking performance of different controllers under different reference trajectories.

Reference Frequency MAXAE/MAE of the MAXAE/MAE of MAXAE/MAE of the
Trajectories (Hz) Compensator (µm) the MRAC (µm) Proposed Method (µm)

Sinusoidal 1 0.9522/0.4930 0.2976/0.0523 0.1748/0.0357
signal 10 0.8934/0.4968 0.3078/0.1400 0.1509/0.0803

20 1.1772/0.5604 0.3949/0.1336 0.2607/0.1318
50 1.6635/0.8371 0.8603/0.2919 0.4150/0.2122

Triangular 1 0.7741/0.2678 0.1603/0.0141 0.0659/0.0088
signal 10 1.1250/0.5689 0.3862/0.1129 0.1707/0.0939

20 1.3742/0.7145 0.6140/0.2792 0.3488/0.2250
50 1.9488/0.9441 0.9414/0.3617 0.4296/0.3165

Compared with the adopted sliding mode tracking control adopted in [36], the HAC
method improves the control effect significantly. When the frequency of the triangular
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reference signals was 1 and 10 Hz, the proposed control method attenuated the MAE
from 1.18% and 1.96% to 0.02% and 0.26%, respectively. In addition, the MAE of the HAC
method was smaller than that of the neural-network self-tuning control raised in [50].
When the frequency of the sinusoidal reference signals was 1, 10, and 20 Hz, the proposed
control method reduced the MAE from 1.02%, 1.26%, and 1.85% to 0.49%, 0.42%, and 0.72%,
respectively.

Figure 8 shows a further evaluation of the tracking performance with different complex
reference trajectories. Figure 8a presents a comparison of the tracking results with the
desired mixed sinusoidal signal. As shown, the tracking errors of the raised control
approach were significantly smaller than those of the compensator and MRAC. Figure 8b
presents a comparison of the tracking results with the desired mixed triangular signal. As
shown, the MAE of the proposed control method was 0.0095 µm, which was 97.6% and
74.1% smaller than those of the compensator and MRAC, respectively. The experimental
results also show that the proposed control method has better control performance for both
complex harmonic wave signal and triangular signal. In addition, the proposed control
method can better suppress the effect of hysteresis on the accuracy of the P-AS at the peak
point of the tracking signal.
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Figure 8. Tracking performance of the HAC approach in comparison with the compensator and MRAC
under different complex reference trajectories: (a) mixed sinusoidal signal; (b) mixed triangular signal.

5. Conclusions

A hysteresis modeling and compensation method for P-AS was developed. We pro-
pose a Hammerstein model comprising a BW static hysteresis sub-model and a dynamic
linear sub-model. An improved differential evolution algorithm and a least-squares algo-
rithm are used to identify the static hysteresis sub-model and dynamic linear sub-model
for the Hammerstein model, respectively. To suppress the influence of hysteresis on the
precision of P-AS, a hysteresis controller based on the inverse BW model was designed to
depress the static hysteresis of the stage. However, modeling errors, environmental noise,
and measurement errors also reduce the control accuracy. To resolve these complications,
a HAC method based on a hysteresis compensator is proposed for increasing the control
accuracy. By constructing a reference model of the system and considering the unmodeled
dynamics at the input and output, the effects of model uncertainty and perturbations on
the system accuracy can be significantly reduced. With the help of the Lyapunov stability
theory, the stability of the system is proved. Finally, the effectiveness of the raised approach
was verified by a series of experiments involving comparisons with the hysteresis com-
pensation controller based on the inverse BW model and MRAC. The experimental results
indicated that the HAC method is efficient for the precise positioning of P-AS.
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