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ABSTRACT With the development of infrared technology, infrared dim and small target detection plays
an essential role in precision guidance and early warning systems. Due to the low contrast and signal-to-
noise ratio that characterizes infrared dim and small target in images, the dim and small target can easily
be drowned out by noise and background. A new infrared dim and small target detection network (CA-U2-
Net) is proposed to address the challenge of infrared weak target detection and shape retention in complex
backgrounds. Specifically, firstly, the U2-Net network structure has been improved to prevent the loss of
shallow information due to increased network depth and to make it more suitable for detecting the dim and
small target. Then, the upper and lower attention module was designed on the network to make the model
more focused on dim and small target features while suppressing irrelevant information, further improving
the detection rate. Finally, a contour detection branch was added to the top of the model to fuse the contour
detection map with the feature map to get a better target shape. After experimental evaluation, the method
achieved a detection rate of 97.17% and retained a more accurate infrared dim and small target shape.
Compared to other advanced methods, our method performs better in detection rate, false detection rate
and shape retention. In addition, a new infrared dim and small target dataset consisting of 10,000 images
was constructed.

INDEX TERMS Attention mechanism, contour detection, infrared dim and small target detection.

I. INTRODUCTION
The detection of infrared dim and small targets is widely used
in fields such as surveillance [1], target warning [2], precise
guidance [3], and forest fire prevention [4]. The image of
an infrared dim and small target is made up of three parts:
the weak target, the background and the noise. According
to the definition of SPIE [5], the pixel size of a dim and
small target is usually considered to be no larger than 81
(9 × 9), which is approximately 0.12% of an image with a
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pixel size of 256 × 256. Backgrounds for infrared dim and
small target include sky, buildings and sea. These complex
backgrounds often have high contrast and greatly interfere
with detection. Images taken with infrared detectors are also
subject to some interference from noise, such as clutter and
heat sources. Therefore, there are significant challenges in
detecting dim and small target with low signal-to-noise ratios
in complex scenes. Recently, more andmore infrared dim and
small target detection methods based on traditional methods
and deep learning methods have been proposed.

Traditional methods for detecting infrared dim and small
targets can be divided into three categories: filter-based
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methods, human eye attention mechanism-based methods
and low-rank sparse recovery-based methods. Filter-based
methods focus on suppressing the background through differ-
ences in pixel-grey values. Themost commonmethods are the
Top-hat algorithm [6] and the Bilateral Filter (BF) [7]. Filter-
based methods are capable of removing point noise and back-
ground interference that are not of the required size. However,
it is too dependent on the relationship between each pixel
point and its gray level difference, which is easy to cause false
alarms. The method based on human eye attention mech-
anism mainly detects targets through significant features
such as contrast, size, and shape. The most common meth-
ods include Relative Local Contrast Measure (RLCM) [8],
Local Contrast Method (LCM) [9], Multi-scale Patch based
Contrast Measure (MPCM) [10], Improved Local Contrast
Method (ILCM) [11], and Weighted Local Difference Mea-
sure (WLDM) [12]. The method based on the human eye
attention mechanism utilizes the presence of a salient region
(contrast, size and shape) of the target in an infrared image for
detection. However, when the image contrast is very low, it is
easy to cause false alarms. The method based on low-rank
sparse recovery mainly utilizes frequency feature differ-
ences for target detection. In recent years, methods proposed
include the Infrared Patch Image Model (IPI) [13], Weighted
Infrared Patch Image (WIPI) [14], Reweighted Infrared
Patch-tensor Model (RIPI) [15], Non-Convex Rank Approx-
imation Minimization Joint l2,1 Norm (NRAM) [16], Non-
Convex Optimisation with Lp-Norm Constraint (NLOC) [17]
and Self-Regularised Weighted Sparse Model (SRWS) [18].
The method based on low-rank sparse recovery can effec-
tively decompose small targets and uniform backgrounds,
but it is prone to generate false alarms for backgrounds with
strong clutter edges, corners, and white spots. As traditional
methods cannot extract deeper feature information from the
target and are susceptible to clutter and noise, many methods
have low detection rates and high false detection rates in
scenes with complex backgrounds.

The infrared small target detection method based on
deep learning uses Convolutional Neural Network (CNN)
to achieve feature extraction, allowing for deeper seman-
tic information to be obtained from the image. Therefore,
deep learning-based methods are more robust than tradi-
tional methods. Based on CNN, Wang et al. [19] proposed
MD vs. FA-cGAN, which utilizes generative adversarial net-
works to balance the missed detection rate and false alarm
rate in image segmentation. The network achieves a balance
between missed detection rate and false alarm rate through
adversarial training of three sub-networks and improves the
detection accuracy of small infrared targets. Dai et al. [20]
proposed a segmentation-based network where an asymmet-
ric background modulation module was designed to aggre-
gate shallow and deep features. Subsequently, Dai et al. [21]
further improved their network by expanding local con-
trast and designed a feature loop transformation scheme to
achieve trainable local contrast measurement. Li et al. [22]

proposed a densely nested attention network (DNANET)
with a densely nested interaction module and a cascaded
channel and spatial attention module designed to implement
the interaction between high-level and low-level features
as well as adaptive enhancement of multi-level features,
respectively. Wang et al. [23] proposed a coarse-to-fine inter-
nal attention-aware network (IAANET) that uses semantic
contextual information of all pixels within a local region to
classify each internal pixel. Deep learning-based algorithms
for infrared dim and small image detection are less compared
to traditional methods. Due to the insufficient number of
datasets, which limits the training of deep models to a certain
extent. Deep learning-based detection methods for infrared
dim and small targets need to further improve detection
performance.

Although many infrared small target detection methods
have been proposed, these methods still have problems, such
as poor robustness and insufficient detection performance.
Therefore, accurately detecting infrared dim and small targets
in complex backgrounds is still an urgent problem that needs
further research. Inspired by U2-Net [24], this paper proposes
the CA-U2-Net model using a U-shaped structure to interact
with the left and right parts of the feature map information.
Specifically, to make U2-Net more focused on infrared dim
and small target, the top two coding and decoding layers are
reduced in this model to prevent the loss of shallow features
by reducing the number of down-sampling layers. To further
improve detection rates, this model designed upper and lower
attention modules to make the model more focused on small
target features and enhance shallow semantic information,
while suppressing irrelevant information. In order to improve
the contour detection effect, a contour detection module is
added to the top of the model, which combines contour
detection with the output feature map to further optimize
the edge information of infrared dim small targets. In sum-
mary, the contribution of this paper can be summarized as
follows:

• To the best of our knowledge, we are the first to
propose the use of the U2-Net for infrared dim and
small target detection. By improving the network struc-
ture, it has been made more suitable for the detection
of the infrared dim and small target. Detection rate
improved from 82.86% to 85.87% and false detection
rate reduced from 86.14% to 66.29%.

• Wehave designed the upper and lower attentionmodule
to effectively improve the detection rate of small targets
and suppress irrelevant information. The detection rate
was improved from 85.87% to 95.85% and the false
detection rate was reduced from 66.29% to 25.42%.

• We have added a contour detection branch to fuse the
contour detection map with the feature map of the
target detection output, making edge shape retention
significantly better. Compared with current methods,
our method has significant advantages in detection rate,
false detection rate and shape retention.
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• We constructed a new infrared dim and small target
dataset (CA-U2-Net IRST), which compensates for the
lack of infrared dim and small target dataset and can
improve the detection rate after training with a differ-
ent model. The detection rate of our model improved
from 95.85% to 97.17% and the false detection rate
decreased from 25.42% to 23.35%.

II. RELATED WORK
A. EQUATIONS INFRARED DIM AND SMALL TARGET
DETECTION
The target detection method based on deep learning
mainly uses CNN to achieve feature extraction and obtain
deeper Semantic information of the image. Common
methods include the two-stage target detection algorithm
represented by R-CNN [25] and its improvement algo-
rithms [26], [27], [28], which uses a candidate region-based
method that requires candidate frames to be generated first,
followed by classification and regression on the candidate
frames. Although the use of a multi-level network for clas-
sification and localization gives the model greater classi-
fication and localization capabilities. However, too many
sub-networks for classification and localization can also
reduce the detection rate of the model. The other category
is the single-stage target detection algorithm represented
by YOLO [29] and its improvements [30], [31], [32]. The
single-stage algorithm converts the problem of localization
into a problem of regressionwithout pre-generating candidate
frames. However, it gives the probability and location coor-
dinate values of the class to which the target belongs directly
by calculating the convolutional layer. This type of algorithm
only requires one detection to obtain the final detection result,
which is relatively fast but has low accuracy.

Different from the above work, since infrared dim and
small target detection only needs to distinguish foreground
and background, we introduce the U2-Net network in seman-
tic segmentation, and U2-Net can distinguish foreground and
backgroundwell. By improving the U2-Net model, we design
a CA-U2-Net network to solve the problem of infrared small
target detection accuracy and shape, and improve the infrared
dim and small target detection performance.

B. ATTENTION MECHANISM
The attention mechanism was first proposed by
Bahdanau et al. [33] in 2014 to solve the difficulty of
accurately sequentially encoding long sentences in text to a
fixed length. Attention Mechanism is widely used in image
detection, speech recognition, natural language processing
and other fields. In computer vision, by adding attention
mechanisms, different parts of an image or feature map can
be weighted to varying degrees, causing the neural network
to pay different attention to different regions of the feature
map, thereby better focusing the network on areas of interest.

In recent years, attention mechanisms have been intro-
duced in infrared dim and small targets to improve model

detection performance. Dai et al. [20] used point-by-point
attention modulation to retain and highlight the details of
the infrared dim and small target. Tong et al. [34] proposed
an enhanced asymmetric attention block that uses same-level
feature information exchange and cross-level feature fusion
to improve feature representation. Zhang et al. [35] designed
a bidirectional attention aggregation block to compute
low-level information and fuse it with high-level information
to capture the shape features of the target and suppress noise.

Different from the above work, we design the upper and
lower attention module to use the feature map of the coding
layer with the corresponding decoding layer of the following
layer after upper and lower attention modulation as the input
to the decoding layer. The irrelevant regions in the input
image are suppressed, while the salient feature of the infrared
dim and small target is highlighted. Integrating the upper and
lower attention modules into the U2-Net network structure
not only has a low computational cost, but also improves
the model’s target detection and background suppression
capabilities.

C. CONTOUR DETECTION
Contour detection can be used in the fields of image seg-
mentation [36], [37], target detection [38], [25], and semantic
segmentation [39], [40], [41]. Early contour detection used
contour edge detection operator (Canny) [42] to extract object
contours. Since the rise of deep learning, various algorithms
based on CNN have been proposed. The overall nested net-
work HED proposed by Xie et al. [43] provided an idea for
the design of edge detection networks, and subsequently algo-
rithms such as Richer Convolutional Features (RCF) [44],
Pixel Difference Networks (PidiNet) [45], Dense Extreme
Inception Network (DexiNed) [46], and Deep Refinement
Network (DRNet) [47] were proposed.

Contour is an external feature of the image target, and
this feature is very important for our image analysis and
target recognition. Especially in the field of infrared dim
and small target detection, if the target edge shape can be
accurately detected, the shape and curve can further identify
the class of objects, which is more meaningful in practical
applications. In recent years, PoolNet [48] and ISNet [35]
have enhanced the edge detection effect by branching joint
training. Although adding edge constraints during training
can improve edge detection, some non-target edges will
be retained, which affects the detection accuracy and also
increases the computational effort. Unlike the above work,
the model proposed in this paper already performs well in
infrared dim and small target detection, but the edges are
not clear enough. To address this problem, we add a contour
detection fusion method to the top of the model. The infrared
dim and small target picture is fusedwith the featuremap after
contour detection. This improves the detection shape effect
and also reduces the computational effort than constrained
edge detection.
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D. DATASET
Infrared image datasets have long lacked public datasets,
and due to the problem of high shooting cost, the existing
infrared dim and small target datasets are MFIRST [19] and
SIRST [20]. MFIRST contains 10,000 images, most of which
are close-up shots with close and large target areas. A part of
them are synthetic images, and many of them do not meet the
definition of SPIE, which will affect the effect of training.
SIRTST contains 427 images with various scene types, but
the number is too small and only suitable for detection not
for training.

The publicly available datasets mentioned above have pro-
moted the development of infrared dim and small target
detection. However, many of them do not meet the definition
and are costly and error-prone to manual labeling. Therefore,
the problem of the insufficient training set of infrared dim
and small target detection algorithm based on deep learning is
solved by synthesizing the data set through the infrared simu-
lation system. This paper uses an infrared simulation system
to generate 10,000 infrared dim and small target images by
simulating scene switching and small target motion. Our
dataset is evaluated in Section IV.

III. METHOD
In this section, we first review the U2-Net network and
introduce the proposed new network in detail. Then details
of the upper and lower attention block and contour detec-
tion block are presented, as well as the CA-U2-Net IRST
dataset.

A. NETWORK STRUCTURE
1) REVIEW U2-NET
The U2-Net network is mainly used for saliency target detec-
tion, which consists of residual U-blocks (RSU) that extract
multi-scale features within a stage and an outer U-shaped
structure that connects the RSU. This network design does not
require the use of a backbone network for image classification
and can be trained from scratch to achieve excellent results.
The network can be made deeper to obtain high-resolution
feature maps without increasing the computational cost as
much as possible.

However, the structure of U2-Net network is deep and
complex, and it can extract intra-level and inter-level infor-
mation of different sizes of images through RSU and jump
connections, but the retention of invalid features such as
non-defective regions and the loss of edge information is easy
to occur in the connections. Directly applying the U2-Net
network for infrared dim and small target detection can detect
most targets, but there are still some missed detections and a
high false detection rate.

2) OVERALL STRUCTURE OF CA-U2-NET
Inspired by the U2-Net network, this paper uses a U-shaped
structure to realize the interaction of left and right partial

feature map information, and proposes the CA-U2-Net
model. To make U2-Net focus more on the infrared dim and
small target, we reduce the top two coding and decoding
layers to prevent losing features in shallow layers by too
much down-sampling. The improved model decreases much
in size and improves the accuracy by 3.01% over U2-Net.
To further improve the detection rate, we introduced the upper
and lower attention module (ULA) to make the model more
focused on small target features to reduce information loss
and enhance shallow semantic information while suppressing
irrelevant information. The detection accuracy of the model
after increasing attention is as high as 95.85%, and the false
detection rate is reduced to 25.42%. We design the contour
detection module on top of the model to improve the con-
tour detection effect. The fusion of contour detection with
the feature map further optimizes the contour information of
the infrared dim and small target. The overall structure of the
network is shown in Figure 1, and the RSU module is shown
in Figure 2.
As shown in Figure 1, CA-U2-Net is an encoding-decoding

based infrared dim and small target detection network, which
mainly consists of a U-shaped structure made of stacked
RSUs of feature extraction structure, upper and lower atten-
tion module and edge detection branches. RUS mixes the
feature maps of different scales and different receptive fields
through the U shape structure, and can obtain more global
information on different scales. En1, En2, De1, and De2 use
the same RSU. As shown in Figure 2 (a), 5 represents the
depth of block, and similarly the block of RSU4 is 4. For each
feature map size in the process of down-sampling, an atrous
convolution with a dilation rate of 1 and a convolution kernel
size of 3 × 3 is used to achieve the purpose of expanding the
perceptual field, so as to achieve the function of extracting the
feature information of the context and the neighborhood. En3,
En4, and De3 use RSU4F, as shown in Figure 2(b). The struc-
ture of RSU4F and RSU4 are not the same, in RSU4F there is
no down-sampling or up-sampling, but the atrous convolution
replaces all the sampling layers with different dilation rates,
which can extract multi-scale features without reducing the
resolution of the feature map. Since the infrared dim and
small targets are small, the resolution of the feature map is
already very low when down-sampling to En_2. If the down-
sampling continues, smaller targets are easily lost in deeper
nets. Therefore, down-sampling is no longer performed in
RSU4F.

Multi-scale features are extracted from the progressively
down-sampled featuremaps and decoded into high-resolution
feature maps by progressive up-sampling, Concatenation,
convolution and attention mechanisms. This process miti-
gates the detail loss caused by the direct up-sampling of
small-scale feature maps. The feature maps f1, f2, f3 and f4
output from De_1, De_2, De_3, and En_4 are collected, and
then the feature maps with channel one are obtained by a
3 × 3 convolution layer respectively. Then, we obtain F_1,
F_2, F_3, and F_4 by bilinear interpolation scaling to the
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FIGURE 1. The overall structure of CA-U2-Net.

FIGURE 2. RSU module. (a) RSU5; (b) RSU4F.
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input image size, and concatenate these four feature maps.
Finally, the contour detection branch and feature fusion map
are passed through a 1×1 convolutional layer and a Sigmoid
activation function to obtain the final predicted probability
map F_0.

The network is trained by performing a Binary Cross-
Entropy (BCE) calculation on each of the four outputs and
ground truth, and then back-propagating the loss summation
with the following equation:

Loss =

N∑
n=1

w(n)
f l(n)f + wF lF (1)

In Equation (1), N = 4, w represents the weight of each
loss, and l represents the binary cross-entropy loss function.
w(n)
f l(n)f is the four feature map outputs and the loss of ground

true, and wF lF is the final fused image and the loss of ground
truth.

B. UPPER AND LOWER ATTENTION BLOCK
In order to obtain more feature information on small targets,
in addition to adjusting the down-sampling strategy of the
network, an upper and lower attention block is added. U2-Net
originally concatenates the results of encoder and decoder
up-sampling through jump connections, and using only sim-
ple jump connections to simulate the global multi-scale con-
text easily leads to the loss of spatial information and thus the
situation of missed detection. To address this problem, this
paper designs an upper and lower attention block, which uses
the feature map of the coding layer and the corresponding
decoding layer of the following layer as the input of the
decoding layer after upper and lower attention modulation.
It can suppress the part of model learning which is irrelevant
to the infrared dim and small target, and at the same time
aggravate the feature learning with the infrared dim and
small target. The internal of the ULA module is shown in
Figure 3. The result of the 1 × 1 × 1 convolution of the
feature map g of the same layer of the down-sampling layer is
summed with the feature map of the previous layer of the up-
sampling layer, and then passed through the ReLU activation
function. Then the 1×1×1 convolution operation is used, and
finally the attention coefficients (α) are obtained by Sigmoid.

C. CONTOUR DETECTION BLOCK
RSU block enriches feature information by mixing receptive
fields of different sizes and attention mechanisms to obtain
multi-scale features. However, the deepening of network lay-
ers and pooling operations tend to ignore details such as edges
and corners in the images, resulting in poor segmentation
near edges. Therefore, this paper uses the Canny algorithm
as a contour detection branch module. The Canny algorithm
performs contour detection before using Gaussian smoothing
filtering to suppress noise effectively. Then the gradient vec-
tor of each point in the image is calculated, and the gradient
direction and gradient amplitude can be obtained based on the

FIGURE 3. Upper and lower attention block.

gradient vector, and the places with large gradient changes
are identified as contours. We traverse the results of con-
tour detection and feature fusion separately to calculate the
possible target bounding box B1 of the contour map and the
target bounding box B2 of the fusion map. Exclude non-target
bounding box B1 based on B2, and then fill in the contours
within B1. If the number of the target bounding boxes B1 of
the contour map is less than the target bounding box B2 of the
fusion map, then the target within B2 is fused to the contour
map to get the result. The process is shown in Figure 4.

D. SYNTHETIC DATASET
By analyzing the MFIRST and SIRST datasets, we found
that part of the small target is too large, which easily affects
the feature learning. Most of them are single target, which is
easy to be missed in the multi-target detection set. Therefore,
we select the small target size of 3×3.9×9 as the small target
size for the dataset construction of the subsequent images to
meet the definition of small target. Table 1 shows the images
of the dataset and ground truth.

In the infrared simulation system, we can switch the back-
ground, change the target size and motion trajectory, and
also add noise. When we generate the infrared weak target
image, we change the background to black and generate
the ground truth image. Using infrared simulation system to
synthesize the dataset not only reduces the cost and time, but
also improves the accuracy of the dataset.

IV. EXPERIMENTS
In this section, we introduce the Implementation Details,
Evaluation Metrics, and Experimental Settings. In the Exper-
imental Settings, we first introduce the training and test
datasets, then verify the effect of the improved scheme step
by step through ablation experiments and analyze the results.
Finally, the CA-U2-Net network model is compared with
other methods and analyzed.

A. IMPLEMENTATION DETAILS
The experiments involved in this paper are trained and
validated under Intel Core i9-10920X CPU @ 3.50 GHz,
NVIDIA GeForce RTX 3090 environments. The experimen-
tal software is PyCharm 3.3, MATLAB 2020 and Unity3D
2020. the CA-U2-Net network model uses the PyTorch
framework based on the Python language. The model is
trained from scratch, and the whole training process is
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FIGURE 4. Contour detection block.

TABLE 1. Synthetic dataset.

100 epochs with 20,000 datasets, and the training consists of
one batch of every 10 images.

B. EXPERIMENTAL EVALUATION
Themost effective evaluation metrics for the infrared dim and
small target are detection rate and false detection rate, and the
detection rate Pd is defined as the ratio of the number of real
detected targets to the number of actual targets. The higher
the detection rate, the better the detection performance of the
algorithm. The false alarm rate Fa is defined as the ratio of
the number of false detected targets to the number of actual
targets. The lower the false alarm rate, the better the detection

performance of the algorithm.

Pd =
Number of real targets detected

Actual targets number
(2)

Fa =
Number of false targets detected

Actual targets number
(3)

C. EXPERIMENTAL SETTINGS
1) INTRODUCTION TO TRAINING AND TESTING SETS
The training sets used in this paper are MFIRST and CA-
U2-Net datasets. The MFIRST dataset consists of 10,000
infrared images with target sizes ranging from 6 × 6 to
20 × 20 pixels. The CA-U2-Net IRST dataset consists of
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FIGURE 5. Three datasets. (a) is the MFIRST dataset. (b) is the 3-D plot of the MFIRST dataset. (c) is the CA-U2-Net dataset. (d) is the 3-D plot of the
CA-U2-Net dataset. (e) is the SIRST dataset. (f) is the 3-D plot of the SIRST dataset.

TABLE 2. Detection rate and false detection rate of the model after training on different datasets.

10,000 infrared images, composited with the sky as the
background image, with target sizes ranging from 3 × 3 to
9 × 9 pixels.

The SIRST dataset includes a total of 427 infrared images
and 531 targets. The backgrounds of the targets are complex
and varied, including clouds, sea surface and buildings. The

target scales are diverse, with targets ranging in size from 5×

5 to 20×20 pixels. There are both brighter targets and darker
targets that are very close to the background brightness. For
the experiments, 427 images were used for testing. Figure 5
shows the infrared images from the three datasets, using red
boxes tomark the areas of the individual targets in the infrared
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FIGURE 6. Ablation studies. (a) Images of SIRST; (b) Ground truth; (c) Detection results of the improved U2-Net model; (d)
Detection results of the improved U2-Net after adding upper and lower attention; (e) Results of adding contour detection.

TABLE 3. Units for magnetic properties contribution of each improvement module in The Ca-u2-net model.

images for better visibility. The red font indicates the target
size.

2) THE IMPACT OF CA-U2-NET DATASET ON PRECISION
In this paper, we apply the synthesized infrared dim and small
target dataset to the infrared dim and small target detection
method to verify the effectiveness of the synthesized dataset.
Firstly, we trained the U2-Net, DNANET, ACM [2] and
IAANET models were trained separately for the MFIRST
dataset and this paper dataset, and then the models are trained
together for the MFIRST dataset and this paper dataset.
Finally, the target detection rate d and false detection rate a
were tested on all datasets of SIRST, and the results are shown
in Table 2.

From Table 2, it can be seen that different datasets
train the model to obtain different accuracies, which indicates
that the dataset has an impact on the detection model training.
The accuracy of training with the MFIRST dataset is close to
that of this paper, which indicates its effectiveness and feasi-
bility, and it has a certain improvement for model detection
accuracy. Combining the two datasets to train together can
yield better results.

3) ABLATION STUDY
In this section, we study the contribution of each improve-
ment module of the CA-U2-Net model. Training and testing
were performed for each part of the ablation study using the
same parameter settings. The ablation study for each part is
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FIGURE 7. Comparison with other algorithms.

shown in Table 3, and the detection results of six test pictures
are selected for display in Figure 6. Row (a) is the picture
of SIRST. Row (b) is ground truth. Row (c) is the detection
result of the improvedU2-Net model. Row (d) is the detection
result of the improved U2-Net with the addition of upper and
lower attention. Row (e) is the result of the addition of contour
detection.

We compare the Pd , Fa and weight size in Table 3, and
the improvement of U2-Net not only improves the detec-
tion rate and false reduction rate, but also is more suitable
for the detection of infrared dim and small target, and the
model weight decreases from 176.6 MB to 112.4 MB. The

model Pd and Fa are improved a lot with the addition of
the attention module, and it can also be seen from Figure 5
that the previously undetected targets can be detected. The
cost of adding attention is minimal, and the weight file only
increases by 8.2 MB. Adding contour detection does not
improve the detection accuracy, but the shape edge contour
improves greatly, which is very similar to ground truth.

4) COMPARATIVE EXPERIMENTS AND ANALYSIS
In order to verify the effectiveness of the proposed method,
a comparative analysis was performed with existing infrared
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TABLE 4. Units for magnetic properties detection rate and false detection rate Of 9 methods On 427 images.

dim and small target detection methods in the SIRST dataset.
The compared algorithms include RLCM, LCM, MPCM,
ILCM, SRWS, Local Intensity and Gradient (LIG) [49], IPI,
NRAM, NLOC, IAANET, DNANET and ACM. To ensure
objectivity, 427 images of SIRSTwere tested, and all the deep
learning-based comparison methods were retrained using the
same training dataset as the proposed method. The detection
rate and false detection rate are shown in Table 4. As shown
in Figure 7, we select five of the better methods to further
compare with our method by detection result graph.

It can be seen from Table 4 that the traditional methods
LCM and IPI are the worst in terms of detection rate and false
detection rate, and the detection process shows a large number
of false targets, and many targets fail to be detected for
complex scenes. Compared with other methods, our method
is better at detecting dim and small targets from complex
background images, with a detection rate of 97.17%. Also,
the false detection rate is the lowest. Figure 7 shows the detec-
tion results based on traditional and deep learning detection
algorithms. By comparing the detection results, it can be seen
that the traditional algorithms, such as MPCM and LIG, can
detect most of the dim and small targets. However, the target
shape information is not obvious. The deep learning detection
algorithm IAANET has the second highest detection rate, but
the detected target shapes tend to lose information. DNANET
is prone to many edges false detections and fails to detect the
target in some images. ACM can detect the target but can only
detect a point shape and not obtain better shape information.
The CA-U2-Net detection algorithm proposed in this paper
has a better detection effect for large size, small size and
multiple targets, and can detect the shape information of the
target well. The obtained target shape information is richer
and the similarity with the real target is greater.

V. CONCLUSION
In this paper, we propose the CA-U2-Net network for infrared
dim and small target detection. First, the U2-Net network
structure is improved to prevent the loss of shallow informa-
tion due to increased network depth andmake it more suitable
for detecting dim and small targets. Then, an upper and lower
attention block is added to the network to make the model
more focused on small target features while suppressing
irrelevant information to improve the detection rate further.
Finally, a contour detection branch was added at the top of the
model to fuse the contour detection map with the feature map
of the target detection output to obtain a better target shape.
The ablation study demonstrates the effectiveness of each

module in the CA-U2-Net network. Experiments show that
the CA-U2-Net network has a higher detection rate in com-
plex scenes and a lower false alarm rate than traditional and
deep learning methods in recent years, and can better retain
edge information of the dim and small target, which provides
a basis for further image analysis. In addition, we construct a
new infrared dim and small target dataset consisting of 10,000
images.
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