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A B S T R A C T   

This paper proposes a design method for tilted and decentered anamorphic projection optics. In 
this method, the structure is designed in groups according to the magnification requirements; the 
anamorphic system section’s primary aberration is analyzed based on vector aberration theory, 
the tilted and decentered system section’s node behavior is analyzed based on node aberration 
theory, and spatial ray tracing is used to control the anamorphic optical system’s pupil to be 
elliptical to realize pupil matching between groups. A mathematical aberration balance and 
constraint control model is established. The node position is used as an evaluation function such 
that the node is close to or within the full field, thus controlling the primary aberration for the 
initial system over the full field. The initial system is constructed with increased optimization 
potential to satisfy the aberration and structural constraints. The initial structure for the tilted and 
decentered anamorphic projection optics (βx = 1/4,βy = 1/8) is constructed with the coma and 
astigmatism nodes close to or within the full field. The structure is then optimized to achieve a 
wavefront root-mean-square error for the EUV tilted and decentered anamorphic objective with 
NA= 0.55 of better than 0.025λ (λ = 13.5 nm).   

1. Introduction 

The tilted and decentered system is widely used in off-axis optical systems. In the EUV field, tilted and decentered elements provide 
systems greater freedom to achieve very small aberrations. With lithography technology gaining traction for operation at the 5–3 nm 
node, the extreme ultraviolet (EUV) lithography projection optics, which form the core element of the exposure system, are being 
developed with higher numerical apertures [1–3]. To balance the impact of these high numerical apertures on shadowing effects and 
on the system’s productivity, anamorphic objective systems with demagnifications of 4 × in the orthogonal scanning direction 
(x-direction) and 8 × in the scanning direction (y-direction), will have to be applied in high-numerical-aperture (high-NA) EUV 
lithography optical systems. EUV lithography projection optics have very high imaging requirements and are required to achieve 
resolutions beyond the diffraction limit [1]. Different types of aberrations in the projection optics affect different lithography per-
formance indicators, and an appropriate initial structure for aberration balance can help to optimize the control of each aberration in 
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the optical system. 
To design high-NA projection optics with different magnifications in the X and Y directions, Mann used the grouping design method 

described in their patent. The groupings were based on the aperture group and the field group, with the aperture group being selected 
as the non-anamorphic surface and the field group being selected as the anamorphic surface according to their design requirements, to 
ensure that the magnification requirements in the X and Y directions were met [4]. Li’s team proposed a combined magnification 
method for design of the initial structure for high-NA (NA=0.5) projection optics that provided a solution for construction of the initial 
structure of the high-NA projection optics from the first-order structure direction, but it did not consider the primary aberration [5]. 
Jin’s team used vector aberration theory when designing the initial structure of high-NA (NA=0.55) projection optics, and derived and 
calculated the third-order aberration coefficients of the co-axial anamorphic optical system elements to achieve aberration balance and 
multi-constraint control within the initial system [6]. 

The tilted and decentered elements provide greater freedom for the anamorphic optical system design to achieve high-NA EUV 
lithography projection optics with very small aberrations. All the design methods described above use optics with co-axial elements as 
their initial structure and add the tilted and decentered variables during the optimization process. These methods do not consider the 
effects of tilted and decentered elements on the aberrations in the initial optical system. This causes a large perturbation in the 
optimization process; the system deviates too widely from the initial system, the constraint is difficult to control, and the system can 
easily fall into a local minimal value. To ensure balance between the aberrations and the multi-constraint control of the initial system 
for tilted and decentered anamorphic optical systems, this paper proposes an initial system design method for these optical systems. 
First, the method groups the systems according to their magnification requirements, and it then controls the aberration values of the 

Fig. 1. Schematic diagram of the tilted and decentered anamorphic optical system.  

Fig. 2. Flow chart for the initial system design.  
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anamorphic system components based on vector aberration theory to prevent the initial system from having excessively large primary 
aberration values. Using nodal aberration theory, the nodal behavior of the tilted and decentered system aberrations, which include 
spherical aberrations, coma aberrations, and astigmatism, is analyzed to ensure that the nodes remain within the required field as far as 
possible to reduce the system’s aberrations. Spatial ray tracing is used to control the pupil shape of the anamorphic optical system and 
realize pupil matching between the groups. Second, the optical system’s structural constraints and aberrations are parameterized, and 
a mathematical model of the tilted and decentered anamorphic optical system is then established to solve for the initial system, with 
the aberration node position acting as the evaluation function. Finally, an initial system design with optimization potential is provided 
for the tilted and decentered anamorphic optical system. In this paper, an initial tilted and decentered anamorphic projection optics 
system is constructed via this method. The nodes are either close to or within the full field, as shown by the field map of the coma 
aberrations and astigmatism. The initial system has a small full-field aberration value and is optimized to achieve a wavefront root- 
mean-square (RMS) error for the EUV tilted and decentered anamorphic objective with NA= 0.55 of better than 0.025λ (where the 
wavelength λ = 13.5 nm). 

2. Initial system design 

In this paper, the tilted and decentered anamorphic optical system shown in Fig. 1 is divided into three groups for the initial system 
design. The design flow is as shown in Fig. 2. To satisfy the magnification requirements of the optical system in both the X and Y 
directions, the first group, M1, M2, and M3, are coaxial elements with anamorphic conic surfaces, and the expression for Z is: 

Z =
cxx2 + cyy2

1 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
(

1 + kx

)
c2

xx2 −
(

1 + ky

)
c2

yy2

√ (1)  

where cx and cy represent the curvatures of the XZ plane and the YZ plane, respectively, and kx and ky represent the cones of the XZ and 
YZ planes, respectively. To provide better connections to the subsequent elements, M3 acts as the stop for G1. G1 is analyzed using the 
theory described in Section 2.1 part A. To increase the number of degrees of freedom of the optical system, the second group com-
ponents M4 and M5 are tilted and decentered elements with conic surfaces, and the expression for Z in this case is: 

Z =
cr2

1 +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − (1 + k)c2r2

√ (2)  

where c represents the surface curvature, r represents the polar diameter of the surface polar coordinates, respectively, and k represents 
the surface cones. G2 is then analyzed using the nodal aberration theory described in Section 2.1 part B. The third group is the stop and 
M6, where M6 is a coaxial element with a conic surface. The stop for the latter group is set between M5 and M6 to ensure the tele-
centricity of the system during the subsequent optimization. To calculate the co-axial aberration and the aberration nodes, the 
structure of each group will be parameterized according to paraxial theory. A mathematical model containing multiple constraints will 
then be established. The model will then be solved to obtain an initial system that meets the design requirements, as shown in Section 
2.2. 

2.1. Previous theory 

A. Vector aberration theory for co-axial optical system with anamorphic conic surfaces. 
Based on vector wave aberration theory [7–10]: 

W =
∑

j

∑∞

p

∑∞

n

∑∞

m
(Wklm)j

(
H→· H→

)p
( ρ→· ρ→)

n
(

H→· ρ→
)m

(3) 

The aberration of an anamorphic optical system is dependent on the field coordinates (Hx,Hy) and the pupil coordinates (ρx,ρy). The 

vector aberration of the anamorphic optical system can be obtained by substituting H→= H→x +H→y and ρ→ = ρ→x + ρ→yinto Eq. (3) to 
give: 

Wklm =
∑

j

∑

p

∑

n

∑

m
(Wklm)j

(
H
⇀
·H

⇀)p
(ρ⇀ · ρ⇀)n

(
H
⇀
· ρ⇀
)m

=
∑

j

∑

p

∑

n

∑

m
(Wklm)j

[(
Hx
⇀

+ Hy
⇀ )

·
(

Hx
⇀

+ Hy
⇀ )]p[(

ρx
⇀

+ ρy
⇀ )

·
(
ρx
⇀

+ ρy
⇀ )]n

[(
Hx
⇀

+ Hy
⇀ )

·
(
ρx
⇀

+ ρy
⇀ )
]m

=
∑

j

∑

p

∑

n

∑

m
(Wklm)j

(
H2

x + H2
y

)p(
ρ2

x + ρ2
y

)n(
Hx · ρx + Hy · ρy

)m

(4)  

where k = 2p+m and l= 2 n + m. When k + l= 4, Eq. (4) then represents the third-order aberration vector form. This form consists of 
six parameters: H2

x ,H
2
y ,ρ2

x ,ρ2
y ,Hxρx,Hyρy. There are 21 terms for the third-order aberration of the anamorphic optical system, three of 

which are piston terms and two of which appear twice, which means that there are actually 16 terms in total for the third-order 
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aberration of the anamorphic optical system, as given in Eq. (5): 

W
(
Hx,Hy; ρx, ρy

)
=
{

D1ρ4
x + D2ρ4

y + D3ρ2
xρ2

y

}

+
{

D4Hxρ3
x + D5Hyρ2

xρy + D6Hxρxρ2
y + D7Hyρ3

y

}

+
{

D8H2
xρ2

x + D9H2
yρ2

y + D10H2
yρ2

x + D11H2
xρ2

y + D12HxHyρxρy

}

+
{

D13H3
xρx + D14H3

yρy + D15HxH2
yρx + D16H2

xHyρy

}

(5) 

Each third-order aberration coefficient for the anamorphic optical system is shown below in Eq. (6). 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D1 = −
1
8
∑k

j=1

{[
Ax,j

(
hx,jΔu2

x,j + cx,jh2
x,jΔux,j

)]
+
(

c3
x,j − c3

3,j

)
h4

x,jΔnj

}

D2 = −
1
8
∑k

j=1

{[
Ay,j

(
hy,jΔu2

y,j + cy,jh2
y,jΔuy,j

)]
+
(

c3
y,j − c3

5,j

)
h4

y,jΔnj

}

D3 = −
1
4
∑k

j=1

{[
Ax,j

(
hx,jΔu2

y,j + cy,jh2
y,jΔux,j

)]
+
(

c2
x,jcy,j − c3

4,j

)
h2

x,jh
2
y,jΔnj

}

D4 = −
1
6
∑k

j=1

{[
Ax,j

(
hx,jΔu2

x,j + cx,jh2
x,jΔux,j + 2hx,jΔux,jux,j + 2cx,jhx,jhx,jΔux,j

)
− ψxΔu2

x,j + 3
(

c3
x,j − c3

3,j

)
h3

x,jhx,jΔnj

]}

D5 = −
1
2
∑k

j=1

{[
Ax,j

(
hx,jΔuy,juy,j + cy,jhy,jhy,jΔux,j

)
+
(

c2
x,jcy,j − c3

4,j

)
h2

x,jhy,jhy,jΔnj

]}

D6 = −
1
2
∑k

j=1

{[
Ax,j

(
hx,jΔu2

y,j + cy,jh2
y,jΔux,j

)
− ψxΔu2

y,j +
(

c2
x,jcy,j − c3

4,j

)
hx,jhx,jh2

y,jΔnj

]}

D7 = −
1
6
∑k

j=1

{[
Ay,j

(
hy,jΔu2

y,j + cy,jh2
y,jΔuy,j + 2hy,jΔuy,juy,j + 2cy,jhy,jhy,jΔuy,j

)
− ψyΔu2

y,j + 3
(

c3
y,j − c3

5,j

)
h3

y,jhy,jΔnj

]}

D8 = −
1
4
∑k

j=1

{[
Ax,j

(
hx,jΔu2

x,j + cx,jh
2
x,jΔux,j + 2hx,jΔux,jux,j + 2cx,jhx,jhx,jΔux,j

)
− 2ψxΔux,jux,j + 3

(
c3

x,j − c3
3,j

)
h2

x,jh
2
x,jΔnj

]}

D9 = −
1
4
∑k

j=1

{[
Ay,j

(
hy,jΔu2

y,j + cy,jh
2
y,jΔuy,j + 2hy,jΔuy,juy,j + 2cy,jhy,jhy,jΔuy,j

)
− 2ψyΔuy,juy,j + 3

(
c3

x,j − c3
3,j

)
h2

x,jh
2
x,jΔnj

]}

D10 = −
1
4
∑k

j=1

{[
Ax,j

(
hx,jΔu2

y,j + cy,jh
2
y,jΔux,j

)]
+
(

c2
x,jcy,j − c3

4,j

)
h2

x,jh
2
y,jΔnj

}

D11 = −
1
4
∑k

j=1

{[
Ay,j

(
hy,jΔu2

x,j + cx,jh2
x,jΔuy,j

)]
+
(

cx,jc2
y,j − c3

4,j

)
h2

x,jh
2
y,jΔnj

}

D12 = −
∑k

j=1

{[
Ax,j

(
hx,jΔuy,juy,j + cy,jhy,jhy,jΔux,j

)
− ψxΔuy,juy,j +

(
c2

x,jcy,j − c3
4,j

)
hx,jhx,jhy,jhy,jΔnj

]}

D13 = −
1
2
∑k

j=1

{[
Ax,j

(
hx,jΔu2

x,j + cx,jh
2
x,jΔux,j

)
− ψxΔu2

x,j +
(

c3
x,j − c3

3,j

)
hx,jh

3
x,jΔnj

]}

D14 = −
1
2
∑k

j=1

{[
Ay,j

(
hy,jΔu2

y,j + cy,jh
2
y,jΔuy,j

)
− ψyΔu2

y,j +
(

c3
y,j − c3

5,j

)
hy,jh

3
y,jΔnj

]}

D15 = −
1
2
∑k

j=1

{[
Ax,j

(
hx,jΔu2

y,j + cy,jh
2
y,jΔux,j

)
− ψxΔu2

y,j +
(

c2
x,jcy,j − c3

4,j

)
hx,jhx,jh

2
y,jΔnj

]}

D16 = −
1
2
∑k

j=1

{[
Ay,j

(
hy,jΔu2

x,j + cx,jh
2
x,jΔuy,j

)
− ψyΔu2

x,j +
(

c2
x,jcy,j − c3

4,j

)
h2

x,jhy,jhy,jΔnj

]}

(6)  

where the parameter relationships are given by: 
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⎧
⎪⎪⎨

⎪⎪⎩

Ax,j = njux,j + njhx,jcx,j
Ax,j = njux,j + njhx,jcx,j
Ay,j = njuy,j + njhy,jcy,j
Ay,j = njuy,j + njhy,jcy,j

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

c3,j =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
1 + kx,j

)
c3

x,j
3

√

c4,j =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
2

[(

1 + kx,j

)

c2
x,jcy,j +

(

1 + ky,j

)

cx,jc2
y,j

]
3

√

c5,j =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
1 + ky,j

)
c3

x,j
3

√

{
ψx = nj

(
hx,jux,j − hx,jux,j

)

ψy = nj
(
hy,juy,j − hy,juy,j

) (7)  

where (hx,j,ux,j) and (hx,j,ux,j) denote the height and angle parameters for the paraxial marginal ray and the chief ray, respectively, in 
the x-direction on the jth surface; (hy,j,uy,j) and (hy,j,uy,j) denote the height and angle parameters for the paraxial marginal ray and the 
chief ray, respectively, in the y-direction on the jth surface; cx,j and cy,j represent the curvatures of surface j on the XZ and YZ planes, 
respectively; and kx,j and ky,j represent the cones of surface j on the XZ and YZ planes, respectively. 

Because the terms in the Zernike polynomial correspond to the third-order aberration, it follows that when the Zernike polynomial 
is used to represent astigmatism that [11]: 

W =
(

W2,0
2,2H2

x +W0,2
2,2H2

y

)
Z2

2

(
ρx, ρy

)
+
(

W1,1
− 2,2HxHy

)
Z− 2

2

(
ρx, ρy

)
(8) 

If one direction in the system is corrected for astigmatism or if the curve is of degree two, it means that there is only one type of 
astigmatism, which is represented by either Z2

2 or Z− 2
2 . When the term W1,1

− 2,2HxHy is zero, the field map of the astigmatism then describes 
either two crossing lines oriented parallel to the coordinate axes or a hyperbola with principal axes parallel to the coordinate axes. 
When the term W2,0

2,2H2
x +W0,2

2,2H2
y is zero, the field map of the astigmatism describes a hyperbola and its principal axes are not parallel to 

the coordinate axes. 
B. Nadal aberration theory for a tilted and decentered optical system with conic surfaces. 
According to the Nadal aberration theory introduced by Thompson [12], the wave aberrations for nonrotationally symmetrical 

systems are built on a vectorial formulation. The decentered field’s contribution to each surface should be described by introducing a 
displacement vector σ→j. The displacement vector σ→j can be divided into the vector σ→spherej for the spherical surface contribution and 
the vector σ→aspherej for the aspheric surface contribution, as follows: 

σ→spherej = −

[
N→j ×

(
R→j × S→j

)]

uj + hjcj
(9)  

σ→aspherej =
δv∗j
hj

(10)  

where N→j is the surface normal vector of the local object; R→j is the direction of the optical axis ray (OAR) that is incident on the surface; 

S→j is the surface normal vector at the OAR intersection point; u→j is the chief ray angle at a surface j; h
→

j is the chief ray height at surface 
j; cj is the curvature of surface j; and δυ∗j is the distance between the height of the aberration field symmetry axis and the heights of each 
of the optical axis rays on the aspheric surface relative to the reference axis after decentering and tilting. 

The wave aberration expansion is represented by vectors as follows [13]: 

W =
∑

j

∑∞

p

∑∞

n

∑∞

m
(Wklm)j

((
H→− σ→j

)
·
(

H→− σ→j

))p
( ρ→· ρ→)

n
((

H→− σ→j

)
· ρ→
)m

(11) 

Then, after expanding the equation above, we obtain the third-order form: 

W = ΔW20

(

ρ→· ρ→
)

+ ΔW11

(

H→· ρ→
)

+
∑

j
W040j

(
ρ→· ρ→

)2

+
∑

j
W131j

[(
H→− σ→j

)
· ρ→
](

ρ→· ρ→
)

+
∑

j
W222j

[(
H→− σ→j

)
· ρ→
)]2

+
∑

j
W220j

[(
H→− σ→j

)
·
(

H→− σ→j

)
](

ρ→· ρ→
)

+
∑

j
W311j

[(
H→− σ→j

)
·
(

H→− σ→j

)
][(

H→− σ→j

)

· ρ→
]

(12)  

where ΔW20 is the coefficient for focusing, ΔW11 is the coefficient for tilting, W040j is the coefficient for the third-order spherical 
aberration, W131j is the coefficient for a third-order coma, W222jis the coefficient for a third-order astigmatism, W220jis a coefficient 
related to the third-order component of the field curvature, and W311j is the third-order distortion. , . 

For a tilted and decentered optical system with conic surfaces, the nodal behavior of four third-order aberrations, comprising a 
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spherical aberration, a coma, an astigmatism, and field curvature, is analyzed. The third-order spherical aberration is independent of 
the field vector H→ and is therefore unaffected by the only substitution required to invoke nonrotational symmetry. The third-order 
coma has a point in the field at which there is no coma and the field is determined using the vector a→131. The normalized vector 
a→131 is given as: 

a→131 ≡

(
∑

j
W131j σ→j

)/

W131 (13) 

If the third-order coma is corrected in a system, then this third-order coma will be constant in both magnitude and direction over 
the entire field of view. The third-order astigmatism has two points in the field at which there is no astigmatism. The normalized vector 
is then given as: 

H→ast ≡

(
∑

j
W222j σ→j

)/

W222 ±

(

−

(
∑

j
W222j σ→2

j

)/

W222 +

((
∑

j
W222j σ→j

)/

W222

)2)1/2

(14) 

The characteristic field behavior for field curvature in an optical system without symmetry is for the vertex of the curvature to be 
decentered to a point located using the vector a→220M and to be defocused by an amount proportional to b220M. The normalized vector is 
given by: 

a→220M ≡

(
∑

j
W220Mj σ→j

)/

W220M 

Fig. 3. Schematic diagram of Group 1.  

Fig. 4. Schematic diagram of Group 2 and Group 3.  
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b220M ≡

(
∑

j
W220Mj

(
σ→j · σ→j

)
)/

W220M − a→220M · a→220M (15)  

W220M = W220 +
1
2
W222 

The size of the focal shift is given by: 

δz220M = − 8(f#)
2W220Mb220M (16)  

where f# is the f-number of the optical system. 

2.2. Grouping design 

A. Group 1. 
The quantities for Group 1 are defined as follows: l1, d1, d2, and d3 represent the lens thicknesses from object to M1, M1 to M2, M2 

to M3, and M3 to M4, respectively; hx,1, hx,2, and hx,3, and hy,1, hy,2, and hy,3 represent the paraxial marginal ray heights of the XZ and YZ 
planes at M1, M2, and M3, respectively; and h4 represents the paraxial marginal ray height at M4. In addition, rx,1, rx,2, and rx,3, and ry,1, 
ry,2, and ry,3 represent the radii of curvature of the XZ and YZ planes at M1, M2, and M3, respectively; and kx,1, kx,2, and kx,3, and ky,1, 
ky,2, and ky,3 represent the cones of the XZ and YZ planes at M1, M2, and M3, respectively. Furthermore, lx,1, lx,2, and lx,3, and ly,1, ly,2, 
and ly,3 represent the object distances to the XZ and YZ planes at M1, M2, and M3, respectively; l4 represents the object distance at M4; 
and l′x,1, l′x,2, and l′x,3, and l′y,1, l′y,2, and l′y,3 represent the image distances to the XZ and YZ planes at M1, M2, and M3, respectively. 

Based on the paraxial approximation, we now introduce the following parameters: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

αx1 =
lx2

lx1′
≈

hx2

hx1

αx2 =
lx3

lx2′
≈

hx3

hx2

αx3 =
l4

lx3′
≈

h4

hx3

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

αy1 =
ly2

ly1′
≈

hy2

hy1

αy2 =
ly3

ly2′
≈

hy3

hy2

αy3 =
l4

ly3′
≈

h4

hy3

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

βx1 =
lx1′
lx1

βx2 =
lx2′
lx2

βx3 =
lx3′
lx3

(17) 

For a reflective optical system, n1 = n2′ = n3 = 1 and n1′ = n2 = n3′ = − 1: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ry1 =
2βy1ly1

1 + βy1

ry2 =
2αy1βy1βy2ly1

1 + βy2

ry3 =
2αy1αy2βy1βy2βy3ly1

1 + βy3

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

rx1 =
2βx1lx1

1 + βx1

rx2 =
2αx1βx1βx2lx1

1 + βx2

rx3 =
2αx1αx2βx1βx2βx3lx1

1 + βx3

⎧
⎨

⎩

d1 = β1l1 − α1β1l1
d2 = α1β1β2l1 − α1α2β1β2l1
d3 = α1α2β1β2β3l1 − α1α2α3β1β2β3l1

(18) 

Because M3 is the stop of G1, the chief ray must pass through the vertex of M3. Here, d2 can be obtained using ray tracing, and αy2 

can be calculated as follows: 

αy2 = 1 −
d2

αy1βy1βy2ly1
(19) 

Additionally, G1, as the anamorphic group, must satisfy some constraints. The magnification of the front group for the XY direction 
is 2:1. To make the aberration analysis of the subsequent optical system easier, the XY direction rays will intersect at the same point 
when passing through G1. The ratio of their entrance pupil diameters in the XY direction is 2:1. The stop shape is circular. After 
consideration of the constraints above, it can be concluded that: 

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

αx1 =
4d2 + β12α12l1

2β12ly1

αx2 =
β12α12l1

4d2 + β12α12l1

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

βx1 =
− 2β12α12d1

4d2 − 2β12l1 + β12α12l1

βx2 =
− 4d2 + 2β12l1 − β12α12l1

4d1

βx3 = 4βy3

{
β12 = βy1βy2
α12 = αy1αy2

(20) 

B. Group 2 and Group 3. 
The quantities for these groups are defined as follows: d4, d5, and d6 represent the lens thicknesses from M4 to M5, from M5 to M6, 

and from M6 to the image plane, respectively; h5 and h6 represent the paraxial marginal ray heights at M5 and M6, respectively; r4, r5, 
and r6, and k4, k5, and k6 represent the radii of curvature and the cones of M4, M5, and M6, respectively; and l4, l5, and l6, and l′4, l′5, and 
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l′6 represent the object distances and image distances for M4, M5, and M6, respectively. 
Based on the paraxial approximation, we now introduce the following parameters: 

α5 =
l6

l5′
≈

h6

h5

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

β4 =
l4′
l4

β5 =
l5′
l5

β6 =
l6′
l6

(21) 

For a reflective optical system, n4′ = n5 = n6′ = 1 and n4 = n5′ = n6 = − 1, and thus 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

r4 =
2αy1αy2αy3βy1βy2βy3β4ly1

1 + β4

r5 =
2β5l5

1 + β5

r6 =
2α5β5β6l5

1 + β6

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

l′4 = α1α2α3β1β2β3β4l1

d5 = l′4− d4

l5 = d5

d6 = α5β5β6d5

(22) 

To ensure good telecentricity for the system, the radius of curvature of M6 should be equal to twice the distance between the stop of 
the latter group and M6 as far as possible. 

C. Entrance pupil shape control and optical pupil matching. 
Because the anamorphic optics system has a demagnification of 4 × in the orthogonal scanning direction and 8 × in the scanning 

direction, the entrance pupil shape of the anamorphic optics system is elliptical when compared with the circular entrance pupil shape 
of the conventional optics system, as illustrated in Fig. 5. In Section 2.1 part A, paraxial theory is used to consider the ratios of the 
entrance pupil diameters in both XY directions, but the paraxial theory contains an approximation and the results deviate from the 
actual system performance. To ensure that the pupil shape of the initial system is correct, an elliptical pupil is used as an input to 
perform spatial ray tracing and make the final form of the initial system closer to the actual system. Spatial ray tracing is also applied to 
determine the stop position. The stop position is determined using the intersection of the true ray tracing of the central field chief ray 
with the z-axis, and group matching is achieved based on true ray tracing of the central field’s chief ray. 

3. Initial system solution 

After parameterization of the system parameters of the tilted and decentered anamorphic optical system, each group is processed 
and analyzed using the corresponding aberration theory, and to control the constraints of the obscurations effectively, a mathematical 
model for parametric design of the tilted and decentered anamorphic optical system is established. This physical model is then 
transformed into a mathematical model. The evaluation function of this model mainly includes the amount of third-order aberrations, 
the third-order aberration node behavior, and the constraints. The evaluation function can then be written as: 

Fig. 5. Entrance pupil shapes for (a) isomorphic system with MAG 4 × and (b) anamorphic system with MAG 4 × /8 × .  
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F = f(αx1.x5, αy1.y5, βx1.x6, βy1.y6, kx1.x6, ky1.y6
)

=
∑16

i=1
|ωi ·Di| +

⃒
⃒
⃒
⃒
⃒
ωj,1 · a→131

⃒
⃒
⃒
⃒
⃒
+

⃒
⃒
⃒
⃒
⃒
ωj,2 · H→ast

⃒
⃒
⃒
⃒
⃒
+

⃒
⃒
⃒
⃒
⃒
ωj,3 · a→220M

⃒
⃒
⃒
⃒
⃒
+

⃒
⃒
⃒
⃒
⃒
ωj,4 · b220M

⃒
⃒
⃒
⃒
⃒
+

⃒
⃒
⃒
⃒
⃒
ωj,5 · δz220M

⃒
⃒
⃒
⃒
⃒
+ |constraints|

=
∑16

i=1
|ωi ·Di| +

⃒
⃒
⃒
⃒
⃒
ωj,1 · a→131

⃒
⃒
⃒
⃒
⃒
+

⃒
⃒
⃒
⃒
⃒
ωj,2 · H→ast

⃒
⃒
⃒
⃒
⃒
+

⃒
⃒
⃒
⃒
⃒
ωj,3 · a→220M

⃒
⃒
⃒
⃒
⃒
+

⃒
⃒
⃒
⃒
⃒
ωj,4 · b220M

⃒
⃒
⃒
⃒
⃒
+

⃒
⃒
⃒
⃒
⃒
ωj,5 · δz220M

⃒
⃒
⃒
⃒
⃒

+
⃒
⃒ωj,6 ·Obscuration

⃒
⃒+
⃒
⃒ωj,7 ·Obscuration

⃒
⃒+
⃒
⃒ωj,8 ·BWD

⃒
⃒+
⃒
⃒ωj,9 ·TEL

⃒
⃒+
⃒
⃒ωj,10 ·RATIO

⃒
⃒

+
⃒
⃒ωj,11 ·APE

⃒
⃒+
⃒
⃒ωj,12 ·AOI

⃒
⃒+
⃒
⃒ωj,13 ·DIS

⃒
⃒

(23) 

The constraints shown in the equation represent the sums of the constraints listed above. Obscuration, BWD, TEL, RATIO, AOI, APE, 
and DIS represent the obscuration, the back working distance, the image telecentricity, the obscuration ratio, the maximum aperture, 
the maximum angle of incidence, and the distances separating the mirrors of the optical system, respectively; in addition, ω denotes the 
weighting factor. The main constraint indicators for the initial system are listed in Table 1. 

The initial system can be obtained by searching for the solution as shown in Fig. 6, and the constraint results for this system are 
presented in Table 2. The field map of the coma aberration is shown in Fig. 7(a). The nodes of the coma are all close to the field. The 

Table 1 
Structural Constraints of the Initial System.  

Parameter Specification 

Wavelength 13.5 nm 
Numerical aperture 0.55 
Image-side field of view 

Demagnification 
26 mm × 0.5 mm 
Mx = 4,My = 8 

Chief Ray Angle on Mask(◦) Y: 6 ± 0.2 
Chief Ray Angle on Wafer(mrad) 

Image working distance 
Total track length 

< 0.2 
≥ 30 mm 
< 2000 mm 

Obscuration ratio < 35%  

Fig. 6. Initial structure of the tilted and decentered anamorphic optical system.  

Table 2 
Structural Parameters of the Initial System.  

Parameter Specification 

Wavelength 13.5 nm 
Numerical aperture 0.55 
Image-side field of view 

Demagnification 
26 mm × 0.5 mm 
Mx = 4,My = 8 

Chief Ray Angle on Mask(◦) Y: 6.1 
Chief Ray Angle on Wafer (mrad) 

Image working distance 
Total track length 

0 
30 mm 
1887 mm 

Obscuration ratio 24.7%  
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field map of the astigmatism is shown in Fig. 7(b). As a result of the presence of the anamorphic surface in the system, the behavior of 
the surface’s nodes in the field shows node behavior parallel to the Y-axis, as described in Section 2.1. The optical system with the co- 
axial components has coma and astigmatism nodes in the center of the image plane. These nodes are not close to or within the desired 
range, which makes it difficult to increase the number of degrees of freedom and reduce the imaging quality when using the tilted and 
decentered components in the subsequent optimization step. 

4. Optimized design 

Next, optimization of the initial structure shown above is performed. We fitted the anamorphic aspherical surfaces to symmetric XY 
polynomial surfaces, which can provide more degrees of freedom for additional aberration corrections. This freeform surface can be 
expressed as: 

Z =
cr2

1 +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − (1 + k)c2r2

√ +
∑66

j=2
Cjxmyn (24)  

Fig. 7. (a) Coma and (b) astigmatism contributions across the full FOV.  

X. Zhang et al.                                                                                                                                                                                                          



Optik 290 (2023) 171128

11

Fig. 8. Optimized results for the tilted and decentered anamorphic optical system.  

Fig. 9. Distortion over the full image field.  

Fig. 10. Wavefront RMS error over the full image field.  
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j =
(m + n)2

+ m + 3n
2

+ 1 

Polynomial coefficients with x as an even order, the tilted and decentered elements in the Y-Z plane, and the distances between 
mirrors are used as optimization variables for the optimization process. The resulting design of the tilted and decentered anamorphic 
optical system is shown in Fig. 8, and the results for the specific design parameters are presented in Table 1. The image NA is 0.55. The 
exposure field dimensions at the wafer are 26 mm × 0.5 mm. The total working distance is 1648 mm. The maximum distortion is 2 nm 
and the integrated wavefront error for the full field is 0.025λ RMS. Fig. 9 shows the distortion distribution over a full image field.  
Fig. 10 shows the distribution of the wavefront RMS error over a full image field. 

5. Summary 

To obtain the initial structure with the additional degrees of freedom required to enable realization of a very small wave aberration 
system, the high-NA EUV lithography projection objective adds a tilted and decentered element to its anamorphic optical system. For 
design of this complex optical system, this paper proposes an initial system construction method for the tilted and decentered 
anamorphic optical system that focuses on the problems of aberration balance and constraint control of the anamorphic optical system 
and the tilted and decentered system during the process of initial system construction. First, the system elements are grouped based on 
the magnification requirements. An aberration analysis of the anamorphic optical system is performed using vector aberration theory. 
The nodal behavior of the tilted and decentered optical system is also analyzed using nodal aberration theory. Spatial ray tracing is 
used to control the entrance pupil shape of the anamorphic optical system and to complete pupil matching between the groups. Using 
paraxial theory, the system structure parameters are parametrically repaired. We then characterize the constraint parameters and 
establish a mathematical model of the initial structure of the tilted and decentered anamorphic optical system. Finally, an initial 
structure that satisfies the aberration balance and multiple constraint control requirements is obtained by solving the mathematical 
model, which then provides a design starting point for subsequent optimization. The initial structure of the EUV tilted and decentered 
anamorphic objective with NA= 0.55 was designed using this method, and the wavefront RMS error was better than 0.025λ. 

This method is not only applicable to the design of initial structures for high-NA EUV lithography objectives but also can be used to 
provide initial structures for tilted and decentered optical systems in other fields that satisfy the aberration balance requirement and 
multiple constraints. 
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Table 3 
Optical Characteristics of the Anamorphic Magnification EUV Lithographic 
Objective.  

Parameter Specification 

Wavelength 13.5 nm 
Numerical aperture 0.55 
Demagnification Mx = 4,My = 8 
Image-side field of view 

Chief Ray Angle on Mask(◦) 
26 mm × 0.5 mm 
Y: 5.4 

Total track length 
Image working distance 

1648 mm 
36 mm 

Wavefront error (RMS) 1/40λ 
Max distortion ≤ 2 nm 
Telecentricity 

Obscuration ratio 
< 0.2mrad 
33%  
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