
Citation: Zhang, H.; Ju, G.; Guo, L.;

Xu, B.; Bai, X.; Jiang, F.; Xu, S. Fast

High-Resolution Phase Diversity

Wavefront Sensing with L-BFGS

Algorithm. Sensors 2023, 23, 4966.

https://doi.org/10.3390/s23104966

Academic Editor: Zbigniew

Jaroszewicz

Received: 5 April 2023

Revised: 5 May 2023

Accepted: 11 May 2023

Published: 22 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Communication

Fast High-Resolution Phase Diversity Wavefront Sensing with
L-BFGS Algorithm
Haoyuan Zhang 1,2,3, Guohao Ju 1,3,*, Liang Guo 1,2,3, Boqian Xu 1,3, Xiaoquan Bai 1,3, Fengyi Jiang 1,3

and Shuyan Xu 1,3

1 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences,
Changchun 130033, China; zhanghaoyuan21@mails.ucas.ac.cn (H.Z.); guoliang18@mails.ucas.ac.cn (L.G.);
xuboqian@ciomp.ac.cn (B.X.); baixiaoquan@ciomp.ac.cn (X.B.); jiangfengyi@ciomp.ac.cn (F.J.)

2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Chinese Academy of Sciences Key Laboratory of On-Orbit Manufacturing and Integration for Space Optics

System, Changchun 130033, China
* Correspondence: juguohao@ciomp.ac.cn

Abstract: The presence of manufacture error in large mirrors introduces high-order aberrations, which
can severely influence the intensity distribution of point spread function. Therefore, high-resolution
phase diversity wavefront sensing is usually needed. However, high-resolution phase diversity
wavefront sensing is restricted with the problem of low efficiency and stagnation. This paper proposes
a fast high-resolution phase diversity method with limited memory Broyden–Fletcher–Goldfarb–
Shanno (L-BFGS) algorithm, which can accurately detect aberrations in the presence of high-order
aberrations. An analytical gradient of the objective function for phase-diversity is integrated into the
framework of the L-BFGS nonlinear optimization algorithm. L-BFGS algorithm is specifically suitable
for high-resolution wavefront sensing where a large phase matrix is optimized. The performance
of phase diversity with L-BFGS is compared to other iterative method through simulations and a
real experiment. This work contributes to fast high-resolution image-based wavefront sensing with a
high robustness.

Keywords: active optics; phase diversity; L-BFGS

1. Introduction

During the long-term on-orbit observation and operation of space-based large-aperture
astronomical telescopes, the influence of space temperature or micro-vibration will grad-
ually cause mirror misalignment and deformation [1,2]. Mirror misalignments and de-
formations will introduce wavefront aberrations and de-grade the imaging quality of the
system. The imaging performance of the space optical system can be maintained by using
active optics technology [3,4]. It is necessary to obtain the wavefront information of the
optical system, and then actively align the system and correct those aberrations with mirror
actuators according to the obtained aberration information.

At present, the commonly used wavefront sensing methods are: Shack-Hartmann
sensor [5], pyramid sensor [6], curvature sensing [7] and image-based wavefront sensing
method. Image-based wavefront sensing -represents a class of methods that directly utilize
image plane intensity measurements to recover the wavefront phase of the pupil plane
of an optical system. This class of methods mainly include iterative-transform methods
(developed from the Gerchberg-Saxton algorithm) [8–13], parametric methods (also known
as model-based optimization algorithm or directly called phase diversity algorithm) [14–18],
and deep learning methods [19–21]. This image-based wavefront sensing method does not
require special hardware devices or complex calibration operations, so this type of method
is particularly suitable for wavefront sensing in space telescopes [22].
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The Phase Diversity (PD) algorithm is a well-known image-based wavefront sensing
technique, which usually uses the known defocus aberration between two defocused im-
ages to obtain the unknown wavefront aberration of the telescope system [14–16]. The
PD algorithm does not have high requirements on the hardware, and usually only two
defocused images need to be collected when performing wavefront sensing on the optical
system [23]. The addition of known diversity phase can improve the efficiency and robust-
ness of the wavefront sensing process, and PD is applicable to extended scene. Since the
birth of the PD algorithm, this technology has been widely used in many fields such as
adaptive optics, active optics, biological microscopic imaging and quality control of laser
beams [17,24,25].

The deviation between theoretical and actual acquired image intensities is evaluated
by Fourier optics theory to establish the evaluation function. The key of PD algorithm is to
find a suitable optimization algorithm to solve the global optimal value of the evaluation
function. Many gradient-based nonlinear optimization algorithms, such as steepest descent
(SD) algorithm [26,27], conjugate gradient (CG) algorithm [17] and the quasi-Newton
algorithm [28,29], etc. have been applied. Among them, the BFGS algorithm proposed by
Broyden et al. is a commonly used quasi-Newton method [30]. They used a matrix that
does not contain the second derivative to approximate the Hessian matrix in the Newton
method, and solved the problem of finding the second partial derivative in the Newton
method. However, each iteration of the BFGS algorithm requires a large amount of storage
space. When the optimization problem is large-scale, the storage and calculation of the
matrix will be difficult. In response to this problem, Liu and Nocedal et al. proposed a
limited-memory BFGS algorithm (L-BFGS), which replaces the previous Hessian matrix by
storing a small amount of data from the previous m iterations [31].

Factors such as surface defects of the imaging system will produce high-order aber-
rations. These high-order aberrations can effectively influence the intensity distribution
of the point spread function (PSF) which will decrease the accuracy of wavefront sens-
ing. Therefore, high-resolution phase-diversity wavefront sensing is usually required to
accurately detect aberrations in optical systems. However, high-resolution phase diversity
wavefront sensing is restricted with the problem of low efficiency and stagnation, this
paper proposes a fast high-resolution PD wavefront sensing with L-BFGS algorithm. The
algorithm takes all pixels on the phase plane as unknown quantities to solve the problem,
and uses the analytical gradient calculation method proposed by Fienup et al. to improve
the computational efficiency of the algorithm [12].

The remainder of this paper is organized as follows. In Section 2, we review the
classical PD algorithm and the L-BFGS algorithm, and propose the basic flow of the fast
high-resolution PD algorithm. Section 3 is the simulation analysis of algorithm performance.
Section 4 is the experimental verification part. And in Section 5, we conclude this paper.

2. Principle of Fast High-Resolution Phase Diversity Wavefront Sensing with
L-BFGS Algorithm
2.1. Review of Phase Diversity Algorithm

In this section, we will give a brief description of the principle of the PD algo-
rithm [14–16]. For a diffraction-limited incoherent imaging system, the image at the focal
plane of the system is the convolution of the object with the system PSF:

d1(r) = o(r) ∗ h1(r) + n1(r), (1)

where, d1(r) is the light intensity distribution at the focal plane of the system, o(r) is
the unknown target, h1(r) is the PSF at focal plane, n1(r) is the detector noise (Gaussian
distribution), ∗ represents the convolution operation, r is the two-dimensional position
vector of the image plane, and:

h1(r) =
∣∣∣F{A(ρ) · ejϕ(ρ)

}∣∣∣2, (2)
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where, A(ρ) is the pupil amplitude, ϕ(ρ) is the unknown wave aberration of the system,
ρ is the two-dimensional position vector of the pupil plane, F{·} represents the Fourier
transform operation.

The image and PSF of the defocused plane of the system can be expressed as:

d2(r) = o(r) ∗ h2(r) + n2(r), (3)

h2(r) =
∣∣∣F{A(ρ)ej[ϕ(ρ)+∆(ρ)]

}∣∣∣2, (4)

where, d2(r) is the light intensity distribution at the defocus plane of the system, h2(r) is the
PSF at defocus plane, n2(r) is the detector noise, and ∆(ρ) is the known defocus aberration.

We usually use Zernike polynomials to represent the wavefront aberrations of optical
systems [32]:

ϕ(ρ) =
N

∑
i=4

CiZi(ρ), (5)

where, Zi(ρ) is the i-th term of the Zernike polynomial, and Ci is the coefficient of the i-th
term of the Zernike polynomial. Therefore, given a set of coefficients a = [C1, C2, C3, . . . , CN],
the corresponding system wavefront aberration can be obtained.

Then, the evaluation function is constructed using the maximum likelihood estima-
tion method:

E =
2

∑
k=1

∑
r
[dk(r)− o(r) ∗ hk(r)]

2, (6)

If the unknown system wavefront aberration is to be obtained, it is necessary to find the
global optimal solution that makes the evaluation function shown in formula (6) the mini-
mum value. At this time, the problem of using the PD algorithm to solve the system wave
aberration is transformed into a nonlinear optimization problem: the unknown wavefront
phase information can be obtained by selecting an appropriate optimization algorithm.

2.2. The Principle of L-BFGS Algorithm and the Application of Analytic Gradient in
L-BFGS Algorithm

Compared with the BFGS algorithm, the L-BFGS algorithm reduces the requirement for
storage capacity, it avoids the calculation of large-scale matrix and improves the calculation
efficiency. The iterative formula of the L-BFGS algorithm is as follows:

vk+1 = vk + αkHkgk, (7)

where, vk and vk+1 are the iteration results of the kth and k+1th iterations respectively,
αk is the step size of the kth iteration, gk is the gradient of the kth iteration, and Hk is
the Hessian matrix (a matrix of 2nd order partial derivatives) of the kth iteration. Define
Vk = I − ρkyksT

k , ρk = 1
yT

ksk
, yk = gk+1 − gk, sk = vk+1 − vk. Then the Hk can be

expressed as:
Hk+1 = VT

kHkVk + ρksksT
k , (8)

At the same time, Hk can be obtained by using the initial positive-definite matrix
H0 = I and the information in the previous m steps. Therefore, Equation (8) can be
expressed by the initial positive-definite matrix:

Hk+1 = VT
k . . . VT

k−mH0 . . . Vk
+ ρk−m(VT

k . . . VT
k−m+1)sk−msT

k−m(VT
k−m+1 . . . VT

k)

+ ρk−m+1(V
T
k . . . VT

k−m+2)sk−m+1sT
k−m+1(V

T
k−m+2 . . . VT

k)
+ . . .
+ ρk+1VT

ksk+1sT
k+1

+ ρksksT
k

(9)
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In this paper, the whole phase plane is taken as the calculation target, and the gradient
information of each pixel value on the phase plane is solved separately. Fienup et al.
proposed an analytic gradient expression based on the Fourier transform [12], which can
be used to obtain the derivative of Equation (6) for the phase plane:

∂E
∂ϕ

= −2Im
{

P(ϕ)F−1
{

Gw∗(ϕ)
}}

(10)

where, Gw∗(ϕ) = 2 ·
[
|F(ϕ)|2 − i

]
· F(ϕ)∗, F(ϕ) = F

{
A(ρ)ejϕ(ρ)

}
, the superscript ∗

represents complex conjugate, F−1{·} represents the inverse Fourier transform, Im{·}
represents the imaginary part of a complex number, and the generalized pupil function
P(ϕ) = A(ρ)ejϕ(ρ).

Equation (10) shows that only one inverse Fourier transform is needed to obtain
the gradient information of n · n pixel values on the phase plane, and the complexity of
calculating the gradient is reduced from O(n · n) to O(1). And Equation (10) corresponds
to gk in Equation (7), the application of this analytical gradient expression in the L-BFGS
algorithm can significantly improve the convergence efficiency of the algorithm.

2.3. Fast High-Resolution Phase Diversity Wavefront Sensing with L-BFGS Algorithm

Different from the traditional PD algorithm that takes the Zernike coefficient as the
solution target, the fast high-resolution PD (hereinafter referred to as high-resolution PD)
algorithm proposed in this paper uses all the pixels on the phase plane as the unknown
quantity to solve the problem. Combining the analytical gradient calculation method
shown in Formula (10) with the L-BFGS algorithm, the computational complexity of the
Hessian matrix will change from O(n · n) to O(n ·m) (usually m is much smaller than n),
thus improving the computational efficiency. The algorithm process is as Figure 1:
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3. Simulations
3.1. System Parameter Setting

We set the diameter of the primary mirror of the optical system to be 2 m, the focal
length of the system to be 28 m, the observation wavelength to be 625 nm, the number of
CCD samples to be 256× 256 pixels, the pixel size of the CCD to be 5.5 µm, and the defocus
distance between the two images to be 10 mm.

3.2. Solution Accuracy Analysis of High-Resolution PD Algorithm

In this paper, root mean square (RMS) is used to represent the magnitude of wavefront
aberration, and use root-mean-square error (RMSE) to measure the accuracy of the solution.
Three sets of Zernike polynomial coefficients with different RMS are used to simulate the
wavefront aberration, and the generated PSF image is substituted into the high-resolution
PD algorithm to solve the wavefront aberration. Then, high-order aberrations are added
for simulation to analyze the ability of the high-resolution PD algorithm to solve wavefront
aberrations when high-order aberrations are included. The calculation result is shown in
Figure 2:
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Figure 2. The simulation analysis results of solution accuracy of high-resolution PD algorithm. (a–c)
are in three different high-order aberration situations, respectively. In each case, the simulation
analysis is carried out by adding different magnitudes of low-order wavefront aberrations.

The following conclusions can be drawn from Figure 2:

• The high-resolution PD algorithm achieves convergence when introducing different
high-order aberrations;

• The calculation accuracy of wavefront aberrations is affected by higher order aberrations;
• The larger the wavefront aberration, the lower the solution accuracy.



Sensors 2023, 23, 4966 6 of 12

3.3. Comparative Analysis
3.3.1. Comparative Analysis of Convergence Efficiency

When high-order aberrations are involved, the high-resolution PD algorithm, the
traditional PD algorithm for solving Zernike coefficients, and the GS algorithm are used to
solve the aberrations to compare the convergence efficiency of the three algorithms. The
results are shown in Figure 3:
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Figure 3. The solution results of the three algorithms for wavefront aberrations when the wavefront
aberration size is RMS = 0.25 and with high-order aberrations.

The following conclusions can be drawn from Figure 3:

• The high-resolution PD algorithm converges faster and has higher solution accuracy
than the traditional PD algorithm;

• The GS algorithm guarantees the solution accuracy through multiple cross iterations
but greatly sacrifices the convergence efficiency;

• The high-resolution PD algorithm can also quickly converge while ensuring the solu-
tion accuracy. We can see the proposed algorithm converges 2 times faster than the GS
algorithm, which is commonly used now.

3.3.2. Comparing Analysis of Solution Accuracy

Three sets of Zernike coefficients are selected to simulate wavefront aberrations with
higher order aberrations. The results of the three algorithms are shown in Figure 4:
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The following conclusions can be drawn from Figure 4:

• In the case of high-order aberrations in the system, the accuracy of the high-resolution
PD algorithm for solving aberrations is better than the other two algorithms;

• When the wavefront aberration is small, the GS algorithm can correctly solve the
aberration. However, when the wavefront aberration is large, the GS algorithm falls
into the local extremum, and the correct aberration information cannot be obtained;

• In the case of high-order aberrations in the system, the traditional PD algorithm cannot
solve the aberrations;

• The solution accuracy decreases with the increase of wavefront aberration.

3.3.3. Comparing Analysis of Robustness Analysis

In order to be more realistic, the noise related to the intensity and satisfying the
Gaussian distribution is added to the simulated PSF image. Use Peak Signal-to-Noise Ratio
(PSNR) as a criterion for evaluating noise magnitude:

PSNR = 20log10

 Speak√
Speak + σ

2
read + σ2

dark

 (11)

where, Speak is the maximum value of the intensity in the noise-free image, σ2
read and σ2

dark
are the variance of read noise and dark current noise, respectively.

In order to further verify the effectiveness of the proposed method, 100 groups of
Monte Carlo tests are carried out and the results are presented in Figure 5. In the range of
[−0.3λ, 0.3λ], 100 sets of Zernike coefficients are randomly generated to verify the robust-
ness of the algorithm under different SNR conditions:
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The following conclusions can be drawn from Figure 5:

• In the case of low signal-to-noise ratio, the high-resolution PD algorithm and GS
algorithm are relatively stable, while the traditional PD algorithm is more likely to fall
into local extremum;

• When the noise becomes larger, the high-resolution PD algorithm can still maintain
stability, while the stability of the GS algorithm will gradually decrease;

4. Experimental

The experimental verification optical path shown in Figure 6 was designed and built
by using the existing equipment in the laboratory. Which is mainly composed of a telescope
system, an interferometer, a CCD camera, and a beam splitter prism. And a flat mirror is
placed in front of the main mirror of the telescope to form a self-collimating optical path. In
order to reduce the influence of airflow disturbance, an interferometer and a CCD camera
are used to collect data simultaneously.
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Figure 6. High-resolution PD algorithm experimental optical path diagram, (a) is the schematic di-
agram, and (b) is the experimental optical path diagram. The light emitted by the interferometer is 

Figure 6. High-resolution PD algorithm experimental optical path diagram, (a) is the schematic
diagram, and (b) is the experimental optical path diagram. The light emitted by the interferometer is
irradiated to the flat mirror after passing through the secondary mirror, the turning mirror and the
primary mirror of the telescope, and then returns according to the original path. The returned light is
divided into two paths by the beam splitter prism, one path of light returns to the interferometer and
the other path of light converges on the focal plane of the detector.
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A set of images containing known defocus aberrations is collected by moving the
CCD camera along the optical axis, and then the high-resolution PD algorithm is used to
solve the wavefront aberrations in the optical system. At the same time, the high-resolution
algorithm is verified with the data collected by the interferometer. The result is shown in
Figure 7:
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Figure 7. Experimental results. (a,b) are the experimental results conducted in two states of the optical
system, respectively This figure shows the results of the high-resolution PD algorithm restoration
of wavefront aberrations, higher-order aberrations, lower-order aberrations, and defocused images.
It can be seen that the wavefront aberrations of the optical system are successfully solved by the
high-resolution PD algorithm.

In order to avoid the influence of air flow disturbance on the experimental results, four
sets of images were collected in each of the two states. Subsequently, the solution results
are expressed by Zernike polynomials, and the solution results of the 4th to 7th items of the
Zernike polynomials are shown in Table 1:
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Table 1. Experimental verification results of high-resolution PD algorithm. (a) and (b) represent the
two states of the optical system, respectively. A–D represents four sets of data collected in the same
state.

(a)

C4 C5 C6 C7 RMSE

True value −0.0090 −0.1847 0.0539 0.0699
A 0.0069 −0.1792 0.0463 0.0902 0.0103
B 0.0204 −0.1675 0.0490 0.0726 0.0140
C 0.0184 −0.1706 0.0560 0.0687 0.0126
D 0.0165 −0.2076 0.0423 0.0792 0.0149

(b)

C4 C5 C6 C7 RMSE

True value −0.0526 0.0636 0.0837 0.0306
A −0.0406 0.0785 0.0775 0.0285 0.0081
B −0.0438 0.0787 0.0553 0.0199 0.0129
C −0.0453 0.0814 0.0787 0.0200 0.0089
D −0.0688 0.0841 0.0558 0.0215 0.0149

It can be seen from Figure 7 and Table 1 that under different conditions, the high-
resolution PD algorithm can successfully solve the wavefront aberration of the optical
system, and the result is relatively stable.

5. Conclusions

High-resolution phase diversity wavefront sensing is of great importance in the area
of optics. However, high-resolution phase diversity wavefront sensing is restricted with
the problem of low efficiency and stagnation. We propose a fast and high-resolution PD
wavefront sensing method based on the L-BFGS algorithm to address this problem. The
algorithm takes all pixels on the phase plane as unknown quantities, and uses the analytical
gradient shown in Equation (10) to improve the computational efficiency of the algorithm.

Simulations are performed to demonstrate the accuracy and convergency of the pro-
posed algorithm. On one hand, it is shown that the proposed algorithm can accurately
recover high-resolution wavefront phase over a large range of wavefront error (i.e., this
algorithm is robust to stagnation problem). On the other hand, the results also show that
this algorithm is superior over other algorithms in accuracy and convergence efficiency.

Real experiments are performed to further validate the effectiveness of the proposed
method. It is shown that the proposed method can accurately recover high-resolution
wavefront phase when two defocused images are available.

This work provides a feasible solution to the problem of low efficiency and stagnation
in high-resolution phase diversity wavefront sensing.
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