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Abstract: Salient object detection has made substantial progress due to the exploitation of multi-level
convolutional features. The key point is how to combine these convolutional features effectively
and efficiently. Due to the step by step down-sampling operations in almost all CNNs, multi-level
features usually have different scales. Methods based on fully convolutional networks directly apply
bilinear up-sampling to low-resolution deep features and then combine them with high-resolution
shallow features by addition or concatenation, which neglects the compatibility of features, resulting
in misalignment problems. In this paper, to solve the problem, we propose an alignment integration
network (ALNet), which aligns adjacent level features progressively to generate powerful combina-
tions. To capture long-range dependencies for high-level integrated features as well as maintain high
computational efficiency, a strip attention module (SAM) is introduced into the alignment integration
procedures. Benefiting from SAM, multi-level semantics can be selectively propagated to predict pre-
cise salient objects. Furthermore, although integrating multi-level convolutional features can alleviate
the blur boundary problem to a certain extent, it is still unsatisfactory for the restoration of a real
object boundary. Therefore, we design a simple but effective boundary enhancement module (BEM)
to guide the network focus on boundaries and other error-prone parts. Based on BEM, an attention
weighted loss is proposed to boost the network to generate sharper object boundaries. Experimental
results on five benchmark datasets demonstrate that the proposed method can achieve state-of-the-art
performance on salient object detection. Moreover, we extend the experiments on the remote sensing
datasets, and the results further prove the universality and scalability of ALNet.

Keywords: salient object detection; alignment integration; strip attention module; boundary
enhancement module; optical remote sensing image

1. Introduction

As an important research branch in computer vision, salient object detection (SOD)
has received much attention in recent years. It can serve as a fundamental pre-processing
technique to facilitate various computer vision applications, such as foreground map evalu-
ation [1], image retrieval [2], visual tracking [3,4], remote sensing image segmentation [5],
and semantic segmentation [6].

Benefiting from the development of deep learning technology, great advancements [7–37]
in SOD have been made. In [38], Wang et al. provide a comprehensive survey that reviews
deep SOD algorithms from various aspects, including network architecture, level of su-
pervision, and so on. As summarized by [38], most of the current deep learning based
methods design their architectures based on fully convolutional networks (FCN) [39] to
integrate multi-level convolutional features. However, due to stepwise down-sampling
operations, features from different levels have contradictions, and the contextual informa-
tion they possess is asymmetric, which results in misalignment problems during the feature
aggregation process; current work tends to ignore this problem.
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To address the misalignment problem, we explore various alignment technologies and
propose a novel alignment integration network (ALNet) for SOD. Figure 1 illustrates the
alignment processes of different technologies.

(a) Flow Alignment (b) Deformable Alignment
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Figure 1. Illustration of various alignment technologies. CBR3×3 means a 3× 3 convolution followed
by batch normalization and ReLU operations. Conv3×3 is a 3× 3 convolution to generate offset. The
feature maps of each model are visualized by averaging along the channel dimension. Larger values
are denoted by hot colors, and vice versa.

To increase interpretability of the models, we visualize the integrated feature maps
of each model. An FCN-based model, which combines adjacent level features by direct
addition, is utilized as the baseline model (i.e., w.o.Align). As we can see, features without
alignment are fuzzy and unfocused. The important semantic and structural information is
not well represented because of misalignment. Flow alignment (see Figure 1a), which has
been proven to be effective in semantic segmentation [40], provides us with a feasible solu-
tion to alleviate the misalignment. Motivated by [40], we propose a flow alignment model
to align adjacent level features for SOD. In flow alignment, semantic flow (i.e., offset ∆)
is learned for spatial warping of high-level features. The visualized results in Figure 1
demonstrate the effectiveness of flow alignment. However, the flow alignment only learns
one offset at each spatial position of a feature, which is sometimes not enough to handle
complex misalignment. Therefore, we further propose a deformable alignment model (see
Figure 1b) by substituting deformable convolution for spatial warping to increase the offset
diversity for better alignment. Compared with flow alignment, deformable alignment can
better highlight the salient region as well as maintain useful spatial details. The details of
flow alignment and deformable alignment are explained in Section 3.2.

Moreover, the ability of a network to model global context is also critical to perfor-
mance improvement. Recently, non-local self-attention mechanism [41] has been proven to
be effective in capturing long-range dependencies. However, how to effectively incorporate
it in SOD is still challenging. First of all, we need to consider computational efficiency.
In this paper, we introduce strip attention [42] into our network to augment contextual
information as well as ensure computational efficiency. Second, the adaptation of the self-
attention mechanism for SOD is also an important factor to consider. Different from [42],
where strip attention is utilized once to enhance the final feature for scene parsing, in our
ALNet, strip attention modules (SAMs) are embedded in the intermediate procedure of
alignment integration to augment contextual information for the high-level integrated
features. Due to SAM, the global semantics are selectively incorporated in the alignment
integration to recover precise salient objects.

Furthermore, to strengthen the model’s learning ability at the object boundary, we
design a simple but effective boundary enhancement module, which can output an attention
map for the network. Based on the attention map, an attention weighted loss (AW loss)
function is proposed to make the network pay more attention to the ambiguous and
hard regions. Features from this branch are utilized as a complement for the multi-level
integrated features to conduct the final prediction.
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Finally, to prove the robustness and scalability of the proposed method, we directly
apply our network to optical remote sensing images (RSIs) and compare it with state-of-
the-art RSI-SOD methods [32,43–46] (salient object detection methods that are specially
designed for RSIs). The extensive experiments demonstrate the effectiveness of our method.

The main contributions of our proposed method are summarized as follows:

1. We propose an alignment integration network (ALNet) to alleviate the misalignment
problem in multi-level feature fusion, thereby generating effective representation for
salient object detection.

2. Strip attention is introduced into our network to augment global contextual informa-
tion for the high-level integrated features as well as keep computational efficiency.

3. To make the network focus more on the boundary and error-prone regions, we propose
a boundary enhancement module and an attention weighted loss function to help the
network generate results with sharper boundaries.

4. Experimental results on SOD benchmarks as well as remote sensing datasets demon-
strate the effectiveness and scalability of the proposed ALNet.

2. Related Work

Existing deep SOD methods can be roughly categorized into multi-level features
integration based and boundary learning based approaches.

2.1. Integrating Multi-Level Features for SOD

A simple but effective way to integrate multi-level features is adding or concatenating
features step by step, as with FCN [39], which is usually taken as a baseline model. How-
ever, in this direct integration way, associations between features cannot be well modeled,
resulting in unsatisfactory performance. Compared with this direct way, Amulet [10]
integrates multi-scale features in a fully connected way. Nevertheless, fusing features
from all levels at every specific scale may introduce unnecessary redundant information.
Based on FCN, PAGRN [12] introduces both channel-wise and spatial-wise attention to
suppress the irrelevant interference from features and then combines attentive features
by stepwise addition. Pyramid fusion structure is utilized by Wei et al. [23] to fuse high-
level semantics with low-level details via lateral connections. In [17], Wang et al. design
an ingenious network that conduct both top-down and bottom-up inference in an itera-
tive and cooperative manner. The predicted saliency map is integrated with multi-level
features step by step for coarse-to-fine saliency estimation. Sun et al. [28] leverage the
average- and max-pooling modules to integrate the multi-level features in the spatial and
channel-wise dimensions, respectively. An architecture search framework is proposed by
Zhang et al. [29] to automatically learn a multi-scale features fusion strategy. All of the
existing methods design ingenious modules to integrate features; nevertheless, they neglect
the misalignment problem of multi-level features. To address this problem, we introduce
alignment technology into SOD and further design an alignment integration network to
relieve the misalignment for effective feature integration.

2.2. Boundary Learning for SOD

Precise salient object boundaries are beneficial for the performance of SOD methods.
CNN-based methods suffer from blurred boundaries due to stride and pooling operations.
Incorporating shallow layer features can alleviate the problem to a certain extent, but
sometimes this is not enough. In order to obtain sharper object boundaries, some methods,
such as [9,11,14], utilize CRF [47] as the post-processing step to enhance object edges.
However, the post-processing operation is too time-consuming to be employed in real-time
applications. In [16], Wang et al. design a salient edge detection module to emphasize the
importance of boundary information, and L2-norm loss is employed to supervise salient
edges. BASNet [20] employs a hybrid loss that incorporates SSIM [48] to capture the
structural information in an image. Weighted BCE and IOU loss are utilized by F3Net [23],
which synthesizes the local structure information of a pixel to guide the network to focus
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more on local details. In [29], Zhang et al. employ boundary loss [49] to penalize the
misalignment of salient object boundaries. Mei et al. [37] adopt the patch-level edge
preservation loss [50], which considers a local neighborhood of each pixel and assigns more
attention to the object boundary. Different form these algorithms, in this paper, based on
the boundary enhancement module, we propose an attention weighted loss, which can
adaptively promote the network to focus on the hard pixels (i.e., pixels from boundaries or
other error-prone parts).

3. Materials and Methods

In this section, we explain the details of our proposed ALNet, whose main framework
is shown in Figure 2.

Block1 Block2 Block3 Block4

1X

FA
Alignment Integration Module

Block0

SAM Strip Attention Module FA Feature Alignment

Pre-Process Module

BEM

BEM Boundary Enhancement Module

Enhanced
Feature FAFA

S A 1F

3F

2X 3X 4X

3F2F2F1F
2F 3F 4F

1 1CBR  1 1CBR  1 1CBR 

1 1Conv 

3 3CBR 

SAM SAM

Figure 2. Main framework of our alignment integration network; CBRk×k means a k× k convolution
followed by batch normalization and ReLU operations. We first side-out the multi-level convolutional
features from the backbone and process them by the pre-process module. An additional 3 × 3
convolution operation is applied on the top level feature to encode high-level semantics. Then,
features from multi-level are fed into the alignment integration module, in which adjacent level
features are progressively combined by feature alignment. A strip attention module is utilized to
capture non-local contextual information for the intermediate integrated feature. The final integrated
feature is further enhanced by a boundary enhancement module, and the enhanced feature is
exploited to conduct salient object prediction.

The backbone includes five convolutional blocks, which are {Block`}4
`=0. Multi-level

features with different resolutions (i.e., 1/4, 1/8, 1/16, and 1/32 of the original resolution)
are side-outputted from Block1 to Block4 and are denoted as {X`}4

`=1. Then, the features
are sent to the pre-process module, which is explained in Section 3.1. Next, we propose
the alignment integration module (AIM) to combine adjacent level features by feature
alignment in Section 3.2. The boundary enhancement module (BEM), which is utilized
to equip AIM to generate more powerful features, is explained in Section 3.3. Finally, we
introduce the proposed attention weighted loss and the supervision strategy in our work
in Section 3.4.

3.1. Pre-Process Module

As shown in Figure 2, shallower features {X`}3
`=1 are fed into 1 × 1 convolution

followed by the batch norm and ReLU operations, respectively. As for the top-level feature
(i.e., X4), an additional 3× 3 convolution is applied to extract high-level semantics for the
network. After pre-processing, we can obtain multi-level features {F`}4

`=1. Then, alignment
integration is carried out for them.
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3.2. Alignment Integration Module

Most of the existing methods directly integrate multi-level features without consider-
ing the misalignment problem between them. To alleviate this problem, we propose a novel
alignment integration module (AIM), which is constructed based on the feature alignment
(FA). As shown in Figure 2, in AIM, adjacent level features conduct FA to generate an
aligned feature, which is then fed into next FA with the shallower level feature, and so on.
The procedures of FA are shown in Figure 1. For the adjacent level features F` and F`+1, we
first generate alignment offset for them.

3.2.1. Offset Generation

First of all, F`+1, which denotes a high-level feature with low resolution, is up-sampled
to the same size as F`. Next, we concatenate them together and take the concatenated
features as the input for a 3× 3 convolution layer to output the alignment offset:

∆` = Conv(Cat(UP(F`+1), F`)), (1)

where Cat(·) and Up(·) denote the concatenation and bi-linear upsampling operation,
respectively. Then, we conduct feature alignment for them.

3.2.2. Feature Alignment

Two kinds of feature alignment models (i.e., flow alignment in Figure 1a and de-
formable alignment in Figure 1b), which intrinsically share the same formulation but differ
in their offset diversity, are proposed in our work.

Flow Alignment. For flow alignment, the offset ∆` ∈ RH`×W`×2 is utilized for the
spatial warping of F`+1:

F̃`+1 = T(F`+1, ∆`), (2)

where T(·, ·) represents the alignment transformation function; ∆` consists of two feature
maps, which represent the offset for x- and y-coordinates of each position on the feature
map to be aligned, respectively. Let Thw denote the output of T(F, ∆). The function is
defined as follows:

Thw =
H

∑
h′=1

W

∑
w′=1

Fh′w′ ·max(0, 1− |h + ∆1hw
δ

− h′|) ·max(0, 1− |w + ∆2hw
δ

− w′|), (3)

which samples features on position p( h+∆1hw
δ , w+∆2hw

δ ) of F and linearly interpolates the
values of the four neighbors (top-left, top-right, bottom-left, and bottom-right) of p to
approximate the output. The variable δ denotes the scale difference between F and ∆

(e.g., when F’s resolution is half that of ∆, δ = 2); ∆1hw and ∆2hw represent the learned 2D
transformation offsets for position (h,w).

Deformable Alignment. As for deformable alignment, a 3× 3 deformable convolu-
tion is utilized in our network. The number of offsets is in proportion to the kernel size of
the deformable convolution. Therefore, the learned offset is ∆` ∈ RH`×W`×18. The feature
is aligned by modulated deformable convolution (i.e., DCN-v2 [51]) based on the offset:

F̃`+1 = DeformConv(UP(F`+1), ∆`). (4)

Let Y denote the output of DeformConv(F, ∆):

Y(p) =
n2

∑
k=1

ω(pk) · F(p + pk + ∆pk
) ·mk(p), (5)

where p is the spatial position, pk is the kth sampling offset in a standard convolution, and
n is the kernel size of deformable convolution (i.e., 3); ω and m are learnable parameters in
the DeformConv. Compared with flow alignment, deformable alignment adaptively learns
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the diverse offsets for features, thus can deal with the misalignment problem better, which
corresponds with the experimental results in Section 5.1.

3.2.3. Aligned Integration

The aligned integrated feature can be obtained by:

F̃` = CBR3×3(F̃`+1 + F`), (6)

where CBR3×3(·) denotes a 3× 3 convolution with batch normalization and ReLU oper-
ations. In AIM, multi-level features are integrated step by step like FCN but alleviate
misalignment. The integrated feature of the last step (i.e., F̃1) is equipped with both
semantic information and spatial details.

3.2.4. Strip Attention Module

To augment the contextual information for the intermediate integrated features and
promote their pixel-wise representative capacity, we incorporate non-local self-attention
into our network. The standard non-local self-attention has a computational complexity of
O((H×W)× (H×W)), where H and W denote the spatial dimensions of the input feature
map. In this paper, we introduce strip attention [42], which reduces the computational
complexity to O((H ×W)×W) by a stripping operation to add global context as well as
keep efficiency. The strip attention module (SAM) is displayed in Figure 3.

F

V

Q

Stripping

Stripping

Affinity
Reshape

Reshape and Transpose

Reshape and Transpose

SA
Reshape

SAF

F

K

1 1CBR 

1 1CBR 

1 1CBR 

Figure 3. Illustration of the strip attention module. Stripping operations are utilized to reduce the
computational complexity of this module.

For simplicity, here we use F ∈ RC×H×W to denote the input feature. First, F is fed
into three convolutional layers with 1× 1 filters followed by batch normalization and
ReLU to generate three new feature maps, which are Q ∈ RC′×H×W , K ∈ RC′×H×W , and
V ∈ RC×H×W , respectively; C′ is an intermediate feature dimension number for variable Q
and K. To make SAM efficient, we set C′ smaller than C.

A stripping operation (i.e., average pooling with pooling windows of size H × 1) is
applied on K to encode global context representation in the vertical direction, and then
we get K ∈ RC′×1×W . We also try to apply 1×W pooling on the feature to incorporate
context in the horizontal direction, but it has little effect on the performance improvement.
Considering computation complexity, we only use a one direction stripping operation.

Next, we reshape Q and K to RC′×N and RC′×W , respectively, where N = H ×W.
Then, we can calculate the strip attention map SA ∈ RN×W along the horizontal as follows:

SA = so f tmax(QT ? K), (7)

where ? means matrix multiplication and T means matrix transposition. Similarly, we
apply stripping and reshape operations to V and can obtain V ∈ RC×W . Then, we conduct
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a matrix multiplication between SA and VT and reshape the result to get FSA ∈ RC×H×W .
The output feature can be formulated as:

F′ = F + FSA. (8)

For inputs F̃3 and F̃2, the outputs of SAM are denoted as F̃′3 and F̃′2, respectively.
As shown in Figure 2, after adding SAM in our network, when ` = 1 or ` = 2, input
of Equations (2) and (4) should be F̃′`+1. For SOD, a high-level feature is expected to be
augmented by global context, whereas a shallow-level feature is supposed to place emphasis
on structural details. Therefore, we do not add SAM in the shallow level integration
(i.e., level 1 in Figure 2). The experimental results in Section 5.2 demonstrate the rationality
of our design (i.e., SAM-ver vs. SAM-ver-1).

3.3. Boundary Enhancement Module

An auxiliary boundary enhancement branch, which is simple but effective, is proposed
to guide the network focus on boundaries and other error-prone parts of the image. The
boundary enhancement module (BEM) is illustrated in Figure 4.

A
Guidance

Input
Feature

1 1CB  3 3CB 

1 1CBR 

Enhanced
FeatureCat

Figure 4. Illustration of boundary enhancement module; CBk×k means a k× k convolution followed
by batch normalization operation. The input feature is processed to generate an attention map for
attention weight loss computation, and the intermediate feature is taken as a guidance to produce the
enhanced feature.

We apply two convolution followed by batch normalization operations on the input
feature to generate attention map A, which is utilized as a weight for the loss computation
in Section 3.4. Ground-truth boundary maps, which are pre-computed by the method
in [52], are used to provide guidance for the attention generation. In addition, we extract
the intermediate feature as guidance to enhance and complement the input feature. As
shown in Figure 4, the input feature and the guidance are concatenated together and fused
by a 1× 1 convolution with batch normalization and ReLU operations. The enhanced
feature is then used to conduct salient object prediction.

3.4. Supervision Strategy

In this paper, a hybrid loss function is proposed to supervise the network. At first,
we introduce BCE [53] and IOU loss [54] to ensure pixel-wise smooth gradient as well as
optimize the global structure. For the saliency map S and ground truth G, the BCE loss can
be calculated as follows:

LB(S, G) = −
H

∑
x=1

W

∑
y=1

[Gxy log(Sxy) + (1− Gxy) log(1− Sxy)], (9)

where (x, y) denotes the spatial position; H and W represent the height and width of
images. IOU loss is formulated as:

LI(S, G) = 1−
∑H

x=1 ∑W
y=1 SxyGxy

∑H
x=1 ∑W

y=1 [Sxy + Gxy − SxyGxy]
. (10)
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Furthermore, to boost the network to learn sharper boundaries, we propose an attention
weighted loss (AW loss) based on the learned attention map A in Section 3.3. The AW loss
can be considered as a combination of attention weighted BCE and IOU loss:

LAW(S, G, A) = LAWB(S, G) + LAWI(S, G)

= −
∑H

x=1 ∑W
y=1 [Gxy log(Sxy) + (1− Gxy) log(1− Sxy)]Axy

∑H
x=1 ∑W

y=1 Axy

+1−
∑H

x=1 ∑W
y=1 SxyGxy Axy

∑H
x=1 ∑W

y=1 [Sxy + Gxy − SxyGxy]Axy
.

(11)

In addition, to ensure the attention map focuses on the boundary, we use an auxiliary
weighted BCE Loss LAX(A, Gb) to supervise A, where Gb is the ground-truth boundary
(radius = 2) generated from G. The calculation of LAX is as in [55].

The final loss function for the proposed network is as follows:

L = LB + LI + βLAW + λLAX , (12)

where β = 1 and λ = 20 are weighting coefficients for the loss function. We set the
parameters based on experimental experience.

4. Results

Experimental results of the proposed work are displayed in this section. In Sections 4.1
and 4.2, we introduce the datasets and evaluation metrics of the experimental results.
Implementation details of the proposed ALNet are described in Section 4.3. In Section 4.4,
we compare our method with the state-of-the-art models from both quantitative and
qualitative aspects. Furthermore, we conduct extension experiments on optical remote
sensing images (RSIs) and compare our ALNet with state-of-the-art RSI-SOD methods. The
details are introduced in Section 4.5.

4.1. Datasets

The experiments are conducted on five benchmark datasets: ECSSD [56], HKU-
IS [57], PASCAL-S [58], DUT-OMRON [59], and DUTS [60]. The ECCSD dataset contains
1000 natural images with complex structures. In HKU-IS, there are 4447 images, which
include multiple salient objects or objects touching the image boundary. PASCAL-S, which
is generated from the PASCAL VOC dataset [61], contains 850 images. DUT-OMRON is
a challenging dataset with 5168 images. DUTS is a relatively large dataset that contains
10,553 training images and 5019 testing images. We train our network based on the training
images of DUTS for salient object detection.

In addition, in order to further demonstrate the stability and scalability of ALNet,
we test the proposed method on two optical remote sensing datasets dedicated to SOD:
ORSSD [44] and EORSSD [43]. ORSSD is the first publicly available dataset for SOD in
optical remote sensing images. It contains 800 images (600 for training and 200 for testing),
which are collected from the Google Earth and some existing RSI datasets. EORSSD is
a large public dataset for RSI-SOD that extends ORSSD to 2000 images (1400 for training
and 600 for testing). Specifically, we augment the training set of EORSSD and ORSSD by
flipping and rotation, generating seven additional variants of the original training data. On
EORSSD, we train our ALNet based on 11,200 augmented pairs. On ORSSD, we train our
ALNet with 4800 augment pairs.

4.2. Metrics

We adopt the popular precision–recall (PR) curves, F-measure curves, mean F-measure
(Fβ) [62], weighted F-measure (Fω

β ) [63], mean absolute error (M) [64], and mean E-measure
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(Em
ξ ) [1] as our evaluation metrics. Mean F-measure is an overall performance measurement,

which is defined as:

Fβ =
(1 + β2)× Precision× Recall

β2 × Precision + Recall
, (13)

where β2 = 0.3 to emphasize the precision. Weighted F-measure offers an intuitive gen-
eralization of mean F-measure by changing precision and recall to their ωth power. As
suggested in [65], β2 for the weighted F-measure is set to 1.0. Mean absolute error is defined
as the average pixel-wise absolute difference between the binary ground truth G and the
saliency map S, which can be computed by:

MAE =
1

W × H

W

∑
x=1

H

∑
y=1
|S(x, y)− G(x, y)|, (14)

where W and H denote width and height of saliency map, respectively. The E-measure
focuses on both local pixel values and image-level statistics. It can be computed by:

Eξ =
1

W × H

W

∑
x=1

H

∑
y=1

θ(ξ), (15)

where θ(ξ) is the enhanced alignment matrix. Mean E-measure (Em
ξ ) is utilized in our

experiment.

4.3. Implementation Details

The proposed method is based on the Pytorch platform. We conduct our experiments
on a PC with an Intel Core i7-9700KF CPU (with 3.9 GHz Turbo boost) and a single
NVIDIA GTX 2080Ti GPU. The input images are resized to 352 × 352 for both training and
testing. We use data augmentation methods such as normalizing, cropping, and flipping.
The parameters of the backbone are initialized from VGG16 [66], ResNet50 [67], and
MSCAN-b [68] for fair comparison with existing methods. We utilize SGD optimizer [69] to
train the entire network end to end. The base learning rate is set to 0.05, and the warm-up
and linear decay strategies are used to adjust the learning rate. The momentum and the
weight decay are set to 0.9 and 1 × 10−4, respectively. Batch size is set to 30 (for ResNet50
backbone) and 20 (for VGG16 and MSCAN-b backbone), and we train the network for
60 epochs. Apex (https://github.com/NVIDIA/apex (accessed on 20 December 2022))
and fp16 are utilized to accelerate the training process.

For extended experiments on remote sensing datasets, the implementation details are
just the same as the original SOD. The only difference is the training dataset. Specially, on
the EORSSD and ORSSD datasets, we resize the input image to 288 × 288 and train our
ALNet for 65 epochs and 45 epochs, respectively.

For VGG16, ResNet50, and MSCAN-b backbone, the inference time of the proposed
method for a 352 × 352 image is 0.0235 s (43 fps), 0.0188 s (53 fps), and 0.0280 s (36 fps),
respectively, which demonstrates the feasibility of our method for real-time applications.
The source code will be released to facilitate reproducibility.

4.4. Comparison to State-of-the-Art Methods

We compare our proposed algorithm with 17 state-of-the-art salient object detection
methods, including AFNet [15], PAGENet [16], PS [17], ASNet [18], CPD [19], BASNet [20],
EGNet [21], SCRN [22], F3Net [23], GateNet [24], GCPANet [25], ITSD [26], MINet [27],
A-MSF [29], VST [35], ICON [36], and DCENet [37].

https://github.com/NVIDIA/apex
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For fair comparisons, we directly use the saliency maps offered by the authors or use
the provided codes to generate the results. As some algorithms employ various backbones,
we compare with the best results of them.

Quantitative Comparison. Table 1 shows the quantitative comparison results in terms
of mean F-measure, weighted F-measure, mean absolute error, and mean E-measure. We
also compare the computational complexity and the size of parameters in the second and
third columns of Table 1 (i.e., MACs and Params). Figure 5 shows the P-R curves and
F-measure curves of our method and the state-of-the-art methods. From the results, we can
see that, for VGG16 and ResNet50 backbone, our proposed network performs favorably
against other state-of-the-art methods on all datasets and metrics, as well as keeps the
complexity and model size relatively small, which demonstrates the effectiveness of our
proposed network based on alignment integration.

For the attention based backbone, we implement our network based on MSCAN-
b, which utilizes multi-scale convolution attention to encode features. Compared with
the existing methods, ALNet-MS ranks first on most of the datasets and metrics. It is
noteworthy that ALNet-MS has smaller MACs and Params than the existing methods. The
experiments based on different backbones all prove that our proposed network can achieve
state-of-the-art performance in both effectiveness and efficiency.

Table 1. Comparisons with 17 methods on 5 benchmark datasets. The best two results of each part
are shown in red and blue; ↑means higher value is better, whereas ↓ is the contrary. ‘-V’: VGG16 [66],
‘-R’: ResNet50 [67], ‘-T2’: T2T-ViT [70], ‘-S’: SWIN [71], ‘-MS’: MSCAN-b [68].

Method MACs Params
ECSSD HKU-IS PASCAL-S DUTS DUT-OMRON

Fβ ↑ Fω
β ↑ M ↓ Em

ξ ↑ Fβ ↑ Fω
β ↑ M ↓ Em

ξ ↑ Fβ ↑ Fω
β ↑ M ↓ Em

ξ ↑ Fβ ↑ Fω
β ↑ M ↓ Em

ξ ↑ Fβ ↑ Fω
β ↑ M ↓ Em

ξ ↑

VGG based Backbone

PAGENet (2019) – – 0.904 0.886 0.042 0.936 0.884 0.865 0.037 0.935 0.811 0.783 0.076 0.878 0.793 0.769 0.052 0.883 0.743 0.722 0.062 0.849
AFNet (2019) 21.66 35.95 0.905 0.886 0.042 0.935 0.888 0.869 0.036 0.934 0.824 0.797 0.070 0.883 0.812 0.785 0.046 0.893 – – – –
ASNet (2020) – – 0.890 0.865 0.047 0.926 0.873 0.846 0.041 0.923 0.817 0.784 0.070 0.882 0.760 0.715 0.061 0.854 – – – –

ALNet-V 48.24 15.95 0.928 0.915 0.033 0.950 0.920 0.910 0.027 0.956 0.836 0.815 0.064 0.900 0.853 0.836 0.037 0.921 0.765 0.744 0.056 0.864

ResNet50 based Backbone

PS (2019) – – 0.904 0.881 0.041 0.937 0.883 0.856 0.038 0.933 0.814 0.780 0.071 0.883 0.804 0.762 0.048 0.892 0.760 0.730 0.061 0.867
CPD (2019) 17.7 47.85 0.913 0.898 0.037 0.942 0.892 0.875 0.034 0.938 0.819 0.794 0.071 0.882 0.821 0.795 0.043 0.898 0.742 0.719 0.056 0.847

BASNet (2019) 127.36 87.06 0.917 0.904 0.037 0.943 0.902 0.889 0.032 0.943 0.818 0.793 0.076 0.879 0.822 0.803 0.048 0.895 0.767 0.751 0.056 0.865
EGNet (2019) 157.21 111.69 0.918 0.903 0.037 0.943 0.902 0.887 0.031 0.944 0.823 0.795 0.074 0.881 0.839 0.815 0.039 0.907 0.760 0.738 0.053 0.857
SCRN (2019) 15.09 25.23 0.916 0.900 0.037 0.939 0.894 0.876 0.034 0.935 0.833 0.807 0.063 0.892 0.833 0.803 0.040 0.900 0.749 0.720 0.056 0.848
F3Net (2020) 16.43 25.54 0.924 0.912 0.033 0.948 0.910 0.900 0.028 0.952 0.835 0.816 0.061 0.898 0.851 0.835 0.035 0.920 0.766 0.747 0.053 0.864

GateNet (2020) 162.13 128.63 0.913 0.894 0.040 0.936 0.897 0.880 0.033 0.937 0.826 0.797 0.067 0.886 0.837 0.809 0.040 0.906 0.757 0.729 0.055 0.855
GCPANet (2020) 54.31 67.06 0.916 0.903 0.035 0.944 0.901 0.889 0.031 0.944 0.829 0.808 0.062 0.895 0.841 0.821 0.038 0.911 0.756 0.734 0.056 0.853

ITSD (2020) 15.96 26.47 0.921 0.910 0.034 0.947 0.904 0.894 0.031 0.947 0.831 0.812 0.066 0.894 0.840 0.823 0.041 0.913 0.768 0.750 0.061 0.865
MINet (2020) 87.11 126.38 0.923 0.911 0.033 0.950 0.909 0.897 0.029 0.952 0.830 0.809 0.064 0.896 0.844 0.825 0.037 0.917 0.757 0.738 0.056 0.860
A-MSF (2021) 17.5 32.5 0.927 0.916 0.033 0.951 0.912 0.903 0.027 0.956 0.842 0.822 0.061 0.901 0.855 0.841 0.034 0.928 0.772 0.757 0.050 0.873

DCENet (2022) 59.78 192.96 0.924 0.913 0.035 0.948 0.908 0.898 0.029 0.951 0.845 0.825 0.061 0.902 0.849 0.833 0.038 0.918 0.769 0.753 0.055 0.865
ICON-R (2023) 20.91 33.09 0.928 0.918 0.032 0.954 0.912 0.902 0.029 0.953 0.838 0.818 0.064 0.899 0.853 0.836 0.037 0.924 0.779 0.761 0.057 0.876

ALNet-R 19.82 28.46 0.932 0.923 0.030 0.955 0.921 0.913 0.026 0.959 0.843 0.826 0.059 0.907 0.860 0.847 0.035 0.928 0.778 0.761 0.055 0.874

Attention based Backbone

VST-T2 (2021) 23.16 44.63 0.920 0.910 0.033 0.951 0.907 0.897 0.029 0.952 0.835 0.816 0.061 0.902 0.845 0.828 0.037 0.919 0.774 0.755 0.058 0.871
ICON-S (2023) 52.59 94.30 0.940 0.936 0.023 0.966 0.929 0.925 0.022 0.968 0.865 0.854 0.048 0.924 0.893 0.886 0.025 0.954 0.815 0.804 0.043 0.900

ALNet-MS 15.14 27.45 0.943 0.938 0.024 0.964 0.936 0.932 0.020 0.969 0.866 0.851 0.051 0.922 0.899 0.893 0.024 0.955 0.817 0.806 0.043 0.903

Qualitative Comparison. In Figure 6, we compare the visual results of the methods
for qualitative evaluation. Benefiting from multi-level alignment integration, our network
can generate powerful integrated features, which contain both high-level semantics and
spatial details, to segment salient regions even in very challenging scenes (e.g., 1st and 2nd
rows in Figure 6). In addition, compared with other boundary learning based methods
such as F3Net and A-MSF, our proposed methods can generate relatively clear and accurate
object boundaries.
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(a) ECSSD (b) HKU-IS (c) PASCAL-S (d) DUTS (e) DUT-OMRON

Figure 5. P-R curves and F-measure curves of the proposed method compared with other state-of-
the-art methods on five benchmark datasets.

Image GT ALNet-R ICON-R A-MSF MINet ITSD F3Net GCPANet GateNet

Figure 6. Visual comparisons of our results and the state-of-the-art methods. Our method can
uniformly highlight salient regions and produce sharper boundaries even with complex background
distractions in the scene.

4.5. Extension Experiment on the Remote-Sensing Datasets

To further discuss the proposed model’s robustness and scalability, we conduct experi-
ments on optical remote sensing datasets. We compare our ALNet with four state-of-the-art
RSI-SOD methods: LVNet [44], DAFNet [43], MJRB [45], and ACCoNet [46]. For fair
comparison with existing methods, the network is initialized from ResNet50.
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Quantitative Comparison. The quantitative comparison results of mean F-measure,
weighted F-measure, mean absolute error, and mean E-measure are shown in Table 2.
For the EORSSD dataset, the proposed method ranks first on all metrics. For the ORSSD
dataset, the result of our method is also competitive. In Figure 7, we display the F-measure
curves of the proposed method with state-of-the-art methods on two remote sensing
datasets. Our method performs well against state-of-the-art RSI-SOD methods. It is worth
mentioning that the proposed method is a universal framework for salient object detection
and not dedicated to optical remote sensing images. However, the results demonstrate the
effectiveness and scalability of the proposed network.

Table 2. Comparisons with four state-of-the-art RSI-SOD methods on two remote sensing datasets.
The best two results are shown in red and blue.

Methods Backbone
EORSSD ORSSD

Fβ ↑ Fω
β ↑ M ↓ Em

ξ ↑ Fβ ↑ Fω
β ↑ M ↓ Em

ξ ↑

LVNet (2019) VGG 0.736 0.702 0.015 0.882 0.800 0.775 0.021 0.926
DAFNet (2021) ResNet 0.784 0.783 0.006 0.929 0.851 0.844 0.011 0.954

MJRB (2022) ResNet 0.806 0.792 0.010 0.921 0.857 0.842 0.015 0.939
ACCoNet (2023) ResNet 0.846 0.852 0.007 0.966 0.895 0.896 0.009 0.977

ALNet-R ResNet 0.865 0.865 0.006 0.967 0.895 0.892 0.009 0.975

(a) EORSSD (b) ORSSD

Figure 7. F-measure curves of the proposed method with state-of-the-art RSI-SOD methods on two
remote sensing datasets.

Qualitative Comparison. The qualitative results, including several challenging and
representative scenes of optical remote sensing images, are shown in Figure 8.

For the first scene (i.e., object with shadows), being affected by the shadows, ACCoNet,
MJRB, DAFNet, and LVNet cannot generate accurate and sharp boundaries, but our method
can better highlight the object and produce relatively accurate results.

For the scene with a tiny object, which is typical in optical remote sensing images, our
proposed method can segment the tiny object with fine details; compared with the other
methods, the object shape generated by our method is closer to the ground truth.

Another difficult scene is one with multiple objects. As shown in Figure 8, ACCoNet
and MJRB incorrectly predict non-salient interference in the background as foreground.
DAFNet generates blur salient regions, and LVNet fails to detect the real objects in the
first row of this scene. In contrast, our method captures all objects finely without any
redundant regions.

For the scene with irregular geometry structure (e.g., lakes and rivers), the saliency
maps of our method obviously have sharper boundaries, and the highlighted regions are
concentrated. From the visual results, we can see that our methods can better deal with the
complex and challenging scenes in optical remote sensing images, which further proves
the reliability of the method.
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Object with Shadows

Tiny Object

Multiple Objects

Irregular geometry structure

Optical RSI GT ALNet-R ACCoNet MJRB DAFNet LVNet

Figure 8. Visual comparisons with four representative state-of-the-art RSI-SOD methods.

5. Discussion

In this section, we conduct ablation studies for all the proposed modules (i.e., feature
alignment, strip attention module, and boundary enhancement module) in our ALNet and
analyze the effectiveness of them in Sections 5.1–5.3, respectively. For a comprehensive
analysis of the model, we further discuss the failure cases in Section 5.4.

5.1. Effectiveness of Feature Alignment

We use an FCN-based model, which combines adjacent level features by direct addi-
tion, as the baseline model (i.e., w.o.Align). Different alignment technologies are exploited
on the baseline model. The results based on ResNet50 are shown in the first part of
Table 3. F-Align and and D-Align denote flow alignment and deformable alignment, re-
spectively. The comparisons of the alignment methods and the baseline demonstrate the
misalignment problem in multi-level feature integration indeed decreases the performance.
Deformable alignment performs better than flow alignment, which indicates the importance
of offset diversity.

In addition, we visualize the last-stage integrated features of different methods to
make the results explainable, as shown in Figure 9. As we can see, features without
alignment are fuzzy and lack both semantic and structural information. After alignment,
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the models can generate more meaningful feature representation. Compared with flow
alignment, deformable alignment features can better highlight salient regions and have
more precise boundaries, which coincides with the quantitative results in Table 3.

Table 3. Ablation study of our proposed method. We show the results based on the ResNet50
backbone. The table can be divided into three parts to demonstrate effectiveness of the proposed
modules in ALNet. Best results are shown in bold.

Settings
ECSSD PASCAL-S DUTS DUT-OMRON

Fβ ↑ Fω
β ↑ M ↓ Fβ ↑ Fω

β ↑ M ↓ Fβ ↑ Fω
β ↑ M ↓ Fβ ↑ Fω

β ↑ M ↓

Effectiveness of Alignment

w.o.Align 0.898 0.883 0.043 0.814 0.790 0.070 0.808 0.787 0.045 0.727 0.701 0.063
F-Align 0.921 0.908 0.035 0.834 0.812 0.062 0.847 0.830 0.038 0.757 0.736 0.056
D-Align 0.923 0.910 0.034 0.837 0.816 0.062 0.852 0.835 0.037 0.766 0.747 0.056

Effectiveness of SAM

+SAM-ver 0.928 0.917 0.032 0.838 0.818 0.063 0.859 0.845 0.035 0.777 0.758 0.054
+SAM-hori 0.924 0.912 0.033 0.841 0.822 0.061 0.856 0.842 0.036 0.773 0.755 0.056

+BSAM 0.927 0.916 0.032 0.837 0.818 0.064 0.854 0.839 0.037 0.768 0.749 0.062
+SAM-ver-1 0.926 0.915 0.033 0.842 0.822 0.062 0.855 0.840 0.036 0.769 0.750 0.058
+Non-Local 0.924 0.912 0.034 0.837 0.815 0.064 0.852 0.835 0.037 0.772 0.752 0.055

Effectiveness of BEM

+BEM 0.932 0.923 0.030 0.843 0.826 0.059 0.860 0.847 0.035 0.778 0.761 0.055
w/o LAX 0.927 0.917 0.031 0.836 0.817 0.064 0.855 0.841 0.036 0.771 0.753 0.057
w/o LAW 0.928 0.917 0.031 0.843 0.824 0.061 0.855 0.841 0.035 0.777 0.759 0.053

Image D-AlignGT w.o.Align F-Align

Figure 9. Visualization of feature maps with and without alignment. Larger values are denoted by
hot colors, and vice versa.

5.2. Effectiveness of SAM

On the basis of D-Align, we conduct stripping operations in both the vertical and
horizontal directions for the integrated feature. In the second part of Table 3, we list the
results of using vertical stripping (+SAM-ver), using horizontal stripping (+SAM-hori), and
using both directions (+BSAM). The experimental results demonstrate SAM is effective
for adaptively encoding global contextual relations for the integrated feature. SAM-ver is
superior to SAM-hori on most of the datasets, and using both directions did not bring out
improvement. On the basis of SAM-ver, we add SAM on the integration of feature level 1
(SAM-ver-1). The results show that SAM-ver is better than SAM-ver-1, which indicates
shallow level integration prefers spatial details to global context.

Furthermore, SAM is essentially a simplified self attention mechanism, and to further
prove its effectiveness, we compare it with a non-local module in Table 3. Compared with
non-local, SAM performs better in our network, and, due to stripping operations, SAM is
more efficient in computation.
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5.3. Effectiveness of BEM

The boundary enhancement module is a simple but effective branch for the network
to generate clear boundaries. In the third part of Table 3, we conduct ablation studies for
BEM based on +SAM-ver. The results indicate that BEM is effective for performance im-
provement. Removing LAX or LAW lowers the final results, which proves the effectiveness
of each part in BEM.

In Figure 10, we compare the saliency maps with and without BEM and visualize
attention map A at the same time.

Image GT w.o.BEM Attention BEM

Figure 10. Visual comparisons for BEM. Attention map A generated by BEM is also visualized;
w.o.BEM means without BEM in our network.

From the results, we can see that BEM can learn reasonable attention maps, which make
the network put more emphasis on boundary and error-prone regions. The results with
BEM obviously have sharper boundaries and can deal with more complex backgrounds.

5.4. Failure Cases

The failure cases of our method are displayed in Figure 11.

Image DCENetGT ALNet-R ICON-R A-MSF

Figure 11. Failure cases of our proposed method and other state-of-the-art methods.

In the first row, our method incorrectly predicts oranges as the foreground objects.
In the second row, the whole bed (not just the pillow) is taken as the salient object by our
method. In the third row, our method cannot detect the real object (i.e., the board with
“organic”). Similarly, other state-of-the-art methods also fail in these cases. We summarize
the possible reasons for these failure cases: (1) insufficient training samples (e.g., 1st row);
(2) controversial annotations (e.g., 2nd row); (3) too complex scene and requirements for
additional information like depth (e.g., 3rd row).
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6. Conclusions

In this paper, an alignment integration network (ALNet) is proposed to alleviate
misalignment problems in combining multi-level convolutional features. Feature alignment
is designed in our network to align adjacent level features step by step to produce effective
feature representation for salient object detection. To help the network encode global
context, a strip attention module is introduced to augment the representative capacity of the
feature. Finally, we construct a boundary enhancement module and an attention weighted
loss function to make the network focus on boundaries and hard regions. Comprehensive
experiments are conducted on five SOD benchmarks and two remote sensing datasets. The
experimental results demonstrate the state-of-the-art performance of our ALNet as well as
the effectiveness of each proposed modules.
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