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Abstract: The usage of flexible joints has greatly facilitated the widespread application of the Stewart
construction mechanism in many advanced fields. This research focuses on the problem that the flexi-
ble joints in the Stewart mechanism cause additional stiffness effects on the whole system. A method
for solving the additional stiffness of flexible joints combining the finite element method (FEM) is
proposed, which avoids the complex theoretical derivation process and allows the advantages of high
versatility and accuracy. Three aspects make up the main content. Firstly, based on dynamics theory,
the theoretical analysis and demonstration of the method are conducted according to the symmetry
characteristics of the Stewart platform. Next, the additional stiffness of a designed Stewart platform
with flexible joints was solved following the method proposed, and the obtained results were verified
through FEM simulation under the given conditions, which give a maximum natural frequency
deviation against the theory of 2.26%. Thirdly, dynamics tests associated with the Stewart platform
were conducted, and the deviation between the Stewart Platform’s natural frequencies separately
obtained from the tests and the theory does not exceed 5%, which demonstrates the effectiveness and
accuracy of the method in engineering applications. This study aims to provide technical support for
the development of Stewart mechanisms with flexible joints.

Keywords: Stewart platform; flexible joint; modal analysis; stiffness calculation; FEM analysis

1. Introduction

Since the Gough-Stewart configuration parallel platform was proposed in the 1960s [1],
there has been considerable research work by scholars on the theoretical modeling, motion
simulation and mechanical testing of this interesting mechanism [2]. Owing to the excel-
lent multidimensional motion characteristic of the Stewart configuration mechanism, the
application of the mechanism has spread across many fields, such as biomedical devices,
aerospace engineering and industrial manufacturing [3–5]. In the typical Stewart mech-
anism, the six legs are linked to the platform mainly by rigid joints, including ball joints
and universal joints. Nevertheless, the relative movements of rigid parts occur during the
working of rigid joints, which invariably cause nonlinear behavior of the system, such
as clearances, friction and backlash [6]. This results in lower accuracy, lower smoothness
and higher uncertainty of dynamic characteristics in the system, which greatly limits the
application of the Stewart mechanism in situations with high requirements for precision or
stability of motion.

To address this shortcoming, researchers have gradually shifted their research di-
rection towards flexible joints to substitute the function of rigid joints installed on the
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Stewart mechanism [7–14]. As a result, the working accuracy and dynamic characteristics
of the Stewart mechanism have been substantially improved. Compared with the rigid
joint, the flexible joint adopts an integrated design, which not only effectively avoids the
inherent nonlinear behavior caused by structural clearances but also has the advantages
of compactness and no lubrication [15]. Nowadays, research and applications around the
Stewart mechanism installed with flexible joints have covered many important areas in
engineering, such as multidimensional motion control [16–18], multidimensional distur-
bance suppression [19–21] and precision measurement systems [22–24]. However, with
the usage of Flexible joints in the Stewart platform, a new difficulty had to be presented
to the designers. It is well known that the flexible joint achieves relative motion between
the connected parts through its own elastic deformation, and rebound forces are generated
during the process, which leads to the introduction of the corresponding additional stiffness
in the whole Stewart mechanism system. Consequently, the complexity of the dynamics
theoretical analysis for the Stewart mechanism system is greatly increased.

Compared to the parallel legs in the Stewart platform, it is quite challenging to derive
the additional stiffness matrix of the flexible joints. Therefore, when confronting the
condition that the additional stiffness of Flexible joints has little effect, many researchers
preferred to neglect the bending stiffness effect of Flexible joints during the theoretical study
on Stewart configuration mechanisms [9,10,25–27]. Despite so, in certain applications with
higher stiffness sensitivity as well as demanding operational accuracy requirements [28,29],
researchers need to emphasize the influence of the stiffness brought by flexible joints in the
Stewart mechanism to ensure the mechanical accuracy of the whole system.

There are currently many theoretical studies on Stewart mechanisms with flexible
joints that consider the effect of flexible joint stiffness. Wang [30] represents the elastic
bending and torsional deformation of the flexible joints by vector operations and establishes
a standard dynamics formulation of the equivalent torque based on the principle of virtual
work and the Lagrange method. Jiao [11], based on the Kane equation, derived the complete
dynamics equations of the Stewart active vibration isolation platform with flexible joints by
combining the principle of virtual work. To research the performance of the 6-UPUR type
Stewart configuration 6-axis force sensor, based on the screw theory, Zhao [12] established a
complete mathematical model of force transfer characteristics according to the relationship
between stiffness and deformation compatibility conditions, which considers the stiffness of
the flexible joints. To compensate for the added stiffness of the flexible joints in the control
algorithm, Yang [13] first obtained a linearized explicit dynamics model of the flexible joint
stiffness in the Stewart platform based on the pseudo-rigid-body model and the principle
of virtual power. Yao [31] respectively constructed the overall stiffness matrix and the
analytical mapping relationship of the 6-DOF force sensors based on the superposition
principle under small deformations, which is certainly inspiring for the analysis of the
stiffness of the flexure Stewart platform. As we can see from the above literature, it is
a complicated and trying process to derive and analyze the stiffness participation of the
flexible joints in a parallel mechanism through the dynamic theory approach. Additionally,
due to the differences in application scenarios and designers’ mindsets, there can be a
variety of position distribution and structural forms of flexible joints, which results in
various types of Stewart mechanisms with different motion characteristics. Therefore,
the theoretical model built for a particular structure type Stewart platform inevitably has
limitations, which greatly reduce its availability.

In addition to the theoretical approach, it is worth mentioning that finite element
method (FEM) simulation also provides a direct and effective approach for the analysis
of rigid-flexible coupling systems. Furqan [32] adopted the FEM simulation to solve
the natural frequencies of the Stewart platform with flexible joints and obtained results
comparable to the theory. DU [33] analyzed the stiffness and dynamic characteristics
of the Stewart configuration precision pointing mechanism by means of FEM simulation.
Ranganath [34] and Mohammed [35] respectively conducted the force sensitivity analysis of
the Stewart configuration six-dimensional force sensors with FEM simulation. Nevertheless,
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the single FEM simulation can only serve for the resultant analysis, which lacks the ability
to solve the dynamic parameters of the system, so it cannot be used directly to obtain
the numerical results regarding the stiffness effects of the flexible joints in the Stewart
platform system.

This study mainly focuses on the effects of additional stiffness generated by flexible
joints in Stewart platforms. Based on the dynamics modal characteristics of the Stewart
platform system, a method for solving the additional stiffness of flexible joints is pro-
posed depending on the FEM simulation. Based on theoretical research, the method is
systematically analyzed and demonstrated together with simulation analysis and dynamics
tests, which completely as well as sufficiently illustrate the correctness and effectiveness of
the method for practical engineering applications. Compared with traditional dynamics
methods such as the Newton-Euler method and Lagrange principle, the method proposed
avoids the introduction of constraint forces and redundant derivative calculations. While
avoiding complex kinematic analysis and formula derivation, it also reduces the involve-
ment of calculated parameters, thus reducing the introduction of measuring deviations
from the actual values of the system, which ensures high accuracy of the solution results in
engineering. Moreover, the method holds a high degree of generality in practical applica-
tions. Theoretically, under the basic premise of stiffness symmetry, the additional stiffness
caused by flexible joints with different position distributions or various structural forms in
the Stewart mechanism can be solved by the method, which makes it fairly versatile for
applications. The state of the art of this paper is creating a method with high generality
and accuracy for solving the additional stiffness of flexible joints in the Stewart platform
from a new perspective of combining theoretical analysis with FEM simulation methods,
which has a high operational feasibility in practical engineering. Related parameter design
methods are original and haven’t been proposed before. The paper provides certain techni-
cal references for the design and stiffness analysis of the Stewart configuration mechanism
with flexible joints, further contributing to the Stewart configuration mechanism’s research
and development in various engineering fields.

The paper contains five sections. Section 2 elaborates on the method for solving the
additional stiffness of flexible joints theoretically; Section 3 solves and verifies the additional
stiffness of Flexible joints in the Stewart platform through FEM modal analysis; Section 4
presents the experimental work regarding the Stewart platform; Section 5 concludes the
overall work of this paper.

2. Theoretical Analysis on Solving Additional Stiffness Introduced by Flexible Joints
2.1. Definitions of Coordinate Systems and Description of Key Parameters

The main structure of the Stewart platform is primarily composed of the upper plat-
form, lower platform and parallel legs. The schematic diagram of the platform structure is
shown in Figure 1a; the joint points where the upper and lower platforms are connected to
the legs are Pi and Bi (i = 1~6) respectively, and they are separately distributed on the joint
point circles of the upper and lower platforms. The centers of the upper and lower joint
circles are respectively taken as the origins to establish the coordinate systems OP-XYZ
and OB-XYZ, which are respectively fixed to the upper and lower platforms. The axes
of both coordinate systems are oriented in the same direction, with the X- and Y-axes
pointing horizontally and the Z-axis pointing vertically. Five main parameters are needed
to determine the primary structure of the platform: the radius of the upper joint point circle
RP, the radius of the lower joint point circle RB, the distribution angle of the upper joint
point α, the distribution angle of the lower joint point β and the height difference between
the upper and lower joint point circles H.

In the common Stewart platform of SPS (Spherical-prismatic-spherical) and UPS
(Universal-prismatic-spherical) types, the connection between the legs and the platforms
is usually adopted by ball hinges or universal hinges, neither of which creates an elastic
force at the joint region, and the overall stiffness of the platform system can be treated as
generated only by the axial stretching force of the legs. When flexible joints are adopted,
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the corresponding bending stiffness effects will be produced in the platform system. The
schematic diagram of leg links with flexible joints is shown in Figure 1b. The stretching
stiffness coefficient of each leg is: ksi = ks ( i = 1 ∼ 6), and the bending stiffness of each
flexible joint is: kRj = kR ( j = 1 ∼ 12). This paper focuses on the system stiffness based on
the modal analysis method, and the tiny damping coefficient of the flexible joints hardly
has effects on the dynamical performance of the whole system, so the effect of system
damping can be ignored during the process of theoretical analysis.
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Figure 1. Structure diagram of Stewart platform: (a) Schematic diagram of platform structure;
(b) Schematic diagram of platform leg link with Flexible joint.

2.2. Theoretical Analysis of Stewart Platform

First of all, we assume that the generalized coordinate vector of the upper platform is
X = [x1 x2 x3 x4 x5 x6], where [x1 x2 x3] indicates the coordinates of the three translational
directions of the upper platform, and [x4 x5 x6] represents the coordinates of the three
rotation directions. The dynamics equation of the platform can be expressed as: M

..
X+C

.
X+

KX = 0. In the present study, only the modal characteristics of the system are considered,
so the damping term C in the formula is omitted here, and the equation can be written as:

M
..
X + KX = 0 (1)

where M is the generalized mass matrix of the system, and K is the generalized stiffness
matrix of the system.

2.2.1. Analysis of Generalized Mass Matrix Characteristics

Here we first analyze the generalized quality matrix of system M. In the case of
considering only the upper platform and its load mass, the generalized mass matrix of the
system is:

M =

[
m·E3 m·BPR·PP̃C

T ·PBRT

m·BPR·PP̃C
T ·PBRT B

PR·PI·PBRT

]
(2)

where m denotes the quality of the upper platform, E3 is the matrix for the three-order
unit, B

PR is the rotation transformation matrix between the coordinate system OP-XYZ
and OB-XYZ, PP̃C denotes the skew-symmetric matrix of the coordinates of the integrated
center of mass of the upper platform and its load in the dynamics coordinate system, and
PI denotes the inertia tensor of the upper platform and the load in the moving coordinate
system OP-XYZ.

By further analyzing Equation (2), we can see that when the mass characteristics of
the upper platform and its load of the Stewart platform system satisfy certain symmetry
conditions, the generalized mass matrix M of the system has the corresponding parametric
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characteristics. Moreover, when the load masses are symmetric about the X- and Y-axes,
the generalized mass matrix M has the following form:

M =



M11 0 0 0 M15 0
0 M22 0 M24 0 0
0 0 M33 0 0 0
0 M42 0 M44 0 0

M51 0 0 0 M55 0
0 0 0 0 0 M66

 (3)

Here, the elements of the matrix M meet the following parameter characteristics:
M11 = M22 = M33 = m; M15 = M51, −M24 = −M42.

2.2.2. Analysis of Generalized Stiffness Matrix Characteristics

The same analytical procedure is conducted for the generalized stiffness matrix K.
When the Stewart platform is installed with flexible joints, the overall stiffness of the
system comes from two factors: the stretching stiffness of the outrigger leg and the bending
stiffness of the flexible joint. In the Stewart platform, the outrigger legs and the flexible
joints can be considered as two parallel sets of springs in the system so that their respective
corresponding generalized stiffness in the system can be superimposed, and the generalized
stiffness of the system can be obtained as follows:

K = KS + KR (4)

where KS means the generalized stiffness introduced by the leg stiffness and KR means the
additional stiffness introduced by the flexible joint stiffness.

Next, a simple derivation of the stiffness matrix KS is presented. The Jacobi matrix from
a generalized displacement of the upper platform to the displacement of the supporting
leg can be easily obtained:

J =



lT
n1

(B
PR·P1 × ln1

)T

lT
n2

(B
PR·P2 × ln2

)T

lT
n3

(B
PR·P3 × ln3

)T

lT
n4

(B
PR·P4 × ln4

)T

lT
n5

(B
PR·P5 × ln5

)T

lT
n6

(B
PR·P6 × ln6

)T


(5)

where, lni ( i = 1 ∼ 6) denotes the unit direction vector of each leg in the static coordinate
system OB-XYZ, and Pi is the position vector of the joint points of the upper platform in
the dynamics coordinate system OP-XYZ. The generalized stiffness matrix of the system
caused by the leg stiffness is: KS = JTKSDiagJ, where KSDiag = Diag(ks1 ks2 ks3 ks4 ks5 ks6).
Substituting Equation (5) into the equation above, KS can be obtained in the following form:

KS = JTKSDiagJ =



KS11 0 0 0 KS15 0
0 KS22 0 KS24 0 0
0 0 KS33 0 0 0
0 KS42 0 KS44 0 0

KS51 0 0 0 KS55 0
0 0 0 0 0 KS66

 (6)

Through further derivation of the elements in Equation (6) based on the matrices J
and KSDiag, it can be proved that the stiffness matrix KS satisfies the following parameter
characteristics: KS11 = KS22; KS44 = KS55; KS15 = KS51 = −KS24 = −KS42. In this
case, the number of parameters in the stiffness matrix KS can be reduced from 10 to 5.
These parameter characteristics are mainly resulting from symmetry about the Z-axis and
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dynamics coupling characteristics of the Stewart platform, which has been approached in
some studies [6,35], and it will not go into detail here.

With the similarity to the generalized mass matrix M, the Stewart platform with
flexible joints also has the same overall symmetry characteristics, so it can be inferred that
the overall generalized stiffness matrix K has the same form as KS, which can be finally
confirmed in the subsequent simulations and tests. Finally, the overall generalized stiffness
matrix K of the system can be obtained in the following form:

K =



K11 0 0 0 K15 0
0 K22 0 K24 0 0
0 0 K33 0 0 0
0 K42 0 K44 0 0

K51 0 0 0 K55 0
0 0 0 0 0 K66

 (7)

Similarly, the elements in the generalized stiffness matrix K of the system are satisfied:
K11 = K22; K44 = K55; K15 = K51 = −K24 = −K42.

2.3. The Solution of Additional Stiffness of Flexible Joints

Next, the theoretical analysis of the Stewart platform continues based on the specific
load quality conditions mentioned in Section 2.2.1. Under the conditions that the parameter
properties of the generalized stiffness matrix K and the generalized mass matrix M of
the system are known, taking the coupling characteristics of the matrices M and K into
consideration, Equations (3) and (7) are substituted into Equation (1) and expanded for
processing, which produces:[

M11 M15
M51 M55

][ ..
x1..
x5

]
+

[
K11 K15
K51 K55

][
x1
x5

]
= 0 (8a)

[
M22 M24
M42 M44

][ ..
x2..
x4

]
+

[
K22 K24
K42 K44

][
x2
x4

]
= 0 (8b)

M33
..
x3 + K33x3 = 0 (8c)

M66
..
x6 + K66x6 = 0 (8d)

The eigenvalues of Equation (8) are solved respectively; then, the corresponding
eigenequations are listed and combined with the parameter characteristics of matrix K and
M; the following equations can be obtained after sorting:(

K11 −mω15
2
)(

K55 −M55ω15
2
)
−
(

K15 −ω15
2M15

)2
= 0 (9a)

(
K22 −mω24

2
)(

K44 −M44ω24
2
)
−
(

K24 −ω24
2M24

)2
= 0 (9b)

K33 −mω3
2 = 0 (9c)

K66 −M66ω6
2 = 0 (9d)

Equation (9a,b) has two eigenvalues, respectively, while Equation (9c,d) has only
one eigenvalue. This is due to the fact that the Stewart platform mode has coupling
characteristics regarding the X-axis and Y-axis rotation direction but is decoupled regarding
the Z-axis.
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Theoretically, there are six typical modes of the Stewart platform, including three-
order translational modes along the X/Y/Z-axes and three-order rotational modes around
the X/Y/Z-axes [6]. In these six-order modes, the translational mode along the X-
axis is coupled with the rotational mode around the Y-axis, which can be reflected
in the eigenvalue of Equation (9a). Similarly, the translational mode along the Y-axis
is coupled with the rotational mode around the X-axis, which can be reflected in the
eigenvalue Equation (9b). In addition, there is no coupling between the translational and
rotational modes of the Z-axis and other modes, which is reflected in the eigenvalue of
Equation (9c) and (9d), respectively.

The generalized mass matrix M can be obtained by Equation (2). In the case that all
elements of matrix M have been determined, if all the 6-order modes of the platform and
their corresponding eigenvalues are known, all elements in the generalized stiffness matrix
K of the system can be simply obtained by substituting the corresponding eigenvalues of
each mode into Equation (9). Finally, according to Equation (4), the additional stiffness
matrix KR of the flexible joint in the Stewart platform can be ultimately solved.

It is worth noting that bringing the eigenvalues into Equation (9a,b) theoretically
results in two sets of solutions. This is because, under the same set of eigenvalues, there
will be two different modal groups corresponding to them. In this case, the correct solution
can be selected by simply solving for the eigenvectors corresponding to the two sets of
solutions separately and checking them against the known modes. In addition, M44 = M55
and M15 = −M24 should be avoided in the generalized mass matrix M, which aims to avoid
the unsolvability of Equation (9a,b) being the same, resulting in a system of unsolvable
equations. Besides, theoretically, a larger difference in the upper platform and load mass
distribution about the X- and Y-axis directions is more capable of ensuring the convergence
and accuracy of the solution results.

3. FEM Simulation of Stewart Platform

As an accurate and effective method for the dynamics analysis of complex systems, the
finite element method has been well-established in various fields of engineering. Therefore,
the FEM simulation was adopted in this paper to solve the modal results of the Stewart
platform; the FEM model of the platform is shown in Figure 2. All 6 degrees of freedom
of the surface nodes below the Stewart platform are constrained during the process of
modal analysis. For determining the stretching stiffness of legs and the bending stiffness
of flexible joints in the FEM model of the Stewart platform, the dynamics calibration tests
were conducted on the legs and flexible joints, respectively. According to the test results,
the relevant material parameters of the leg springs and flexible joints’ FEM elements were
set and adjusted so that the bending stiffness of the flexible joint in the FEM model is
146.72 N·m/rad, and the axial stretching stiffness of the legs is 324.57 N/mm, which match
the test results. It is worth mentioning that the material of the flexible joint is steel, and its
FEM model contains only the conventional body elements. After the calibration, the elastic
modulus is E = 184.483 Gpa, Poisson’s ratio is µ = 0.3, and density is ρ = 7.72792 kg/mm3.
The specific contents of the tests are detailed in Section 4 of this paper and will not be
described here.

3.1. FEM Modal Analysis of Stewart Platform

During the establishment of the FEM model, a rectangular mass block was added and
fixed to the upper platform of the Stewart platform’s FEM model, which aims to enable the
difference of the mass distribution existing in the upper platform part between the X and Y
axes, the parameters about the mass characteristics of the upper platform with the block
can be referred to the Appendix A. In addition, aiming to simplify the analysis process and
reduce the error factor, the leg mass was set as 0 in the FEM model.
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3.1.1. Modal Analysis of Stewart Platform with Ball Joints

With the purpose of verifying the accuracy of the parameter settings in the FEM model
and illustrating the consistency between the FEM simulation and the theoretical calculation
results, the flexible joints in the model are first replaced by ball joints without additional
stiffness, as shown in Figure 2b, thereby eliminating the additional stiffness effect of the
flexible joints on the Stewart platform. In terms of theoretical calculation, the generalized
mass matrix M and stiffness matrix K of the system without the influence of the additional
stiffness of flexible joints are calculated by Equations (2) and (6), respectively, and then the
platform modes can be solved by Equation (1). The Stewart platform modes are solved by
theoretical numerical calculation and FEM simulation, respectively, and the modal results
obtained are shown in Table 1.

Table 1. Comparison of solved mode results of Stewart platform without flexible joints stiffness.

Mode Form Modal Eigenvector Theoretical Natural
Frequency/Hz

Simulation Natural
Frequency/Hz Error/%

Translation along the X-axis
[
1 0 0 0 −0.965 0

]T 26.21 26.21 −0.03
Translation along the Y-axis

[
0 1 0 0.833 0 0

]T 26.26 26.25 −0.02
Translation along the Z-axis

[
0 0 1 0 0 0

]T 71.62 71.60 −0.03
Rotation around the X-axis

[
0 0.052 0 1 0 0

]T 90.13 88.76 −1.51
Rotation around the Y-axis

[
−0.047 0 0 0 1 0

]T 56.42 56.07 −0.61
Rotation around the Z-axis

[
0 0 0 0 0 1

]T 36.88 36.83 −0.14

Table 1 shows that the deviation of natural frequencies obtained by theoretical calcula-
tion and simulation is basically consistent. The maximum deviation of natural frequencies
corresponding to the three order translational mode is only 0.04%, and the maximum
deviation of natural frequency is the one corresponding to the rotational mode around the
X-axis, which is just 1.51%. The results can effectively reflect the accuracy of the FEM and
the reliability of the modal solution of the FEM method.

3.1.2. Modal Analysis of Stewart Platform with Flexible Joints

On the basis that the high accuracy of the Stewart platform’s FEM model has been
ensured, the modal solution of the FEM model with flexible joints is further carried out; the
modal results are shown in Figure 3.
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By substituting the corresponding natural frequencies of each mode in Figure 3 into
Equation (9), all parameters in the overall generalized stiffness matrix K of the system can
be determined. Based on the solutions of stiffness matrix K and KS, the additional stiffness
KR of the Stewart platform with flexible joints can be obtained by further using Equation
(4). Finally, the solved additional stiffness matrix of the Stewart platform with flexible
joints is:

KR = 104 ×



7.7319 0 0 0 −0.6386 0
0 7.7319 0 0.6386 0 0
0 0 0.0646 0 0 0
0 0.6386 0 0.0831 0 0

−0.6386 0 0 0 0.0831 0
0 0 0 0 0 0.1108

 (10)

3.2. Verification of Solving Results for Additional Stiffness of Flexible Joints

Further simulations are prepared around the Stewart platform in this paper based on
the stiffness matrix Ks obtained to verify the correctness of the theoretical method. In order
to accomplish this, the following method is adopted in this paper: maintaining the stiffness
characteristics of the flexible joints in the Stewart platform, the mass characteristics of the
system and stretching stiffness values of legs are changed, and then the modal solution of
the platform system under different mass states are calculation separately by theoretical
numerical and FEM approach. Afterward, the accuracy of the solved Ks can be verified by
comparing the theoretical and simulation results. The specific conditions of characteristic
change selected in this paper are:

(a) The mass of the rectangular load is changed to twice the original mass, and the leg
stretching stiffness is changed to 1.5 times the original.

(b) The rectangular load of the upper platform is removed, and the corresponding mass
characteristics of the legs are attached.

The corresponding modal results were respectively obtained after the FEM simulations.
The modal results of condition (a) are basically similar to Figure 3 and are not shown here
to save space. The modal results corresponding to condition (b) are shown in Figure 4.
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It is worth noting that the main purpose of condition (b) is to correspond to the actual
dynamic conditions of the Stewart platform for testing. The relevant parameters involved
in the process are given in Appendix A and are omitted here. The ultimate calculation
results are shown in Table 2.

Table 2. Comparison of solved mode of Stewart platform without flexible joints stiffness.

Mode Form
Condition (a) Condition (b)

Theoretical
Natural

Frequency/Hz

Simulation
Natural

Frequency/Hz
Error/%

Theoretical
Natural

Frequency/Hz

Simulation
Natural

Frequency/Hz
Error/%

Translation along
the X-axis 28.04 27.93 −0.39 45.96 45.98 0.03

Translation along
the Y-axis 28.06 27.93 −0.44 45.96 45.98 0.03

Translation along
the Z-axis 68.02 67.67 −0.51 110.29 111.25 0.87

Rotation around
the X-axis 102.54 100.23 −2.26 119.43 119.34 −0.07

Rotation around
the Y-axis 56.68 56.26 −0.75 119.45 119.32 −0.11

Rotation around
the Z-axis 38.47 38.30 −0.45 62.39 62.11 −0.44

As can be seen in Table 2, the maximum deviation between the natural frequency
results separately calculated by theory and FEM simulation under condition (a) is 2.26%,
while the maximum deviation under condition (b) is just 0.87%. By comparing the natural
frequency results under the characteristic conditions, the effectiveness of the proposed
method for solving the additional stiffness of flexible joints can be verified.
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4. Dynamics Tests of Stewart Platform
4.1. Overview of Stewart Platform

The main body of the Stewart platform is composed of an upper platform, a lower
platform and six parallel outrigger legs. The upper and lower platforms are connected
to the legs by flexible joints. Through the platform structural parameters detection and
error analysis, the position accuracy of theoretical joint points of the platform is better than
0.2 mm. After the error theory calculation, the overall stiffness of the platform system
caused by the platform structure size error is less than 2.5%, which meets the test’s accuracy
requirements. The relevant platform parameters are detailed in the attached table.

4.2. Calibration Tests for Stiffness of Legs and Flexible Joints

During the operation of the Stewart platform, the movement stroke of the upper
platform is relatively small, the telescopic deformation of the leg is less than 1 mm, and the
bending deformation of the elastic joint is less than 1◦. Therefore, the dynamics method
of stiffness testing and calibration was adapted so that more accurate measurements of
the stiffness under small deformations of the flexible components could be obtained. The
schematic diagram of the tests is shown in Figure 5. Here, the stretching stiffness of the
legs and the bending stiffness of the flexible joints are considered single-degree-of-freedom
linear stiffnesses, so they are equivalent to the spring-mass system during the tests.
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Figure 5. Schematic diagram of stiffness calibration test.

Since the damping in the system is relatively small, which reflects from the frequency
response curves tested following, after neglecting its effect, the system’s natural frequency
can be obtained as:

fn =
1

2π

√
kn

mn
(11)

where, kn denotes the stiffness of the flexible component to be measured, and mn denotes
the load mass. When the natural frequency fn and load mass mn of the system are known,
the stiffness to be measured kn can be easily calculated according to Equation (11).

The tests were conducted in the form of a frequency response test, and the frequencies
corresponding to the peaks of the frequency response curves were measured to determine
the natural frequencies of the system. During the tests, the legs and flexible joints were
respectively placed on the vertical and horizontal vibration platforms, as shown in Figure 6.
In the process of testing, when a flexible joint was tested, a mass block was installed above
the joint as the load, and when a leg was tested, the leg itself was treated as the load.
The excitation is in the form of sinusoidal acceleration with an amplitude of 0.1 g and a
frequency range of 10~300 Hz. The test excitation table, code-named DC-6500-65, was
manufactured by STI (Sushi Testing Instruments Co., Suzhou, China). Its rated operating
frequency range is 2–2700 Hz, and the maximum error of its output acceleration is about
±10% under the test conditions in this paper. The tested sensors are three-way acceleration
sensors produced by PCB PIEZOTRONICS (Buffalo, NY, USA), model 356A33, with a
sensitivity of about 10.32 mV/g and an error of less than ±0.3% at 0–1000 Hz.
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The frequency response curves and the corresponding peak frequencies of the legs
and flexible joints measured through the tests are given in Figure 7:
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Figure 7. Frequency response curves obtained from flexible components tests: (a) Frequency response
curves of flexible joints; (b) Frequency response curves of legs.

The stretching stiffness of the outrigger legs and the bending stiffness of the flexible
joints are finally calculated through Equation (11). As shown in Table 3, both the stretching
stiffness of the legs and the bending stiffness of the flexible joints have a good consistency.
Therefore, for more intuitive theoretical analysis, the average value is taken for calculation
in the paper. After averaging, the stretching stiffness of the legs equals 324.57 N/mm, and
the bending stiffness of flexible joints equals 146.72 N·m/rad.



Machines 2023, 11, 457 13 of 22

Table 3. Stiffness values of flexible components obtained from the tests.

Stretching stiffness of legs

1 2 3 4 5 6

Stretching along axial
direction (N/mm) 330.78 317.11 311.42 336.72 336.72 314.67

Bending stiffness of flexible joints

1 2 3 4 5 6 7 8 9 10 11 12

Bending around the
X-direction (N·m/rad) 148.0 150.3 148.0 149.9 149.4 144.8 146.7 145.2 144.4 144.3 145.2 144.5

Bending around the
Y-direction (N·m/rad) 145.9 146.3 147.2 145.9 145.4 145.9 150.0 146.7 146.4 149.1 146.3 145.4

4.3. Frequency Response Tests of Stewart Platform

Stewart platform dynamics tests adopt the form of a frequency response test so that the
frequency response curves of the platform system can be measured, and then the low-order
natural frequencies of the platform system can be found by observing the corresponding
peaks of the curves. During the tests, the Stewart platform was placed on the excitation
table, and the lower platform was fixed to the excitation table, as shown in Figure 8. The
sensors were selected as accelerometers, the control sensor was attached to the surface of
the lower platform, and the measurement sensor was attached to the upper platform near
the center. The definition of the test coordinate system was the same as that of the platform
coordinate system. The Stewart platform was successively loaded with vibration excitation
in X/Y/Z directions, and the excitation occured in the form of sinusoidal acceleration with
an amplitude of 0.1 g and a frequency range of 10~500 Hz.

Machines 2023, 11, x FOR PEER REVIEW 13 of 23 
 

 

Table 3. Stiffness values of flexible components obtained from the tests. 

Stretching stiffness of legs 

 1 2 3 4 5 6 

Stretching along axial direction (N/mm) 330.78 317.11 311.42 336.72 336.72 314.67 

Bending stiffness of flexible joints 

 1 2 3 4 5 6 7 8 9 10 11 12 

Bending around the X-direction (N·m/rad) 148.0 150.3 148.0 149.9 149.4 144.8 146.7 145.2 144.4 144.3 145.2 144.5 

Bending around the Y-direction (N·m/rad) 145.9 146.3 147.2 145.9 145.4 145.9 150.0 146.7 146.4 149.1 146.3 145.4 

4.3. Frequency Response Tests of Stewart Platform 

Stewart platform dynamics tests adopt the form of a frequency response test so that 

the frequency response curves of the platform system can be measured, and then the low-

order natural frequencies of the platform system can be found by observing the corre-

sponding peaks of the curves. During the tests, the Stewart platform was placed on the 

excitation table, and the lower platform was fixed to the excitation table, as shown in Fig-

ure 8. The sensors were selected as accelerometers, the control sensor was attached to the 

surface of the lower platform, and the measurement sensor was attached to the upper 

platform near the center. The definition of the test coordinate system was the same as that 

of the platform coordinate system. The Stewart platform was successively loaded with 

vibration excitation in X/Y/Z directions, and the excitation occured in the form of sinusoi-

dal acceleration with an amplitude of 0.1 g and a frequency range of 10~500 Hz. 

 

Figure 8. Frequency response tests of Stewart platform. 

The frequency response curves measured by the tests are shown in Figure 9. As can 

be seen from the figure, there are two resonance peaks in the X-direction frequency re-

sponse curve, which respectively correspond to the translational mode of the Stewart plat-

form along the X-axis and the rotational mode around the Y-axis; this indicates the cou-

pling characteristics of the system regarding the X-direction and Y-direction, which con-

forms to the theory and is similar for the Y-direction frequency response curve. The Z-

direction frequency response curve in the figure has only one resonance peak, which cor-

responds to the translational mode of the system along the Z-axis, indicating that there is 

no coupling characteristic with respect to the Z-direction. In addition, the high consistency 

of the X-direction and Y-direction frequency response curves reflects not only the sym-

metry characteristics of the Stewart platform but also the high manufacturing accuracy of 

the platform, which indirectly affirms the credibility of the tests. 

Figure 8. Frequency response tests of Stewart platform.

The frequency response curves measured by the tests are shown in Figure 9. As can be
seen from the figure, there are two resonance peaks in the X-direction frequency response
curve, which respectively correspond to the translational mode of the Stewart platform
along the X-axis and the rotational mode around the Y-axis; this indicates the coupling
characteristics of the system regarding the X-direction and Y-direction, which conforms
to the theory and is similar for the Y-direction frequency response curve. The Z-direction
frequency response curve in the figure has only one resonance peak, which corresponds to
the translational mode of the system along the Z-axis, indicating that there is no coupling
characteristic with respect to the Z-direction. In addition, the high consistency of the
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X-direction and Y-direction frequency response curves reflects not only the symmetry
characteristics of the Stewart platform but also the high manufacturing accuracy of the
platform, which indirectly affirms the credibility of the tests.
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The natural frequencies of the system corresponding to the translational modes of
the Stewart platform along the three directions of X/Y/Z axes and the rotational modes
around the X/Y axes are extracted from Figure 9. After further comparison with the result
with the theoretical natural frequency of the platform in Section 3.2, the final compiled
results are presented in Table 4.

Table 4. Comparison between Stewart platform test and natural frequency.

Modal Characteristics Theoretical Natural Frequency/Hz Test Natural Frequency/Hz Error/%

Moving along the X-axis 45.96 43.90 −4.48
Moving along the Y-axis 45.96 45.32 −1.39
Moving along the Z-axis 110.29 112.82 2.29
Rotating along the X-axis 119.43 124.54 4.28
Rotating along the Y-axis 119.45 121.140 1.41
Rotating along the Z-axis 62.39 - -

Due to the inability of the excitation platform to generate the torque form of excitation
and that there is no coupling between the rotational mode of the platform around the
Z-axis direction and other modes, the corresponding natural frequency of the mode cannot
be obtained from the tests. Nevertheless, from the other fifth-order mode corresponding
to the natural frequency in Table 4, it can still be seen that the maximum error of the
experimental natural frequency results does not exceed 5% compared to the theoretical
calculations, which are comparable to the theoretical results. The accuracy and reliability
of the proposed method for the additional stiffness of Stewart platform flexible joints are
further verified through actual testing of the natural frequency of the Stewart platform.

5. Discussion
5.1. Additional Illustration of the Theoretical Method

It is observed from the previous contents that the method proposed in this paper
reasonably depends on the symmetry of the Stewart configuration mechanism. Due to
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the structural axis-symmetric characteristics of the vertical Z-axis, the dynamics of the
mechanism exhibit theoretical consistency in the horizontal X and Y directions, which is
particularly reflected in the generalized stiffness matrix K of the system. In addition, the
mechanism exhibits the same symmetry characteristics regarding the dynamical coupling
of both the X and Y axes. In many past studies, it can be found that the traditional type
of Stewart configuration mechanism almost always has such properties of symmetry, and
their stiffness matrix has the same parameter characteristics as Equation (7). Whenever
this condition is satisfied, the solution of the additional stiffness of the flexible joint can be
accomplished according to the theoretical method of this paper. According to the traditional
kinematic theoretical method, it is inevitable to conduct different forms of kinematic analy-
sis and theoretical derivation for the additional stiffness that exists in Stewart mechanisms
with different types and distributions of flexible joints, and the derivation results can only
be applied to one type of Stewart mechanism. In contrast, the method in this paper is more
applicable and feasible for solving the additional stiffness of flexible joints in various forms
of the Stewart mechanism. In addition, the theoretical idea of this paper can also be applied
to the generalized Stewart mechanism mentioned by Jiang [36], which contains a more
complicated coupling relationship of stiffness characteristics compared to the traditional
Stewart mechanism, including translational stiffness along the X-axis and rotation stiffness
around the X-axis, translational stiffness along the Y-axis and rotation stiffness around the
Y-axis, and translational stiffness along the Z-axis and rotation stiffness around the Z-axis.
The generalized stiffness matrix of the system corresponding to the mechanism follows
the equation:

KG =



K11 0 0 K14 K15 0
0 K22 0 K24 K25 0
0 0 K33 0 0 K36

K41 K42 0 K44 0 0
K51 K52 0 0 K55 0
0 0 K63 0 0 K66

 (12)

where, apart from the same parameter characteristics as in Equation (7), the elements satisfy:
M14 = M25 = M41 = M52. This shows that there are two more values to be solved in the
matrix KG compared to the stiffness matrix K, which means there are seven parameters
to be solved in the matrix KG. However, the Stewart platform dynamics equations have
only six modal solutions, which can only provide six eigenequations, which makes the set
of equations unsolvable. The method given by the authors here follows. Before the step
of the FEM modal solution for the Stewart platform, the upper platform shall be added
to two different mass blocks successively and conducts the modal solution so that more
eigenvalues and eigenequations can be obtained. Then the solution can be achieved when
the number of eigenequations is more than that of solving parameters in fo matrix KG.
Although the usage of the method proposed for the generalized Stewart mechanism is
more complicated than that of the traditional Stewart mechanism, it is still quite acceptable
compared to the theoretical kinematic method with respect to the increased difficulty.
The relevant content of this has not been studied deeply in the paper, and readers are
encouraged to try it out.

Although the objective of the method in this paper is to find the additional stiffness
induced by the flexible joints in the Stewart mechanism, the method proposed is essentially
a solution for the overall stiffness of the system with the flexible joints. For conformity
with the actual engineering situation and better illustration, the solution to the additional
stiffness caused by the flexible joints in this paper is based on the premise that the
generalized stiffness caused by the legs in the system is known. In fact, if the system
stiffness caused by the legs is unknown, the additional stiffness caused by the flexible joint
in the system can also be solved directly by setting the axial stretching stiffness of the legs
in the FEM model to zero and keeping the flexible joint stiffness in the system. In practical
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situations, Stewart mechanisms may contain more than one type of flexible joint (e.g.,
bending-deformed flexible joints, torsion-deformed flexible joints). In this case, it is rather
challenging to achieve a kinematic theoretical derivation to solve selectively for the addi-
tional stiffness caused by one or several groups of flexible joints in the system. However, it
can be achieved straightforwardly by the method proposed, in which the corresponding
stiffness of the irrelevant flexible components in the FEM model just needs to be set to
zero before determining the FEM modal solution. Then the additional stiffness caused by
the specified flexible joints can be obtained by bringing the obtained eigenvalues into the
corresponding eigenequations to solve.

Furthermore, there are two issues need to be mentioned: 1. Since the method in this
paper relies on the FEM modal solution results, a relatively good consistency between the
established FEM model and the corresponding parameters in the set of eigenequations
needs to be ensured, which determines the accuracy of the solution results. 2. During
the process of adding additional load to the upper platform, it should be ensured that the
overall mass distribution of the upper platform has differences in the X-axis and Y-axis
directions to avoid the situation that M44 = M55 and M15 = −M24 in the matrix M, thus
preventing the situation that the characteristic Equation (9a,b) is the same without solutions.
Moreover, theoretically, the greater the difference between the upper platform part’s mass
distribution about the X-axis and Y-axis directions, the better convergence and accuracy of
the solution results can be obtained.

5.2. Damping Effects Analysis of Stewart Platform

The theoretical method proposed in this paper is primarily based on the modal analysis
for the system stiffness solution, so the damping characteristics of the system are not
considered during the theoretical analysis. However, during the actual tests, the dynamics
behavior of the Stewart platform prototype will inevitably be affected by damping. For
further clarification of the reasonableness of the test results under the influence of damping,
the analysis and discussion around the influence of system damping follow.

Firstly, it should be specified that the Stewart platform tested adopts a gapless structure
design, and the movements between the platform components depend on the elastic
deformation of the flexible components (legs and hinges), which causes no frictional
damping to occur in the system. Therefore, here we mainly consider the damping from
the elastic deformation of the legs and the flexible joints, which is the main source of
the damping compared to the structural damping and the air damping during the tests.
Here, we temporarily assume linear damping; the specific values can be calculated using
Equation (A2) in Appendix A and the frequency response curves obtained from the tests in
Section 4.2. Then, the damping matrices of the system corresponding to the legs and the
flexible joints are sequentially calculated by relevant dynamics theory, and the results are
referred to in Appendix A. Based on this, the dynamics equation of the system under unit
sinusoidal excitation [6] is given as follows:

M
..
X + nC

.
X + KX = nC

.
Y + KY (13)

where C denotes the system damping matrix, and given that the displacement of the
payload platform is X, and the displacement of the base platform is Y when a sinusoidal
excitation is applied to the base platform, and the displacement of the base platform is:
Y =

[
Y1 Y2 Y3 Y4 Y5 Y6

]T . Here, Yi = yisinωt ( i = 1 ∼ 6). Besides, the damping
multiplication factor n is multiplied ahead of the damping matrix C. By changing the
magnitude of n and solving Equation (13) sequentially, the frequency response curve
of the Stewart platform with different damping can be obtained; the results are shown
in Figure 10.
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After compilation, the natural frequencies of the Stewart platform with different
damping are shown in Table 5:

Table 5. Theoretical natural frequencies of Stewart platform with different magnification damping.

Damping Amplification n X/Y-Direction First-Order
Natural Frequency/Hz

X/Y-Direction Second-Order
Natural Frequency/Hz

Z-Direction First-Order
Natural Frequency/Hz

0.1 46.04 119.44 110.29
0.5 46.04 118.05 110.22
1 46.03 114.53 110.04
3 45.97 - 108.15
5 45.86 - 104.95

Figure 10 and Table 5 show that the Stewart platform resonance peak decreases
as the damping of the system increases, and the X/Y-direction second-order resonance
peak disappears when the damping increases to a certain level. Meanwhile, the natural
frequencies of each order of the system have different degrees of decline, in which the
first-order natural frequency of X/Y direction with lower frequency has little change,
and the second-order natural frequencies of X/Y direction and Z direction with higher
frequency have larger changes. Considering that the first-order natural frequencies of X/Y
directions obtained from the tests are in strong agreement with the theoretical results, it
can be considered that the first-order natural frequencies of the Stewart platform prototype
in the tests are less affected by damping, and the negligence of the damping effect in the
tests is justified to some extent.

Furthermore, we can observe that there is a large error in the higher X/Y-direction
second-order natural frequencies and Z-direction natural frequency under the assumption
of linear damping. For this phenomenon, the authors give the following explanation after
analysis. First, the curves in Figure 10 are obtained under the premise that the damping
of the system remains constant throughout the tests, but further observation shows that
the actual second-order peak of the system is larger than the theoretical calculation, and
the relatively first-order peak is significantly smaller than the theoretical result, so it can be
concluded that the damping of the system during the second-order resonance is relatively
smaller than that during the first-order resonance. Therefore, the actual second-order
natural frequency is much closer to the theoretical natural frequency of 119 Hz without
damping, which indicates that the actual effect of damping on the second-order natural
frequency of the system is obviously smaller. If so, a new problem arises here, the theoretical
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Z-directional resonance amplitude is close to the test results, and the Z-directional natural
frequency is near the X/Y-directional second-order natural frequency, which contradicts
the conclusion that the damping coefficient decreases in the high-frequency area. The
authors speculate that it is due to the energy loss caused by the large-amplitude vibration
of the system during the vibration process, which can also be confirmed by the fact that the
theoretical X/Y first-order resonance amplitude is significantly larger compared to the test
results. It is worth mentioning that the Stewart platform legs are equipped with damping
components manufactured from viscoelastic materials, and the damping components may
produce small creep on the surface of the closely attached parts while deforming during
the system motion. Therefore, the author considers that the use of viscoelastic materials
causes the complex damping characteristics of the system.

According to the theoretical analysis, the system-damping effect mainly acts in the
higher frequency band. Under the assumption of constant damping in the full frequency
band, the test error for the higher frequency X/Y-direction second-order natural frequency
and Z-direction natural frequency is around 8%. However, the analysis of the test results
shows that the damping in the high-frequency band is significantly lower than that in the
low-frequency band, which entails that the damping-induced natural frequency error in
the high-frequency band during the tests could be less than 8%. Therefore, the premise
of the negligence of the damping effect can still be considered reasonable. Although the
system damping has a certain influence on the test results, the overall correctness of the
theoretical method of this paper can still be confirmed by the tests.

6. Conclusions

In this paper, combining the symmetry characteristics of the Stewart mechanism
with relevant dynamics theory as a method of solving the additional stiffness of flexible
hinges in the Stewart mechanism based on FEM modal analysis is proposed. Following the
proposed method, the additional stiffness caused by the flexible joints has been solved for
the developed Stewart platform. Furthermore, the method is systematically validated from
simulations and tests based on the solution results. In the simulation process, the modal
solution of the Stewart platform was conducted under specific conditions separately by
numerical calculation and FEM simulation. The comparison of the two sets of results shows
that the typical natural frequencies of the system obtained by the two approaches are close
to each other, with a maximum deviation of only 3.12%, which verifies the correctness of
the theoretical method proposed in this paper. The frequency response test was conducted
on the Stewart platform prototype, and the natural frequencies of the typical modes were
extracted from the frequency response curves obtained from the tests. By comparing with
the theoretical results, it indicates that the maximum error between the actual natural
frequency of the platform prototype and the theoretical calculation results does not exceed
5%, which proves the effectiveness of the proposed method for solving the additional
stiffness of the flexible joints in practical engineering applications. Through combining the
test results with the dynamics theory, further analysis and discussion are conducted around
the influence of system damping on the test results, which indicates that the damping
effect on the natural frequencies of the tested Stewart platform is within acceptable limits,
and the tests still have a high degree of reliability. The research of this paper provides
a certain technical reference for the application and design of the Stewart platform with
flexible joints.
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Appendix A

The main parameters of the Stewart platform used for simulation and experiment in
this paper are shown in Table A1, which are also supported by the relevant theoretical
analysis and calculation in this paper.

Table A1. Main parameters of Stewart platform.

Parameter Value

Upper platform joint point circle radius RP 100 mm
Lower platform joint point circle radius RB 140 mm

Distribution angle of upper platform joint points α 40◦

Distribution angle of lower platform joint points β 30◦

Height between the upper and lower point circles H 124 mm
Coordinates of the load centroid in coordinate system OP-XYZ [0, 0, 30.12] mm

Distance from upper centroid of leg to upper joint point lsp 47.600 mm
Distance from lower centroid of leg to lower joint point lsb 62.795 mm

Load mass of upper platform m 2.574 kg
Load inertia tensor relative to the centroid I [10,983, 10,976, 21,586] kg·mm2

Mass of upper part of the leg msp 0.09387 kg
Mass of lower part of the leg msb 0.41013 kg

The upper part inertia tensor of leg relative to the centroid Isp [77.15, 77.15, 5.03] kg·mm2

The lower part inertia tensor of leg relative to the centroid Isb [522.21, 522.21, 99.16] kg·mm2

In Section 3.1, to avoid the complete symmetry of the mass characteristics of the upper
platform of the Stewart platform, the rectangular load is attached to the upper platform.
Besides, for the verification of the correctness of the solved additional stiffness of the
flexible joints, the mass of the load is set to 1.5 times the original in Section 3.2. Table A2
shows the mass characteristic parameters of the upper platform and its load under different
conditions.

Table A2. The parameters of load and upper platform mass characteristics.

Description of Platform and Load Mass/kg Moment of Inertia Relative to the
Centroid/kg·mm2

The Coordinates of the
Centroid in Coordinate

System OP-XYZ/mm

No load 2.542
[
10, 810.80 10, 816.31 21, 256.41

] [
0 0 30.116

]
Loaded 7.542

[
20, 145.31 51, 650.40 64, 755.82

] [
0 0 54.567

]
Load mass (×1.5) 12.5446

[
27, 651.70 90, 656.36 108, 255.23

] [
0 0 59.523

]
When considering the outrigger legs masses in condition (b) of Section 3.2, based on

the system generalized mass matrix M in the dynamics Equation (1), there is a need to add
an additional generalized mass matrix of the legs ML, which is already given below:

ML =
6

∑
i=0

PJT
i (M1 + M2)i

PJi (A1)



Machines 2023, 11, 457 20 of 22

where:

M1 =

(
E3 +

lspñ2
i

li

)T

msp

(
E3 +

lspñ2
i

li

)
+

msbl2
sbñT

i ñi

l2
i

M2 =
(
Isp + Isb

) ñT
i ñi

l2
i

PJi =
[
E3 (R·Pi × E3)

]
where ni denotes the unit vector of the i-th leg; li denotes the length of the i-th leg; E3
is the third-order identity matrix; R is the coordinate transformation matrix between the
coordinate system OP-XYZ and OB-XYZ; Pi denotes the coordinate of the upper joint point
of the i-th leg in the coordinate system OP-XYZ; The corresponding values of specific
parameters can be found in Table A1.

For the dynamic calibration tests of the legs and flexible joints, the test system was
equated to a single-degree-of-freedom linear spring-mass system; the schematic is shown in
Figure 4. Through the dynamics theoretical derivation, the peak value of the system
frequency response curve Pn and its corresponding frequency f P

n can be respectively
obtained as:

Pn =
1

2ξ
√

1− ξ2
(A2a)

f P
n =

√
(1− 2ξ2)

k
m

(A2b)

where ξ = cn
2
√

knmn
, cn denotes the linear damping of the testing object. The test results of

all tested legs and flexible hinges are calculated separately and then averaged, and the
corresponding damping matrices of the legs and flexible hinges in the Stewart platform are
finally obtained after derivation as follows:

CS =



7.7319 0 0 0 −0.6386 0
0 7.7319 0 0.6386 0 0
0 0 0.0646 0 0 0
0 0.6386 0 0.0831 0 0

−0.6386 0 0 0 0.0831 0
0 0 0 0 0 0.1108

 (A3a)

CR =



29.0905 0 0 0 2.2961 0
0 29.0905 0 −2.2961 0 0
0 0 211.8189 0 0 0
0 −2.2961 0 1.0591 0 0

2.2961 0 0 0 1.0591 0
0 0 0 0 0 0.4823

 (A3b)

The damping of the system introduced by the legs and flexible hinges in the Stewart
platform is: C = CS + CR.
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