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Abstract: Clarifying the aberrations arising from freeform surfaces is of great significance for
maximizing the potential of freeform surfaces in the design of optical systems. However, the
current precision in calculating aberration contribution of freeform surface terms for non-zero
field of view is insufficient, impeding the development of freeform imaging systems with larger
field of view. This paper proposes a high-precision analysis of aberration contribution of freeform
surface terms based on nodal aberration theory, particularly for non-zero field points. Accurate
calculation formulas of aberrations generated by Zernike terms on freeform surface are presented.
Design examples illustrate that the calculation error of the provided formulas is 78% less than
that of conventional theoretical values. Building upon high-precision analysis, we propose an
optimization method for off-axis freeform surface systems and illustrate its effectiveness through
the optimization of an off-axis three-mirror system. This research extends the applicability of
nodal aberration theory in aberration analysis, offering valuable insights for the optimal design
and alignment of optical freeform systems.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Freeform surfaces offer a heightened degree of design flexibility and an enhanced capacity for
controlling light, resulting in improved performance and compactness of optical systems [1]. The
advancement of desensitization design methods [2] and cutting-edge manufacturing techniques
[3] has greatly promoted the extensive incorporation of freeform surfaces in a range of optical
systems, such as spectrometers [4], head-mounted displays [5–7], three-mirror imaging systems
[8–10], and projection optics [11].

Freeform surface shapes are commonly represented by analytic functions and polynomials
[12]. Among these, Zernike polynomials stand out for their orthogonality and completeness
within the unit circle. The inherent quality renders Zernike polynomials highly valuable for
characterizing surface shape and wavefront aberrations in optical design and testing. Additionally,
the advancement of nodal aberration theory (NAT) has greatly facilitated the aberration analysis
of optical imaging systems employing Zernike freeform surfaces. NAT was introduced by Shack
and Thompson [13], building upon H.H. Hopkins’ wavefront aberration theory and Buchroeder’s
concept of surface aberration field contributions [14]. NAT enables the analysis of aberrations in
optical systems without rotational symmetry. Thompson extended NAT to third and fifth orders

#511052 https://doi.org/10.1364/OE.511052
Journal © 2024 Received 3 Nov 2023; revised 3 Jan 2024; accepted 4 Jan 2024; published 16 Jan 2024

https://orcid.org/0000-0003-4849-0603
https://doi.org/10.1364/OA_License_v2#VOR-OA
https://crossmark.crossref.org/dialog/?doi=10.1364/OE.511052&amp;domain=pdf&amp;date_stamp=2024-01-16


Research Article Vol. 32, No. 3 / 29 Jan 2024 / Optics Express 3168

[15–18], unveiling the multi-nodal aberration behavior in misaligned systems. Fuerschbach
integrated NAT with Zernike freeform surfaces, presenting an analytical framework for aberration
calculation [19], referred to here as the Aberration Calculation Framework (ACF). ACF is utilized
to calculate aberration contributions of Zernike terms on freeform surfaces, whether located at
the stop of the optical system or away from it. This framework not only quantifies aberrations
but also uncovers their field-dependent characteristics. On the basis of ACF, Yang conducted
comprehensive calculations of aberrations caused by Zernike terms on refractive and reflective
surfaces in coaxial imaging systems [20]. Furthermore, Yang employed the scaled pupil vector to
address the issue of elliptical footprints on tilted freeform surfaces. Experiment results show a
significant improvement in predicting the aberration contribution of off-axis Zernike freeform
surfaces terms at 0° field of view(FOV) [21]. Ju incorporated a scaled factor of the beam
footprint into ACF and introduced modified explicit formulas, establishing the relationships
between the magnitude of freeform surfaces and the resulting aberrations. Subsequently, Ju
accurately calculated the figure error based on the measured wavefront aberrations at paraxial
field points (0° and 0.07°) [22]. In addition, the quantitative evaluation of aberrations resulting
from Zernike terms has significantly contributed to the advancement of research in optical design
and alignment. It has supported the development of design methodologies for freeform surface
systems [10], the calculation of aberrations due to mount-induced surface deformation [23], and
the formulation of alignment strategies in the presence of figure errors [24,25].

The existing ACF has demonstrated its ability to accurately predict aberrations at paraxial field
points generated by freeform surface terms. Nevertheless, optical imaging systems typically
encompass a certain width of FOV, and it is equally essential to ensure satisfactory image
quality at non-zero field points. Therefore, accurately calculating the aberration contributions
of freeform surface terms for non-zero field points is imperative as well. However, due to the
differences between the beams from zero field point and non-zero field points, such as the angle
of incidence and the shape of the exit pupil, the existing ACF may exhibit large calculation
errors when predicting the aberrations at non-zero field points, both in type and magnitude.
Unfortunately, at present, there is a lack of precise analysis regarding the aberration contribution
of freeform surface terms for general non-zero FOV, either in coaxial or off-axis optical systems.
This limitation presents challenges in optical design by impeding the efficient identification of
freeform terms that should be optimized based on the characteristics of non-zero-field aberrations.
As a result, the optimization design process may heavily depend on design experience. Moreover,
in optical alignment, this limitation hinders the accurate separation of surface figure errors from
misalignments based on the aberrations of multiple field points, leading to a significant reduction
in compensation efficiency. Hence, it is crucial to accurately calculate the aberration contribution
of freeform terms for non-zero field points.

This paper presents a highly precise analysis of aberration contribution of Zernike freeform
surface terms for non-zero field points, surpassing the accuracy of existing theories. We begin by
an overview of the current analyses about the Zernike terms’ aberration contribution for paraxial
field of view, so as to establish the theoretical framework for subsequent sections. Next, a detailed
discussion is conducted on the aberration contribution of Zernike terms on freeform surfaces
located at the stop and away from the stop, within non-zero FOV. By introducing the chief
ray’s incident angle and the shape of the fitting exit pupil, we presented the precise aberration
calculation formulas and substantiate their accuracy through design examples. When compared
to traditional theoretical values, the proposed formulas exhibit a 78% reduction in calculation
errors. Finally, we proposed a NAT-guided optimization method for off-axis freeform surface
systems based on the high-precision analysis, and demonstrated its effectiveness by optimizing
an off axis three-mirror system. This research is expected to aid in optical system design and
alignment.
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2. Aberration contribution of Zernike freeform surface terms for paraxial field
of view

Zernike terms added to optical surface introduce optical path difference and generate wavefront
aberration. The relationship between Zernike terms and the generated wavefront aberration W is
represented as [21],

W =
n′ − n
λ

∑︂
i

CiZi

(︂
⇀
ρf

)︂
, (1)

with
⇀
ρf = (ρf , φ) = (ρf ,x, ρf ,y), (2)

where λ is the wavelength, n and n’ are the indices of refraction before and after freeform surface,
especially for mirrors, n= 1, n’=−1 for odd times of reflection, and n=−1, n’= 1 for even times.
⇀
ρf is the vector-form normalized aperture coordinate of the freeform surface that can be expanded
in polar coordinates with radial component ρf and azimuthal component φ, or in Cartesian
coordinates with horizontal component ρf ,x and vertical component ρf ,y . Ci is the coefficient
of the ith Zernike terms Zi

(︂
⇀
ρf

)︂
.
∑︁
i

CiZi

(︂
⇀
ρf

)︂
represents the surface sag generated by Zernike

terms added to the surface, we refer to this as Zernike sag, denoted by f
(︂
⇀
ρf

)︂
=
∑︁
i

CiZi

(︂
⇀
ρf

)︂
.

As the aberrations are generally fitted to the exit pupil plane, the normalized aperture vector
of the freeform surface, ⇀

ρf , should be transformed to the normalized pupil vector, ⇀
ρp. The

correspondence between ⇀
ρf and ⇀

ρp depends on the location of the freeform surface.

2.1. Aberration generated by Zernike terms on freeform surface located at stop

When the freeform surface is located at stop, as shown in Fig. 1, the light beams from different
field points share the same area of the freeform surface, the entire surface aperture is covered by
the beam footprint.

Fig. 1. The case when the freeform surface is located at stop, the rays from different field
points share the same area.

Then we have,
⇀
ρf =

⇀
ρp, (3)

combine Eq. (1) and Eq. (3), the aberration generated by Zernike terms on freeform surface at
stop can be calculated by,

W =
n′ − n
λ

∑︂
i

CiZi

(︂
⇀
ρp

)︂
. (4)

In practice, the coordinate system of the surface located at stop is typically chosen as the
reference coordinate system. This means that the surface located at stop is always considered
on-axis. Therefore, the off-axis analysis exclusively focuses on the freeform surface located away
from the stop.
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2.2. Aberration generated by Zernike terms on freeform surface located away from
stop

2.2.1. On-axis freeform surface

When the freeform surface is located away from stop, as shown in Fig. 2, the beam footprints of
different field points cover different parts of the freeform surface, the aberration contribution of
freeform to each field point differs and relies on sag of the specific irradiated surface area.

Fig. 2. The case when the freeform surface is located away from stop, the rays from different
field points illuminate different areas.

In this case, a transformation from ⇀
ρf to ⇀

ρp is,

⇀
ρf = a⇀

ρp +
⇀

h = (aρf ,x + hx, aρf ,y + hy), (5)

with scale factor a = y
Rn

, where y denotes the marginal ray height on freeform surface, and Rn

is the normalized radius of the freeform surface.
⇀

h is the pupil shift vector with horizontal
component hx and vertical component hy, it defines the center of the shift beam footprint, that is,

⇀

h = b
⇀

H = (hx, hy) = (bHx, bHy), (6)

where b = ȳ
Rn

, ȳ is chief ray height on freeform surface,
⇀

H represents the normalized field vector,
consisting of horizontal component Hx and vertical component Hy. Combine Eq. (1) and Eq. (5),
the aberration generated by Zernike terms on freeform surface away from stop can be calculated
by,

W =
n′ − n
λ

∑︂
i

CiZi

(︂
a⇀
ρp +

⇀

h
)︂
. (7)

2.2.2. Off-axis freeform surface

A surface is regarded as off-axis when decentered or tilted. In the case of a decentered surface,
as illustrated in Fig. 3, the freeform surface is shifted from the dashed circle to the solid one,
resulting in a shift of the surface origin, ⇀

σf .

In this case, the pupil shift vector
⇀

h in Eq. (6) is modified as
⇀

h = b
⇀

H −
⇀
σf , where ⇀

σf =
⇀
δ f
Rn

,
⇀

δ f is the physical surface displacement vector. By substituting the modified
⇀

h into Eq. (7), the
aberration generated by Zernike terms on decentered freeform surface can be calculated, given
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Fig. 3. Beam footprint on the decentered freeform surface that shift from the dashed
boundary circle to the solid boundary circle

by Eq. (8).

W =
n′ − n
λ

∑︂
i

CiZi

(︂
a⇀
ρp + b

⇀

H −
⇀
σf

)︂
. (8)

In practical cases, optical systems are typically designed plane-symmetric, so the surface is
tilted by rotating only around the x or y axis. As illustrated in Fig. 4, when the beam is illuminated
on a freeform surface tilted along the x-axis, as shown on the left side, the distribution of light
beams on the surface is depicted on the right side. The effective beam footprint is not a circle but
an approximate ellipse.

Fig. 4. The case when the beam is illuminated on a tilted freeform surface, the beam
footprint is an approximate ellipse

In this case, the normalized aperture vector ⇀
ρf = (ρf ,x, ρf ,y) should change to the effective

scaled aperture vector ⇀
ρfs = (sf ,xρf ,x, ρf ,y) . where the tilt factor sf ,x is given by,

sf ,x =
Rfx

Rfy
, (9)

Rfx and Rfy represent the marginal ray heights in the x-direction and y-direction on the freeform
surface, respectively. Similarly, when the surface is tilted about the y-axis, ⇀

ρfs = (ρf ,x, sf ,yρf ,y).
where the tilt factor sf ,y =

Rfy
Rfx

. So according to Eq. (5), the relationship between the effective
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scaled aperture vector ⇀
ρfs and the pupil vector ⇀

ρp is,

⇀
ρfs = (sf ,xρf ,x, sf ,yρf ,y) = (sf ,xaρp,x + hx, sf ,yaρp,y + hy), (10)

where
sf ,x =

Rfx
Rfy

, sf ,y = 1, when tilted around x - axis

sf ,x = 1, sf ,y =
Rfy
Rfx

, when tilted around y - axis
.

Combine Eq. (7) and Eq. (10), the aberration generated by Zernike terms on off-axis freeform
surface can be calculated by,

W =
n′ − n
λ

∑︂
i

CiZi[sf ,xaρp,x + hx, sf ,yaρp,y + hy]. (11)

When the freeform surface is on-axis, sf ,x = sf ,y = 1, Eq. (11) reverts to Eq. (7). Therefore,
Eq. (11) is applicable when the surface is located away from the aperture stop, whether it is
on-axis or off-axis.

The aberration calculation formulas, specifically Eq. (4), Eq. (7), and Eq. (11), relies on an key
approximation assuming that rays propagate along the local Z-axis [20]. As shown in Fig. 5, the
zero-field incident ray is reflected at pupil position ⇀

ρ of the freeform mirror. When approximating
ray reflection along the Z-axis, the theoretical optical path difference due to Zernike sag, f

(︂
⇀
ρ
)︂
, is

2f
(︂
⇀
ρ
)︂
, but the actual reflected ray deviates from the Z-axis. However, since the Zernike sag (on

the order of wavelengths) is much smaller than the surface aperture (on the order of greater than
millimeters), the deviation of the reflected ray from the Z-axis can be neglected. In the following
section, this approximation will still be used for further analysis.

Fig. 5. The case when the zero-field incident ray is reflected at pupil position ⇀
ρ of the

freeform mirror.

3. Aberration contribution of Zernike freeform terms for general non-zero field
of view

3.1. Freeform surface located at stop

In Fig. 5, the premise that reflected rays are transmitted along the Z-axis implies that the tangent
plane at each pupil position of the freeform surface is perpendicular to the Z-axis. With this
approximation, we analyzed the aberration contribution of at-stop Zernike freeform surface terms
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for general non-zero FOV. As an example, a simple one-mirror system is shown in Fig. 6(a), the
freeform surface is located at stop. For enhanced visualization, the freeform departure of the
surface is presented, representing surface maps after removing the basic sphere [10].The rays
from non-zero field point are obliquely incident to the surface, with the incident angle of chief
ray αin. Figure 6(b) illustrates the behavior of a certain ray within the system as it irradiates at
the pupil position ⇀

ρ of the freeform mirror, both before and after the addition of Zernike terms.
Under the approximation that the tangent plane of the surface is perpendicular to the Z-axis, the
two reflected rays are parallel. For the sake of presentation, we have magnified the separation
between the two reflected rays, BC, even though it is, in reality, negligibly small compared to the
surface aperture, and similarly, ∆⇀

ρ ≪
⇀
ρ.

Fig. 6. (a) Schematic of one-mirror system where the freeform surface is located at stop and
the rays from non-zero field point are obliquely incident to the surface, (b) The case when a
certain ray within the one-mirror system irradiates at the pupil position ⇀

ρ of the freeform
mirror, under the approximation that the tangent plane of the surface is perpendicular to the
Z-axis.

In this case, the optical path difference introduced by the Zernike sag f (⇀ρ) is

∆W = BA + AC

= BA(1 + cos(2αin))

= 2BAcos2(αin)

= 2AD cos(αin)

= 2f (⇀ρ + ∆⇀
ρ) cos(αin)

, (12)

as ∆⇀
ρ ≪

⇀
ρ, we have,

∆W ≈ 2f (⇀ρ) cos(αin). (13)

This implies that the generated non-zero-field aberrations result from the incidence-direction
orthogonal component of the actual Zernike sag, and it can be written as sg

∑︁
i

CiZi

(︂
⇀
ρp

)︂
, where

sg = cos(αin). Then according to Eq. (4), for general non-zeros field points, the aberration
contribution of at-stop Zernike freeform terms can be calculated by,

W = sg
n′ − n
λ

∑︂
i

CiZi

(︂
⇀
ρp

)︂
= sg

∑︂
i

MiZi

(︂
⇀
ρp

)︂
, (14)

where Mi =
n′−n
λ Ci.

Additionally, wave aberrations are typically fitted to a plane located at the exit pupil and
perpendicular to the chief ray [26], we refer to this plane as the fitting exit pupil (FEP). In a
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system with a round exit pupil, the aperture of the zero-field-point beam is circular at the exit
pupil surface. Correspondingly, for non-zero-field points, the apertures of beams which are
incident obliquely on the exit pupil plane, is approximately an ellipse at the FEP, as illustrated in
Fig. 7.

Fig. 7. The elliptical FEP of the non-zero field point

In this case, the normalized pupil vector ⇀
ρp = (ρp,x, ρp,y) should change to the effective scaled

FEP vector ⇀
ρps = (ρp,x, spρp,y), where the sp is given by,

sp =
Rpy

Rpx
, (15)

where Rpx and Rpy are the marginal ray heights in the x-direction and y-direction on FEP,
respectively, and can be obtained via ray trace.

In a more general situation, according to Eq. (3), the relationship between the normalized
aperture vector ⇀

ρf and the effective scaled FEP vector ⇀
ρps is,

⇀
ρf =

⇀
ρp = (ρp,x, ρp,y)

= (ρps,x/sp,x, ρps,y/sp,y)
, (16)

where
sp,x =

Rpx
Rpy

, sp,y = 1, when Rpx ≤ Rpy

sp,x = 1, sp,y =
Rpy
Rpx

, when Rpx>Rpy
.

Combine Eq. (14) and Eq. (16), for general non-zero field points, the aberration contribution
of at-stop Zernike freeform terms can be accurately calculated by,

W = sg
∑︂

i
MiZi

(︂
⇀
ρp

)︂
= sg

∑︂
i

MiZi(ρp,x, ρp,y)

= sg
∑︂

i
MiZi(ρps,x/sp,x, ρps,y/sp,y)

. (17)

When the rays from zero field point pass the freeform surface located at stop, sg = 1,
sp,x = sp,y = 1, Eq. (17) transforms back to Eq. (4), so Eq. (17) is actually available for any field
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point. For further analysis, we express the generated aberration W calculated by Eq. (17) as the
general form of fringe Zernike polynomials. According to Eq. (17), the aberration generated by
the ith Zernike term on the freeform surface is,

Wi = sgMiZi(ρps,x/sp,x, ρps,y/sp,y). (18)

Based on the study [21], Eq. (18) can be expand into XY polynomials and then rearranged into
fringe Zernike polynomials, they can be written as the form of vector multiplication, given by,

Wi = Ci
TG =Mi

rearrTZadj (19)

where G is the vector containing XY polynomial terms. Ci is the corresponding coefficient
vector. Zadj is the vector containing fringe Zernike polynomial terms which has been adjusted to
remove constant terms and tilt terms without affecting the results. Mrearr

i is the corresponding
coefficient vector to be calculated. G and Zadj are related by a transformation matrix T, that is,
Zadj = TG. The specific G, Zadj and T employed here can be found in study [21]. Therefore,
according to Eq. (19), the vector of the fringe Zernike coefficient Mrearr

i can be obtained by,

Mi
rearr = (Mi

rearrT )T = (Ci
TG(Zadj)−1)T = (Ci

T (T)−1)T = (TT )−1Ci, (20)

based on Eq. (20), the aberration generated by the Zernike term on the freeform surface is allowed
to be expressed using fringe Zernike polynomials.

Conventionally, the designed optical system is symmetric about yoz plane, and as a result, the
Zernike terms considered here also maintain symmetry about the yoz plane. Figure 8 provides
calculation formulas of fringe Zernike aberrations generated by Zernike terms, typically up to
the 4th order, for the freeform surface at the aperture stop.

We validate the above calculation equations using the one-mirror system shown in Fig. 6(a),
the wavelength is 500 nm, the test field points ranges from (0°, 0°) to (0°, 55°) in 5° intervals
along the y-direction, we build the system in optical software Code V. Taking Zernike term Z9 as
an example, we add Z9 with coefficient of 1 λ to the freeform surface, the generated aberrations in
each test field point are calculated by formulas derived from Eq. (17) (in Fig. 8), representing the
proposed theoretical values. The comparison between the proposed theoretical value, traditional
theoretical value (generated aberrations calculated by formulas derived from Eq. (4)) and the
actual value (generated aberrations read from Code V) is shown in Fig. 9. Traditional theory
suggests that a Zernike term on the freeform surface at stop generates a single type of aberration
independent of the field. This theory holds accurate for small fields but progressively deviates
from the actual values as the field increases. In contrast, the proposed theoretical value aligns
more consistently with the actual values across a range of test field points. In addition, we
obtained the maximum calculation error of the proposed theory for the total aberrations generated
by each Zernike term in Fig. 8. The comparison of the calculation error between the proposed
theoretical value and traditional theoretical value is illustrated in Fig. 10. The calculation error
of traditional theoretical value increases as the field increases, whereas the error in the proposed
theoretical value remains consistently small at all field points, with a maximum calculation error
of 0.015λ.

3.2. Freeform surface located away from stop

In addition to the at-stop freeform surfaces, we further obtain the aberration contribution of
non-stop freeform surface terms. Considering the angle of incidence and the shape of FEP,
combine Eq. (11) and Eq. (17), the aberration generated by Zernike terms on freeform surface
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Fig. 8. Formulas of fringe Zernike aberrations generated by Zernike terms on the freeform
surface located at stop

Fig. 9. Comparison between the proposed theoretical value, traditional theoretical value
and the actual value when adding Z9 to the freeform surface located at stop, the generated
aberrations are (a)K4, (b) K5, (c) K9, (d) K12 and (e) K17. The line between the data points
is for the purpose of showing the trend of the generated aberrations.
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Fig. 10. Comparison of the calculation error of total aberrations between the proposed
theoretical value and traditional theoretical value when adding (a) z4, (b) z5, (c) z8, (d) z9,
(e) z11, (f) z12 and (g) z17 to the freeform surface located at stop

away from stop can be calculated by,

W = sg
∑︂

i
MiZi(Qxρps,x + hx, Qyρps,y + hy), (21)

where,
Qx =

asfx

spx
,

Qy =
asfy

spy
.

In the same way, the coefficients of aberrations in forms of fringe Zernike polynomials derived
from Eq. (21) are listed in Fig. 11.

We built an off-axis two-mirror system shown in Fig. 12 to validate the calculation formulas in
Fig. 11. The entrance pupil is 10 mm.The primary mirror is a plane mirror tilted by 45°, the
freeform surface is located at secondary mirror which is tilted by 45°and decentered by 5

√
2/2

mm. The system has a 10°×4° FOV and an effective focal length of 189.2 mm. The wavelength
is 500 nm. One set of test field points is symmetric about yoz plane, which ranges from (0°, 0°)
to (5°, 0°) in 1°intervals along x direction, add each Zernike term in Fig. 11 with coefficient of 1
λ to the freeform surface, the comparison of the calculation error of the total aberrations between
the proposed theoretical value, traditional theoretical value (generated aberrations calculated by
formulas derived from Eq. (11)) is illustrated in Fig. 13.

Another set of test field points is asymmetric and ranges from (0°, −2°) to (0°, 2°) in 1°intervals
along y direction, in the same way, the comparison of the calculation error of the total aberrations
between the proposed theoretical value, traditional theoretical value is illustrated in Fig. 14.

For both sets of test field points, the proposed theoretical value is more accurate than the
traditional theoretical value, with a maximum error of 0.066λ. However, compared to the situation
of at-stop freeform surface, the error of proposed theoretical value is larger, this is due to the
use of the ellipse as approximation to describe the shape of beam footprint and the FEP, the
approximation error is hard to avoid. Additionally, as mentioned before, the aberration formulas
are approximate assuming that rays are transmitted along the Z direction or the chief-ray direction,
avoiding the complex tracing for every single ray. Hence the calculation error introduced by the
approximate formulas can be regarded as an inevitable tradeoff. Nevertheless, when compared to
the conventional theoretical values (with an error range of 0.048λ to 0.302λ) at both sets of test
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Fig. 11. Formulas of aberrations generated by Zernike terms on the off-axis freeform
surface

Fig. 12. Schematic of the off-axis two-mirror system
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Fig. 13. Comparison of the calculation error of total aberrations between the proposed
theoretical value and traditional theoretical value when adding (a) z4, (b) z5, (c) z8, (d) z9, €
z11, (f) z12 and (g) z17 to the off-axis freeform surface, the test field points are along the x
direction that is symmetric about yoz plane

Fig. 14. Comparison of the calculation error of total aberrations between the proposed
theoretical value and traditional theoretical value when adding (a) z4, (b) z5, (c) z8, (d) z9, €
z11, (f) z12 and (g) z17 to the off-axis freeform surface, the test field points are along the y
direction that is not symmetric about yoz plane

field points, the proposed theoretical values exhibit a much narrower error range of 0.001λ to
0.066λ. The proposed formulas reduce the calculation error by more than 78% and significantly
improve computational accuracy. Based on the proposed formulas, the Zernike terms on each
surface of the system have the individual aberration contribution corresponding to their respective
surface, and they can all be accurately calculated without being confused.

4. NAT-guided optimization method for off-axis freeform system

In this section, we present an application scenario of the proposed high-precision aberration
analysis. The optimization strategy based on NAT utilizes the predictable aberration field
generated by freeform surface terms to compensate the aberration field of the system, generating
a reasonable optimization starting point for ray-tracing-based optimization. This strategy offers
flexibility in identifying the freeform terms that require optimization based on the system’s
aberration characteristics. It aids in determining the optimization direction and mitigates the
inefficiency caused by relying solely on ray-tracing-based optimization algorithms [10]. However,
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due to the insufficient accuracy of the traditional theory in calculating the aberration contribution
for general non-zero FOV, the accurate quantitative optimization guidance based on NAT is only
suitable for coaxial systems with paraxial FOV [27].

Here, with the proposed high-precision aberration calculation formulas, we present a NAT-
guided optimization method for off-axis freeform surface system with general non-zero FOV. This
method supports the optimization for systems containing multiple freeform surfaces, reducing
the complexity of the optimization process. The total optimization flowchart is as Fig. 15, two
steps are included, Step (1) is the optimization for initial system. In this step, we first construct
the NAT-guided error function Wsys(Cs,i), where the coefficient of the Zernike freeform surface
term is designated as the optimization variable. Then, we employ the gradient descent algorithm
to optimize the error function, extract the optimal coefficients of Zernike terms and complete the
initial construction of the freeform surfaces. The error function Wsys(Cs,i) is denoted as,

Wfield(Cs,i) =
∑︁
j

(︃
W0(j) +

∑︁
s

Wz(s,j)(Cs,i)

)︃2

Wsys(Cs,i) =
∑︁

field
Wfield(Cs,i)

, (22)

where Wfield(Cs,i) is the comprehensive wave aberration of a specific field point, Cs,i is the ith
Zernike coefficient of the sth freeform surface. For this field point, W0(j) is the amount of the jth
fringe Zernike aberration. Wz(s,j) is the amount of the jth fringe Zernike aberration generated
by Cs,i, it is calculated by the proposed formulas in Fig. 8 and Fig. 11. The NAT-guided error
function Wsys(Cs,i) is the sum of the Wfield(Cs,i) of all selected field points. This error function
denotes the superposition of the aberrations of the initial system and the aberration contribution of
the freeform Zernike terms, reflecting the comprehensive level of aberrations when Zernike terms
are added to optical surfaces. The optimized system after Step (1) is taken as the optimization
starting point of Step (2). Step (2) involves further optimizing the surface shape parameters,
thickness, decenter and tilt. This optimization is performed using the damped least squares
method integrated into the optical software, employing default error functions. Iterate the Step
(1) and (2) if the system performance doesn’t meet the target.

Fig. 15. Flowchart of the NAT-guided optimization method

Using the proposed method, we optimized an off-axis three-mirror system, the specifications
and target performance are shown in Table 1. The initial system is shown in Fig. 16(a) with
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the primary mirror located at stop. All three surfaces are spherical, with radius of 1521.3 mm
for PM, 468.1 mm for SM, and 667.3 mm for TM. In Step (1), we optimized the NAT-guided
error function in MATLAB, the variables are the Zernike coefficients of three surfaces. In each
iteration of the gradient descent process, the error function continues to decrease, obtaining
the efficient optimized Zernike terms. After about 20 iterations, the decrease is not obvious,
we stop iteration and extract the Zernike terms as the optimal solution. The obtained system
with constructed freeform surfaces is shown in Fig. 16(b), the RMS wavefront error (RMS
WFE) is reduced from 68.639λ of initial system to 5.679λ. Then we set the Zernike coefficients,
conics, tilts of the three surfaces and the image plane distance as the variables to take a further
optimization in Code V, after 6 iterations of damped least squares, the target performance was
met. The final system with three optimized freeform surfaces is shown in Fig. 16(c).

Fig. 16. Schematic of the three-mirror systems and their RMS WFE. (a) initial system,
(b) system after the NAT-guided surface construction(Step (1)), and (c) the final system
optimized by the proposed method

Table 1. Specifications and target performance of the
three-mirror system

Entrance pupil(mm) 200 Wavelength(nm) 500

Focal length(mm) 600 RMS wavefront error(λ) ≤0.07

Full field of view(°) 4× 4 Distortion ≤1%

As a further proof of the proposed optimization method, we replaced the NAT-guided operation
for solving the Zernike coefficients in Step (1) with a direct software optimization, and obtained
a system optimized without NAT guidance. Then perform Step (2) on this system under the
same constraints, and with the same variables as the NAT-guided system. The optimization
process terminates when it either reaches the target specification or converges. The comparison
between the final system optimized with and without NAT guidance in terms of the RMS
WFE and distortion are shown in Table 2. It suggested that the system optimized with NAT
guidance achieved a better optical performance. We attribute this to the fact that the proposed
method incorporates NAT to account for the field-dependent property of aberrations, thereby
compensating for the entire aberration field of the initial system, without relying exclusively on
ray-tracing-based algorithm. Therefore, Step (1) with NAT-guidance generates a more reasonable
optimization starting point which enables Step (2) to output the ideal final system.
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Table 2. RMS WFE and distortion of the system
optimized with and without NAT guidance

RMS WFE(λ) distortion

System optimized with NAT
guidance

0.065 0.89%

System optimized without
NAT guidance

0.197 2.11%

5. Conclusion and discussion

In this paper, a high-precise analysis of aberration contribution of Zernike freeform surface terms
for non-zero field points is provided. As a theoretical basis, we first reviewed the existing analyses
of the aberrations generated by Zernike freeform surface terms. Subsequently, we conduct a
comprehensive analysis of the aberration contribution of Zernike terms on both at-stop and
non-stop surfaces for non-zero FOV. The chief ray’s angle of incidence and the shape of the fitting
exit pupil are considered to derive the precise aberration calculation formulas. Design examples
have demonstrated the enhanced calculation accuracy of the proposed formulas, resulting in a
remarkable 78% reduction in calculation error compared to traditional theoretical values. Finally,
we proposed a NAT-guided optimization method for off-axis freeform surface systems based
on the high-precision analysis, and validated its effectiveness through the optimization of a
three-mirror system. This research contributes to the broader application of NAT in aberration
analysis and offers valuable insights for the optimal design and alignment of optical freeform
systems.

This paper explores the aberration contribution of Zernike freeform surfaces. However, for
some surface shapes exhibiting special characteristics, Zernike polynomials may have limitations
in fitting accuracy. In such cases, alternative types of freeform basis functions are necessary for
accurate representation [12] For example, a surface shape with the information concentrated
around the center of the analysis domain is better suited for representation using vortex Jinc
functions [28]. For surfaces with abrupt variations, such as the anterior eye surface at the limbus
region, Bessel functions are more capable of representation [29]. And Chebyshev polynomials
are suitable to represent the complete ophthalmic surfaces [30]. Clarifying the aberration
contribution of these alternative basis functions aids in understanding the aberration behavior of
optical systems containing surfaces with special characteristics, providing theoretical guidance
for improving system performance. Therefore, we hope that our study can offer insights for
conducting these potential researches in the future.
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