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Abstract: Metalens, composed of arrays of nano-posts, is an ultrathin planar optical element used
for constructing compact optical systems which can achieve high-performance optical imaging by
wavefront modulating. However, the existing achromatic metalenses for circular polarization possess
the problem of low focal efficiency, which is caused by the low polarization conversion efficiencies of
the nano-posts. This problem hinders the practical application of the metalens. Topology optimization
is an optimization-based design method that can effectively extend the degree of design freedom,
allowing the phases and polarization conversion efficiencies of the nano-posts to be taken into account
simultaneously in the optimization procedures. Therefore, it is used to find geometrical configurations
of the nano-posts with suitable phase dispersions and maximized polarization conversion efficiencies.
An achromatic metalens has a diameter of 40 µm. The average focal efficiency of this metalens is 53%
in the spectrum of 531 nm to 780 nm by simulation, which is higher than the previously reported
achromatic metalenses with average efficiencies of 20~36%. The result shows that the introduced
method can effectively improve the focal efficiency of the broadband achromatic metalens.

Keywords: achromatic metalens; topology optimization; focal efficiency; polarization conversion efficiency

1. Introduction

As a planar optical element developed from metamaterials, the metalens can realize
flexible modulation of light in the subwavelength scale, which has promising prospects
in building lightweight and compacting optical systems when compared to conventional
lenses [1]. It can be used in many applications [2] such as beam generators [3,4], opti-
cal holographic imaging [5,6], and virtual shaping [7,8]. However, the metalens has a
dispersion problem which is inherent to the diffractive element [9].

To solve this problem, the parameter optimization method has been used to design
achromatic metalens. This method is used to change the values of the geometric parameters
of the nano-posts, in order to establish a library, and then to assemble the achromatic met-
alens based on the phase matching principle. An achromatic metalens [10] was designed
based on the propagation phase modulation and work at three independent wavelengths of
1300 nm, 1550 nm, and 1800 nm, with the corresponding focal efficiencies of 15%, 10%, and
21%, respectively. Different nano-posts, including square nano-posts [11,12], circular nano-
posts [13,14], hollow circular nano-posts [15], and nano-posts with a mixture of shapes [16],
were likewise used to design polarization-independent metalenses in the continuous spec-
trum. The combination modulation [17–24] of the geometric phase and propagation phase
was used to design achromatic metalenses by using rectangular nano-posts, with advan-
tages in processing technology. However, the focal efficiencies of these metalenses did not
exceed 40%. The low focal efficiencies are due to the orthogonal transformation of circular
polarization states and the low polarization conversion efficiencies of the nano-posts. The
polarization conversion efficiency is defined as the ratio of the field intensity of orthogonal
light in the scattered field to the incident field. These are caused by the insufficiency of
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the design freedom of the nano-posts, such as the geometric parameters of the rectangular
nano-posts. The insufficiency problem of the design freedom hinders the maintenance of
maximum polarization conversion efficiency of the nano-post, while satisfying the required
phase dispersion in the current design methods of achromatic metalenses.

Topology optimization originated from Michell’s [25] truss design research in 1904.
It has been applied in electromagnetic waves, including beam splitters [26,27], photonic
crystals [28,29], and metamaterials [30–33]. Topology optimization has been used in the
global optimization of the metalens to improve its performance, for example the high-
efficiency achromatic metalens [34], but is rarely used in the nanopillar optimization of the
metalens. Different from the parameter optimization method, topology optimization is
used to find the optimal distribution of materials in a given design domain according to the
objective function and constraints. It is equivalent to extending the design freedom, which
is beneficial to find the optimized nano-post with suitable phase dispersion and maximum
polarization conversion efficiency. Therefore, we use the topology optimization to optimize
the nano-posts and assemble the high-efficiency achromatic metalens based on the library
composed of the obtained nano-posts.

2. Materials and Methods

An achromatic metalens can convert the incident plane wave of any wavelength
in the working spectrum into the convergent spherical wave and make it focus on the
same focal spot (Figure 1). Therefore, the phase profile on the metalens must satisfy the
following condition [35]:

ϕ(r, λ) = −2π

λ

(√
r2 + f 2 − f

)
+ C(λ). (1)

where λ is the wavelength of the incident wave, r is the radial coordinate on the metalens,
and f is the focal length; C(λ) is an additional phase shift as a spectral degree of freedom,
which is linear to the reciprocal of the wavelength λ. The phase profile can be satisfied by
controlling the arrangement of TiO2 nano-posts (Figure 2a).
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where tu and tv represent complex transmission coefficients, with the incident light polar-
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Figure 2. (a) The structure unit diagram of the achromatic metalens, where the gray rectangular block
is the TiO2 nano-post; (b) sketch for the computational domain Ω. The upper and lower domains Ωp

are the perfectly matched layers (PMLs), which are used to suppress the boundary reflection. The
substrate domain is Ωs, and the grey section is the design domain Ωd.

There are two approaches for the phase modulation of the achromatic metalens. The
first is the propagation phase modulation. It is favorable to design high-efficiency metalens
with the absence of orthogonal polarization conversion. However, the dual constraints
of phase and phase dispersion severely elongate the nano-posts, which poses a problem
for processing technology. The second approach is the combination modulation of the
geometric phase and propagation phase, which reduces the processing challenges due to
phase dispersion as the only physical quantity required to be considered in the optimization
process of the nano-post. However, the achromatic metalens possess the problem of low
focal efficiency. In consideration of processing technology, the second approach was
adopted in our work so that the focal efficiency of orthogonal circularly polarized light
could be enhanced to the greatest extent. Thus, in the working spectrum, Equation (1) can
be split into two parts for the second approach [23]:

ϕ(r, λ) = ϕ(r, λd) + ∆ϕ(r, λ). (2)

where λd is the design wavelength. The first term ϕ(r,λd) on the right side of Equation (2)
is the target phase profile at the design wavelength λd, independent of the wavelength λ. It
can be satisfied by rotating the nano-posts based on the geometric phase principle. For the
left-handed circularly polarized incident light [1, i]T, the transmitted electric field can be
described by the Jones vector:

Et =
tu + tv

2

[
1
i

]
+

tu − tv

2
exp(i · 2θ)

[
1
−i

]
. (3)

where tu and tv represent complex transmission coefficients, with the incident light po-
larized along the long and short axes of the cross section of the nano-post, respectively;
and θ is the rotation angle of the nano-post. In addition to the origin left-handed cir-
cularly polarized light with a complex amplitude of (tu + tv)/2, the scattered field also
carries cross-polarized light with complex amplitude of (tu + tv)/2exp(i·2θ), where 2θ is a
wavelength-independent geometric phase related to the rotation angle θ of the nano-post.
The second term ∆ϕ(r,λ) in Equation (2) represents the phase difference between arbitrary
wavelength and design wavelength:

∆ϕ(r, λ) = −2π

(
1
λ
− 1

λd

)(√
r2 + f 2 − f

)
. (4)

d∆ϕ

d(2πc/λ)
= −1

c

(√
r2 + f 2 − f

)
. (5)
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The first equation in Equation (4) shows that ∆ϕ(r,λ) is a linear function of the recip-
rocal wavelength 1/λ. The second equation is the group delay, which is independent of
the wavelength λ but dependent on the radial coordinate r on the metalens. Since the
additional geometric phase is independent of the wavelength and does not interfere with
the propagation phase, the group delay matching can only be achieved by adjusting the
broadband propagation phase, which is related to the structure of the nano-post. Then, the
optimization of the nano-post for the specific group delay is required.

3. Topology Optimization of Nano-Post

Topology optimization is used to mesh the design area, to determine whether the
material in the grid cell should be retained or removed by numerical analysis. The material
in every grid cell can be regarded as a degree of design freedom, increasing the design free-
dom of the nano-post. Thus, topology optimization can be used to optimize the structure of
the nano-post, aiming for the most suitable phase and maximum polarization conversion
efficiency. If group delay is the goal of the optimization model, the objective function can
be written as ϕ(λ1) − ϕ(λ2). However, this objective function is ill-posed. An additional
undetermined basic phase ϕ0 at design wavelength λd is then introduced to control ϕ(λ1)
and ϕ(λ2) to solve this problem. Therefore, the deviations between the current phase and
the target phase at the preset wavelengths are used to define the objective function instead
of the group delay. In consideration of the problem that the phase reset characteristic will
cause an inaccurate interpolation calculation, the sum of the least square deviations of
complex amplitudes at multiple wavelengths is selected as the objective function:

min F = ∑
m

∣∣Esrm − αmeiϕtm
∣∣2, in Ωd;

s.t. ∇×
[
µ−1

r ∇× (Esm + Eim)
]
− k2

0εr(Esm + Eim) = 0, in Ω ;
∇ · Esm = 0, in Ω .

(6)

where k0 = 2π/λ is the free space wave number; εr and µr are the relative permittivity
and relative permeability of the nano-post, respectively; Esm and Eim are the scattered
and background field at m-th wavelength, respectively; m = 1, 2, 3 . . . represents the
case for the m-th wavelength; Esrm is the electric field of the cross-polarized light; αm
exp(i·ϕtm) is the target electric field of the cross-polarized light; αm and ϕtm represent the
amplitude and target phase, respectively. The amplitude αm is introduced as a parameter
to be scanned to reduce the objective function value. Specifically, it is scanned downward
from 0.9 to find the maximum amplitude value that can make the objective function value
approach zero. The target phase ϕtm is calculated according to the target group delay and
the basic phase ϕ0 at the design wavelength, which can take any value and be realized
by the subsequent structural rotations. Thus, the basic phase ϕ0 needs to be scanned as
an additional parameter to make the optimized group delay closer to the target group
delay value.

The density method of topology optimization [36] is used to optimize the nano-post,
where the density of dielectric material is treated as the design variable. To ensure robust
evolution, the design variable is sequentially filtered and projected to derive the material
density representing the geometrical configuration of the nano-posts. The filtered design
variable is calculated using the PDE filter [37]. The filtered design variable can have
an intermediate value, resulting in gray structure boundaries. To solve this problem,
the filtered design variable is projected [38,39]. On the material interpolation, linear
interpolation formula is used for air and dielectric materials TiO2:

εr
(
γp
)
= εra + γp(εrm − εra), in Ωd. (7)

where εra and εrm are the relative permittivities of air and dielectric materials TiO2, respec-
tively; γp is the material density.
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In this optimization model, the governing equation is firstly solved with the current
design variable, and then the design variable is evolved according to the adjoint sensitivity,
which is the first order variational of the objective function to the design variable:

δ Ĵ =
∫

Ωd

−γ f aδγdΩd. (8)

where γfa is the adjoint variable of the filtered design variable. The topology optimization
procedure is shown in the flowchart in Figure 3, where the finite element method is used to
solve the wave equation and the design variable is evolved using the method of moving
asymptotes. For more details of topology optimization refer to Supplementary Material.
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4. Results and Discussion

Twenty values of the basic phase ϕ0 at the designed wavelength of 600 nm are uni-
formly sampled in the range of 0–2π and substituted into the topology optimization model
of the nano-posts (Figure 2a). Taking the nano-post with the target group delay of 7 fs
as an example, the simulated group delay and polarization conversion efficiency of the
topologically optimized nano-post are obtained (Figure 4a). When the basic phase ϕ0



Nanomaterials 2023, 13, 890 6 of 10

is 0.3π, the group delay of the optimized nano-post 6.98 fs is closer to the target group
delay, and the polarization conversion efficiency of the optimized nano-post is 88% at the
designed wavelength. Figure 4b shows the phase of the optimized nano-post with the
basic phase ϕ0 of 0.3π is linear to the frequency in the spectrum from 531 nm to 780 nm,
and the broadband polarization conversion efficiency is no less than 40%. Therefore, this
optimized nano-post can be extracted and placed at the position where the required group
delay is 7 fs.
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of the topology optimized nano-post under different basic phases ϕ0 at the design wavelength;
(b) the phase (blue line) and polarization conversion efficiency (red line) of the structure unit (vertical
view) composed of SiO2 substrate (blue area) and TiO2 nano-post (gray area) obtained by topology
optimization with a basic phase of 0.3π in the spectrum from 531 nm to 780 nm.

Different values of group delay are put into the topology optimization model of the
nano-posts and the optimized nano-posts are entered into a library (some of them are shown
in Figure 5). For more details of nano-posts in the library refer to Supplementary Material.
Based on this established library, an achromatic metalens is designed with a diameter of
40 µm and NA of 0.1 according to the desired distribution of the group delay and phase at
design wavelength, and the discrete phase realized by the nano-posts is consistent with
the ideal phase profile (Figure 6). Figure 7a shows the focal spots on the designed focal
length of 178.50 µm at several discrete wavelengths in the range of 531 nm to 780 nm. The
maximum and minimum focal lengths of these wavelengths are 187.07 µm and 164.37 µm,
respectively. The differences from the designed focal length are within 14.12 µm with the
relative error of 7.91%. The focal efficiency is the ratio of the Poynting vector integral of
the cross-polarized light within three times FWHM to the Poynting vector integral of the
transmitted light. Through the above definition, the focal efficiencies of the achromatic
metalens are calculated at nine wavelengths in the working spectrum (Figure 7d). The
maximum and minimum focal efficiencies are 58% and 44%, respectively. In the whole
working spectrum, the average efficiency is approximately 53%, higher than the previously
reported achromatic metalens with average efficiencies of 20~36% [19,40]. When compared
with other achromatic metalenses, the high focal efficiency of the achromatic metalens is
mainly because of the high polarization conversion efficiency of the nano-posts. Further,
another achromatic metalens is also designed with a diameter of 20 µm and NA of 0.22. The
maximum relative focal length error of the metalens is 7.97%, and the average efficiency for
the spectrum from 531 nm to 780 nm is 56%, which are all close values when compared
with the performance of the achromatic metalens with NA of 0.11.
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5. Conclusions

When targeting the problem of low focal efficiency of achromatic metalenses, we used
the topology optimization method to optimize the structures of TiO2 nano-posts and derive
the achromatic metalenses with an average focal efficiency of 53% in the spectrum from
531 nm to 780 nm. A library of the TiO2 nano-posts was derived by solving a topology
optimization model to achieve maximum broadband focal efficiency at each group delay
value. Based on the library, we assembled an achromatic metalens with a diameter of 40 µm
and NA of 0.11 by combining the geometric phase and the propagation phase modulation.
The maximum focal efficiency of the achromatic metalens was 58%. Topology optimization
greatly increased the design freedom of the TiO2 nano-posts. It effectively solved the
problem that the group delay and the polarization conversion efficiency cannot be taken
into account simultaneously due to insufficient design freedom in the previous parameter
optimization method. This work can be of significance in the promotion of high lightweight
and high integration of broadband in the micro-imaging system.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano13050890/s1, Table S1: Group delay and average polarization
conversion efficiency of the nano-post in the library.
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