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A B S T R A C T   

The thermal control system (TCS) is a key technology for ensuring good imaging quality of a space 
optical remote sensor (SORS) in orbit, and its research is of practical significance. In this paper, a 
multidisciplinary optimization method was proposed for the TCS of a SORS. A particle-swarm- 
optimized back-propagation neural network was used as the surrogate model to reduce the 
computational cost of the opto-mechanical-thermal integrated simulation model. Subsequently, 
the mean and variance of the modulation transfer function (MTF) of 12 fields of view of the SORS 
at the Nyquist frequency were considered as objective functions, multi-objective optimization of 
the design parameters of the TCS was performed using the non-dominated sorting genetic algo-
rithm II (NSGA-II), and the Pareto front composed of a series of Pareto solutions was obtained. A 
compromise solution was selected as the optimal TCS design. The results showed that, upon 
comparison with the initial design, the optimal design scheme increased the mean of the MTFs of 
the SORS by 34.4%, reduced the variance by 31.3%, and significantly improved the compre-
hensive optical performance of the SORS.  

Nomenclature 

Ad area of node d (m2) 
Ah area of node h (m2) 
Bd,h Gebhardt coefficient 
c specific heat capacity (J/kg•K) 
D thermal conductivity (W/m•K) 
Dd,h thermal conductivity between node d and node h (W/m•K) 
Ea average albedo of the earth’s surface to the sun (W/m2) 
Ee average infrared radiation intensity on earth’s surface (W/m2) 
m mass (kg) 
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Qs heat flow outside the space absorbed by the camera (W) 
Qsh heat flow outside the space absorbed by node h (W) 
Qp thermal power consumption of the camera (W) 
Qph thermal power consumption of node h (W) 
Qc internal energy increment of the camera (J) 
Qch internal energy increment of node h (J) 
S solar constant (W/m2) 
T temperature of the camera (K) 
Td temperature of node d (K) 
Th temperature of node h (K) 

Greek symbols 
ε infrared emissivity 
εd infrared emissivity of node d 
εh infrared emissivity of node h 
αs solar absorptivity 
αsh solar absorptivity of node h 
σ Stefan-Boltzmann constant, 5.67 × 10− 8 (W/m2•K4) 
φ1,h viewing angle coefficient of node h relative to the direct solar heat flow 
φ2,h viewing angle coefficient of node h relative to the earth’s average albedo heat flow 
φ3,h viewing angle coefficient of node h relative to the earth’s average infrared radiation heat flow 
τ time (s) 
β angle between the sun vector and the orbital plane 

Abbreviations 
SORS space optical remote sensor 
TCS thermal control system 
NSGA-II non-dominated sorting genetic algorithm II 
MOO multi-objective optimization 
PSO particle swarm optimization 
BPNN back propagation neural network 
MTF modulation transfer function  

1. Introduction 

The development of space optical remote sensor (SORS) technology has made the exploration of the universe increasingly 
convenient for humans. However, the harsh space environment poses major challenges. A typical SORS exchanges heat with the sun’s 
direct heat flow, the earth’s albedo heat flow, the earth’s infrared heat flow, and the cold and dark space when it works in orbit; it is 
further affected by the internal heat source, thus resulting in different temperatures in different parts of the SORS. The temperature 
gradient of the optical system causes deformation of the mirror and support structure, which in turn, reduces the image quality [1]. 
When the temperature of a SORS is maintained within a reasonable range, good optical performance can be obtained. The thermal 
control system (TCS) is a type of temperature control system commonly used in spacecraft, which combines passive measures, such as 
multi-layer thermal insulation assembly (MLI), thermal insulation pads, thermal conductive materials, and thermal control coatings, 
and active measures, such as pasting heating sheets, and temperature sensors. The system is based on passive measures supplemented 
by active measures and has high reliability. Therefore, many researchers have investigated TCS of different SORSs to ensure their 
optical performance in stabilizing temperature within a reasonable range. Jaekel et al. [2] discussed a TCS for a faint object camera 
(FOC) which guarantees strict image stabilization based on active and passive thermal control measures. Zhang et al. [3] evaluated the 
TCS of the hard X-ray modulation telescope (HXMT), which is a large scientific instrument developed in China. Through numerical 
simulation, they obtained the relationship between the temperature of the HXMT, the change in external heat flow, and the thickness 
of the MLI. Shaughnessy et al. [4] introduced a detailed design and testing process of the TCS of the mid-infrared instrument (MIRI), 
which is a scientific instrument of the James Webb space telescope (JWST) observatory, to ensure that it is the coldest instrument at the 
observatory. Morgante et al. [5,6] developed a TCS of the exoplanet characterization observatory (EChO), which utilized three main 
cooling methods to maintain the required observation temperature of various instruments in the EChO. Li et al. [7,8] introduced a TCS 
of a solar X-ray and extreme ultraviolet imager that could effectively reduce the received direct solar heat flow, ensure extremely low 
operating temperature of the CCD, and maintain the temperature difference between the CCD and surrounding components at 80 ◦C. 
Additionally, extensive research has been conducted to improve the temperature control efficiency of a TCS. Escobar et al. [9] explored 
an automatic design method for satellite TCS based on the genetic algorithm and used finite element simulation to evaluate possible 
schemes. Yang et al. [10] introduced a back propagation (BP) neural network as a surrogate model and performed global sensitivity 
analysis to determine the parameters in the TCS that had a significant impact on the spectrometer frame temperature. They reported 
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that this method would play a significant role in guiding the design of TCS for space cameras. Zhang et al. [11] applied the Taguchi 
method and integrated thermo-optical analysis to optimize and experimentally verify the TCS of a space camera. Cataldo et al. [12] 
developed a fully automated model validation method with significantly reduced cycle times and successfully applied it to several 
thermal management subsystems of the JWST. Galski et al. [13] and Muraoka et al. [14] introduced a TCS optimization strategy based 
on the generalized extremal optimization (GEO) algorithm, which was successfully applied to the TCS optimization design of the 
Brazilian multi-mission platform (PMM). 

In the aforementioned design and optimization studies of the TCS, the goal was to maintain the temperature of optical elements and 
other important components within the temperature specification, thereby guaranteeing the optical performance of the SORS. To 
explore the influence of temperature on the optical performance of the SORS more intuitively, an integrated analysis was performed in 
the initial stages of its design. For example, the integrated science instrument module (ISIM) of the JWST [15], the subarcsecond 
telescope and balloon experiment (STABLE) platform [16], the field-widened Michelson interferometer of the high spectral resolution 
lidar (HSRL) project [17], and the laser transmitter for the ICESat-2 Mission [18] have performed extensive 
structural-thermal-optical-performance (STOP) analysis to predict the optical performance of the device in orbit. 

Generally, the TCS of SORS is designed by thermal engineers according to the temperature control objectives and completed by 
continuous iterative optimization. However, parameter changes in TCS may cause uncertainty in the optical performance of SORS, and 
the given design may not guarantee the optimal optical performance of SORS [19]. Therefore, a multi-objective optimization (MOO) 
method was considered in this paper, which accounted for not only the size of the MTF at the Nyquist frequency for different fields of 
view of the SORS but also the difference in the MTF, such that the SORS could obtain good optical performance in orbit. 

The non-dominated sorting genetic algorithm II (NSGA-II) is a classic MOO algorithm proposed by Deb et al. [20] in 2002. It adopts 
the hierarchical fast non-dominated sorting method and elite strategy, reduces the complexity of the algorithm and improves its ef-
ficiency. NSGA-II has been applied in many engineering fields. Yang et al. [21] applied NSGA-II to optimize the design parameters that 
have a significant influence on the plate-fin heat exchanger with serrated fins and determine the optimal design. Arora et al. [22] used 
NSGA-II to realize the optimal design of a thermoelectric generator (TEG) and simultaneously improved its output power, thermal 
efficiency and ecological function of TEG. Zhang et al. [23] adopted different optimization strategies according to the flight altitude of 
a hybrid airship and reduced its total mass and energy cost through NSGA-II. Lee et al. [24] proposed a robust design optimization 
(RDO) method for TEG systems. They used the Kriging model to establish a surrogate model of the TEG net power output and searched 
for a compromise solution based on NSGA-II, thereby reducing the sensitivity of the TEG net power output to parameter uncertainty. 

Therefore, the primary goal of this study was to introduce NSGA-II into the opto-mechanical-thermal integration analysis aimed at 
optical performance, to explore the optimal design of the TCS of SORS during on-orbit operation. The design of TCS is crucial because it 
enables SORS to obtain stable optical performance by regulating its temperature in the complex space environment. During the 
optimization process, the mean and variance of the MTFs at the Nyquist frequency for the 12 fields of view of the SORS were included 
in the objective function. In order to save the computation time and resources of the MOO process, an approximation model between 
the TCS design parameters and the optical performance of the SORS based on a surrogate model was used in this paper. 

The remainder of this paper is organized as follows. In section 2, the optimization framework of TCS, including TCS parameter 
selection, opto-mechanical-thermal integrated simulation analysis, and surrogate model modeling are described. Section 3 includes the 
introductions of the MOO process and the NSGA-II method. In section 4, the results are analyzed and discussed. Finally, the paper is 
summarized in section 5. 

2. Optimization framework 

Fig. 1 shows the MOO framework of TCS that included 4 steps: 1) parameter selection, 2) opto-mechanical-thermal integration 
simulation analysis, 3) surrogate model modeling, and 4) execution of the MOO process. Sections 2.1 and 2.2 include the selection of 
TCS design parameters and analysis of the opto-mechanical-thermal integration simulation. Section 2.3 consists of the theoretical 

Fig. 1. Schematic diagram of the optimization framework of TCS.  

Z. Yuan et al.                                                                                                                                                                                                           



Case Studies in Thermal Engineering 43 (2023) 102813

4

background and validation of the adopted surrogate model. Section 3 comprises the detailed introduction of the MOO process based on 
NSGA-II. 

2.1. Selection of TCS optimization parameters 

In this paper, we used a certain SORS model, and the partial design of its TCS is shown in Fig. 2. Generally, MLI is used to separate a 
SORS from the external environment and provide thermal insulation. The heat-conducting cable conducts the heat generated by the 
internal heat source to the heat dissipation surface. Heaters are used in conjunction with sensors to compensate for the heat loss of 
certain components. Occasionally, it is also necessary to change the surface properties of objects through thermal control coatings. 

Typically, temperature field changes cause thermal deformation of the optical elements and supporting structures of SORS, which 
in turn, affect the optical performance of the entire system. Therefore, to determine the TCS design parameters that affect optical 
performance, the heat transfer model of the SORS was analyzed. According to the law of conservation of energy, the heat balance 
equation of any node h is established, as follows: 

Qsh +Qph +
∑p

d=1
Bd,hAdεdσT4

d +
∑q

d=1
Dd,h(Th − Td)=Qch + AhεhσT4

h (1)  

where Qsh is the heat flow absorbed by node h from the external space, and Qch is the increment in internal energy of node h, which can 
be expressed as Eqs. (2) and (3), respectively. 

Qsh =
(
αshSφ1,h +αshEaφ2,h + εhEeφ3,h

)
Ah (2)  

Qch =(mc)h
dTh

dτ (3) 

In Eq. (1), Qph represents the heat generated by node h. 
∑p

d=1Bd,hAdεdσT4
d represents the radiant heat absorbed by node h from other 

nodes, and Bd,h is the Gebhardt coefficient. 
∑q

d=1Dd,h(Th − Td) is the heat exchanged between node h and the connected node d, and Dd,h 

is the thermal conductivity between node h and node d. AhεhσT4
h represents the heat radiated from node h. In Eq. (2), αsh and εh 

represent the solar absorptivity and emissivity of the node h surface, respectively. S, Ea, and Ee represent the solar constant, average 
albedo intensity of the earth’s surface to the sun, and average infrared radiation intensity of the earth’s surface, respectively; these 
parameters depend on the orbital height. φλ,h(λ= 1, 2,3) represents the viewing angle coefficients of node h relative to the direct solar 
heat flow, the earth’s average albedo heat flow, and the earth’s average infrared radiation heat flow, respectively, which are generally 
determined by the orbital position of the camera, flight attitude, and structure of the camera. Therefore, an implicit equation rep-
resenting the temperature of the SORS can be obtained, as follows: 

T = f
(
Qp, αs, ε,B,D, σ, S,Ea,Ee,φ,mc,…

)
(4) 

Assuming that the structure and mission of the SORS considered in this paper have been determined, S, Ea, Ee, and φ are non- 
adjustable parameters. Qp is the fixed internal heat source during the orbital operation of the SORS. σ is the Stefan-Boltzmann con-
stant, that is 5.67 × 10− 8 W/(m2⋅K4). αs, ε, B, D and mc are thermophysical properties determined by the material and surface state of 
the object and are adjustable parameters. However, mc represents the heat capacity of the object, which does not affect the equilibrium 
temperature and only affects the time taken to attain equilibrium. 

Considering that the SORS works in a vacuum environment, only the TCS design parameters related to radiation and conduction 
were considered for parameter selection. Therefore, based on the analysis results combined with our experience in engineering design, 
the main adjustable parameters that affected the temperature of the optical elements and support structures were selected. Due to the 
unique requirements of the reflective surface of the optical elements, only the emissivity of the back of the optical elements, and the 
contact heat transfer coefficient of the mounting surface were selected as design parameters. Additionally, the emissivity of compo-
nents capable of radiative heat exchange with the optical elements and support structures were considered. The contact thermal 

Fig. 2. Part of the design of TCS.  
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resistance between the support structures and other parts was another main factor affecting its temperature. Table 1 lists the selected 
21 TCS design parameters and their corresponding description. 

2.2. Simulation analysis of opto-mechanical-thermal integration 

To describe the relationship between the TCS design parameters and optical performance of the system, an opto-mechanical- 
thermal integration simulation analysis was performed in this paper [25,26]. 1) First, according to the structural model of the 
SORS and the design scheme of the TCS, the thermal analysis model of the SORS was established based on the NX Space System 
Thermal module. Subsequently, the temperature field of the SORS was obtained by solving the established thermal analysis model. 2) 
The temperature field was mapped component-to-component on the structural analysis model of the SORS established in NX Nastran. 
Thereafter, thermal deformation analysis was performed to obtain the rigid body displacement of the optical elements and the nodal 
deformation of its surface. 3) Since the Zernike polynomial [27] has the advantages of being orthogonal to the unit circle and easily 
corresponding to optical aberrations, it can fit the surface shape of the deformed optical element well, and it is generally used as the 
data conversion tool for optical and structural analysis. 4) Finally, the original optical model in Zemax was corrected using the fitted 
Zernike polynomial coefficients, and the optical performance index of the SORS was obtained through optical analysis. 

In this paper, an extreme condition of a SORS on-orbit operation was considered, as summarized in Table 2. The flight attitude of 
the SORS changed periodically with the roll angle of the satellite from 0∘ to ±15∘ in one orbital period, and the positive direction of the 
roll angle was defined as the rotation from +Z to + Y. β = − 66∘ implied that the angle between the sun vector and orbital plane was −
66∘. The thermophysical properties of the MLI surface and heat dissipation surface coating were the solar absorption emission ratios 
αs/ε = 0.3/0.84 and αs/ε = 0.35/0.86, respectively, at the end of their life. The solar constant S was considered as the solar radiation 
intensity of 1412 W/m2 at the winter solstice. The maximum temperature of the bottom cold plate was 26 ∘C. The temperatures of other 
single machines around the SORS were considered as the maximum values of their temperature control targets. 

To ensure the spatial uniformity of the training data set, we adopted the Latin hypercube sampling method to sample the 21 design 
parameters listed in Table 1 within their value ranges. Subsequently, through the above-analyzed opto-mechanical-thermal integration 
simulation process, the imaging behavior of the SORS was simulated for changes in TCS design parameters under the extreme working 
condition, and the MTFs of 12 fields of view at all sampling points were obtained. A total of 1875 datasets with 21 inputs and 12 
outputs were obtained, which were divided into training and test sets for the training and testing of the surrogate model. 

2.3. Surrogate model 

According to the analysis in Section 2.2, the simulation analysis of opto-mechanical-thermal integration is a complex and time- 
consuming process, and is computationally expensive to use the simulation model to find the optimal solution in the optimization 
process. Therefore, to perform MOO quickly and efficiently, surrogate models (also called metamodels) were used to replace the 
expensive simulation processes. The goal was to construct the mapping relationship as accurately as possible using limited and 
expensive simulation data and predict the response value of the system at the new point. Surrogate models [28,29] commonly used in 
engineering design and optimization include the polynomial response surface method, Kriging method, support vector machine, and 
artificial neural networks. Kim et al. [30] developed a surrogate model using artificial neural networks to rapidly predict the behavior 
of time-dependent storm surges. Dong et al. [31] used the L1 optimization method to adjust the structure of a back propagation neural 
network (BPNN), obtained the most compact and applicable network mapping structure and applied it to antenna design optimization 
problem. 

Table 1 
Description of 21 TCS design parameters.  

Parameter Description Range 

X1 Contact heat transfer coefficient between secondary mirror and mounting frame (W/(m2⋅K)) 100 ∼ 2000 
X2 Contact heat transfer coefficient between primary mirror and support sleeve (W/(m2⋅K)) 100 ∼ 2000 
X3 Contact heat transfer coefficient between third mirror and mounting frame (W/(m2⋅K)) 100 ∼ 2000 
X4 Surface emissivity on the back of the secondary mirror 0.1 ∼ 0.9 
X5 Surface emissivity on the back of the primary mirror 0.1 ∼ 0.9 
X6 Surface emissivity on the back of the third mirror 0.1 ∼ 0.9 
X7 Surface emissivity at the bottom of the secondary mirror holder 0.1 ∼ 0.9 
X8 Surface emissivity of camera mount 0.1 ∼ 0.9 
X9 Emissivity of the inner surface of the secondary mirror heating cover 0.1 ∼ 0.9 
X10 Emissivity of the outer surface of the third mirror cover 0.1 ∼ 0.9 
X11 Emissivity of the inner surface of the rear frame cover 0.1 ∼ 0.9 
X12 Emissivity of the inner surface of the bottom of the lens barrel 0.1 ∼ 0.9 
X13 Surface emissivity on top of radiant heating plate 0.1 ∼ 0.9 
X14 Surface emissivity on bottom of radiant heating plate 0.1 ∼ 0.9 
X15 Thermal resistance between radiant heating plate and rear frame (K/W) 0.01 ∼ 50 
X16 Thermal resistance between camera mount and mounting point (K/W) 0.01 ∼ 50 
X17 Thermal resistance between electrical box 1 and rear frame (K/W) 0.01 ∼ 100 
X18 Thermal resistance between electrical box 2 and rear frame (K/W) 0.01 ∼ 100 
X19 Thermal resistance between focusing mechanism and rear frame (K/W) 0.01 ∼ 50 
X20 Equivalent heat transfer coefficient of MLI of secondary mirror strut (W/(m2⋅K)) 0.02 ∼ 0.2 
X21 Equivalent heat transfer coefficient of MLI of secondary mirror cover (W/(m2⋅K)) 0.02 ∼ 0.2  
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2.3.1. Back propagation neural network 
A back propagation neural network [32] (BPNN) is a multi-layer feedforward neural network that uses an error back-propagation 

algorithm to correct network weights and thresholds. It has strong nonlinear fitting ability and can approximate the functional 
relationship between the input and output with arbitrary precision. 

Fig. 3 shows the topology of a BPNN, including the input layer, hidden layer, and output layer, which can have multiple hidden 
layers. Information is transferred between layers through weights and biases. Generally, the training of a BPNN is divided into two 
steps: forward transfer of information to obtain the predicted value and backward transfer of error to correct the connection weights 
and biases. 

In the information forward transfer process, the model prediction value can be expressed as follows: 

Ŷ = z2
(
VT z1

(
WT X +b1

)
+ b2

)
(5)  

where z1( ⋅) and z2( ⋅) are activation functions. W and b1 are the weight matrix and bias vector of the input layer and the hidden layer, 
respectively; V and b2 are the weight matrix and bias vector of the hidden layer and the output layer, respectively. X = [x1, x2,⋯, xn] ∈

Rrn represents n sample points, and Ŷ = [ŷ1, ŷ2,⋯, ŷn] ∈ Rmn represents n predicted responses of the model. For a model with n sets of 
training data and m-dimensional output, the loss function E can be expressed as follows: 

E=
1
n

1
m

∑n

i

∑m

j

(
yij − ŷij

)2 (6)  

where y is the true value, and ŷ is the predicted value. 
In the error backward transfer process, the gradient of the loss function with respect to the weights and biases was first obtained, 

and then, the weights and biases were updated in the negative direction of the gradient. The update process can be expressed as 
follows: 

V(k) =V(k− 1) − η ∂E
∂V(k− 1) (7)  

b(k)
2 = b(k− 1)

2 − η ∂E
∂b(k− 1)

2

(8)  

W(k) =W(k− 1) − η ∂E
∂W(k− 1) (9)  

Table 2 
Parameter description under the extreme working condition.  

Item Description 

Flight attitude The roll angle varies periodically from 0∘ to ±15∘ 

β − 66∘ 

Surface properties of MLI αs/ε = 0.3/0.84 
Coating properties of heat dissipating surface αs/ε = 0.35/0.86 
Solar constant S 1412 W/m2 

Temperature of bottom cold plate 26 ∘C  

Fig. 3. Structure of BPNN.  
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b(k)
1 = b(k− 1)

1 − η ∂E
∂b(k− 1)

1

(10)  

where η is the learning rate, and k and k − 1 are the kth update and the (k − 1)th update, respectively. The BPNN was trained by 
repeating these two processes continuously until the error met the training objective. Thereafter, the generalization ability of the 
network was tested using the test set, and the trained network was applied to the next prediction task. 

2.3.2. Particle swarm optimization 
The particle swarm optimization (PSO) algorithm is a random search algorithm proposed by Kennedy and Eberhart, inspired by the 

foraging behavior of birds [33]. In the process of simulating the foraging behavior of birds, the solution space of the problem is 
assumed to be the flight space of the birds, and each possible solution is regarded as a bird in the search space, which is abstracted as a 
particle without mass and volume. Each particle determines the search direction and distance according to its own speed and evaluates 
the quality of the particle by calculating the fitness value. Typically, the dimension of the solution space is determined by the number 
of variables L to be optimized, and the velocity and position of the particles are updated as follows: 

vt+1
l = vt

l + c1rt
1

(
pbestt

l − xt
l

)
+ c2rt

2

(
gbestt − xt

l

)
(11)  

xt+1
l = xt

l + vt+1
l (12)  

where l = 1, 2,⋯,M, M is the population size. t and t + 1 represent the tth iteration and the (t+1)th iteration, respectively. c1 and c2 are 
non-negative constants called acceleration factors. r1 and r2 are random numbers in [0, 1]. vl = (vl1, vl2,⋯, vlD) represents the flight 
speed of the lth particle. xl = (xl1, xl2,⋯, xlD) represents the position of the lth particle. pbestl represents the position where the lth 
particle has the best fitness value among the positions it has experienced and is called the individual extreme value, which can be 
expressed by the following equation [34]: 

pbestt+1
l =

{
xt+1

l , g
(
xt+1

l

)
≥ g

(
pbestt

l

)

pbestt
l, otherwise

(13)  

where g( ⋅) is the fitness function. gbest represents the position with the best fitness value among the positions searched by all particles 
and is called the group extremum, which can be expressed as follows: 

gbestt+1 = argmax
pbest

(
g
(
pbestt+1

l

))
(14) 

Finally, in addition to the optimal individual, several sub-optimal individuals were obtained. 

2.3.3. PSO-BPNN surrogate model modeling 
In this subsection, a three-layer BP neural network is used to construct the mapping relationship between the TCS design pa-

rameters and the MTFs of the SORS. To obtain good learning ability and improve the prediction accuracy of the surrogate model, PSO 
was used to optimize the initial neuron connection weights and biases of BPNN. The number of variables to be optimized was expressed 
as follows: 

L=Numin ⋅ Numhide + Numhide + Numout ⋅ Numhide + Numout (15)  

where Numin represents the number of neurons in the input layer, which is equal to the number of design parameters of the TCS. 
Numhide represents the number of neurons in the hidden layer. In this paper, 15 neurons were set in the hidden layer. Numout represents 
the number of neurons in the output layer, which is equal to the number of MTFs of the SORS. Therefore, the total number of 
connection weights and biases of the BPNN was 522. The activation function plays a vital role in the training process of the PSO-BPNN. 
Generally, the sigmoid function is used as the activation function between the input layer and the hidden layer, as follows: 

z1(x)=
1

1 + e− x (16) 

The activation function between the hidden layer and the output layer was a linear function. 1675 sets of samples were randomly 
selected from the dataset obtained in Section 2.2 for training, and the remaining 200 sets of samples were used for testing. In this paper, 
the mean square error (MSE) and coefficient of determination (R2) were used to evaluate the training accuracy and generalization 
ability of the PSO-BPNN surrogate model, as follows: 

MSE=
1
N

∑N

i=1
(yi − ŷi)

2 (17)  

R2 = 1 −
∑N

i=1
(yi − ŷi)

2

/
∑N

i=1
(yi − y)2 (18)  

where N represents the number of sample points, and y represents the average value of the true value. The closer the MSE is to 0 and R2 
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is to 1, the higher is the accuracy of the model. 

3. Methodologies for TCS optimization 

3.1. Multi-objective optimization 

Multi-objective optimization (MOO) problems are involved in all aspects of production and life and have attracted the attention of 
several researchers. The study of such problems has important practical significance. Typically, the sub-objectives of MOO problems 
compete with each other. The optimal solution of a single objective can-not obtain the optimal system performance, and it does not 
exist to simultaneously obtain the optimal solution of multiple objectives. Therefore, the solution of the MOO problem is not unique, 
but a Pareto optimal solution set consisting of a set of Pareto solutions. Decision makers can choose a compromise solution according to 
the design requirements to optimize the system performance as much as possible. 

In this paper, MOO was introduced into the parameter optimization design of the TCS. To ensure that the SORS had good optical 
performance while working in orbit, the mean value of the MTFs at the Nyquist frequency of different fields of view of the SORS was 
maximized, and the variance was minimized simultaneously. Table 1 lists the decision variables of the TCS optimization problem. 
Therefore, the MOO formula for the TCS design parameters is expressed as follows: 

⎧
⎨

⎩

min
x

f1(x) = − μ(ŶMTF(x))

f2(x) = σ2(ŶMTF(x))
subject to lb ≤ x ≤ ub

(19)  

where x represents the vector of TCS design variables, and lb and ub are the lower and upper bounds of the design variables, 
respectively. ŶMTF represents the output vector of the PSO-BPNN surrogate model. μ represents the mean of the output vector, and σ2 

represents the variance of the output vector. 

3.2. Non-dominated sorting genetic algorithm II 

NSGA-II is a popular intelligent optimization algorithm. It is an improvement on NSGA owing to the introduction of non-dominated 
sorting, proposal of crowding degree and crowding degree comparison operators, and introduction of elite strategy that improves the 
operation speed and robustness of the algorithm [35]. Fig. 4 shows the selection process of NSGA-II, where Gen(Gen≥ 2) represents the 
number of evolutions, P and Q represent the parent and offspring populations, respectively, and {F1, F2, F3⋯} represents the 
non-dominated sorted fronts. 

As shown in Fig. 5, the principle of NSGA-II is as follows. First, a parent population of size N is randomly generated and sorted by the 
introduced non-dominated sorting algorithm to create multiple non-dominated sorted fronts. A single solution x∗ dominates the other 
solutions if it has at least one objective better than the others and none of its objectives are worse than the others. Solutions not 
dominated by any other are called non-dominated solutions, also known as Pareto solutions. In the sorting process, first, all non- 
dominated solutions are identified from the population of size N and assigned to the first-level non-dominated front F1, and the in-
dividuals in F1 are removed from the population. Then, all non-dominated solutions are identified from the remaining population of 
size N − F1 and assigned to the second-level non-dominated front F2, and the individuals in F2 are removed from the remaining 
population. This process is repeated until all individuals in the population are assigned to different non-dominated fronts. The non- 
dominated sorting algorithm greatly reduces computational complexity. The sorted parent population generates an offspring popu-
lation of size N through the selection, cross, and mutation operations of the traditional genetic algorithm. Second, the parent and 
offspring populations are merged into a new population of size 2 N, and non-dominated sorting is performed. Meanwhile, the crowding 
degree and crowding distance of individuals in each non-dominated front are calculated, and N suitable individuals are selected to 
form a new parent population. Each evolution competes among 2 N parent and offspring individuals. Finally, the above operations are 
repeated until the Pareto optimal front is obtained within a given convergence or stopping criterion 

Fig. 4. Selection process of NSGA-II  
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Fig. 5. Flowchart of NSGA-II  

Fig. 6. Regression plot of predicted and true values on the training set.  
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4. Results and discussion 

4.1. Analysis of modeling results of PSO-BPNN surrogate model 

The global optimal individual obtained by PSO was used as the initial connection weight and bias of the BPNN, and thereafter, the 
BPNN was trained. Fig. 6 shows the regression plot of predicted and true values on the training set after iterative training, and the 
evaluation indicators MSE and R2 of the surrogate model were obtained as 0.00033 and 0.988, respectively. The results showed that 
the PSO-BPNN surrogate model achieved a good learning effect and could accurately map the relationship between the input and 
output. 

To evaluate the generalization ability of the PSO-BPNN surrogate model, 200 sets of samples were used for testing, and the 
evaluation indicators MSE and R2 were obtained as 0.0006 and 0.981, respectively. Fig. 7 shows the regression plot of the predicted 
and true values on the test set. 

It is worth noting that through the established PSO-BPNN surrogate model, the optical performance of SORS could be quickly 
obtained by only inputting the TCS design parameters, which solves the problem of the considerable time cost for completing an opto- 
mechanical-thermal integrated analysis. 

4.2. Analysis of MOO results of TCS design parameters 

In this section, the results of the MOO of TCS design parameters for the SORS using NSGA-II based on the PSO-BPNN surrogate 
model are presented. The number of iterations was set to 1000 and the population size was set to 100 during optimization. The 
optimization program based on the surrogate model took 0.0193s for each iteration, which was clearly advantageous compared to the 
optimization based on the opto-mechanical-thermal integration simulation, which took tens of minutes for each iteration. 

Fig. 8 shows the Pareto front obtained from MOO. The figure shows that, with an increase in μ, σ2 increased gradually, which 
indicated that, while the optical performance was improved, the differences in the optical performance of different fields of view 
increased. Conversely, as σ2 gradually decreased, μ decreased, indicating that the optical performance decreased, while the differences 
in the optical performance of different fields of view decreased. 

A multi-objective optimization function improves μ with a suitable σ2. In this paper, a compromise solution was chosen based on 
the principle of obtaining a higher mean value of MTFs while ensuring a lower variance of MTFs. Table 3 lists the means and variances 
of the MTFs at the Nyquist frequency for the 12 fields of view of SORS for the three optimized solutions. Under the optimization scheme 
targeting the mean of MTFs, the maximum value of μ was 0.60692, and the maximum value of σ2 was 1.649× 10− 4. Under the 
optimization scheme targeting the variance of MTFs, the minimum value of μ was 0.02324 and the minimum value of σ2 was 0.274×

10− 4. Due to the contradiction between μ and σ2 in optimization, if one of the functions was used as the optimization objective, the 
resulting design could not satisfy the other objective. Contrarily, a compromise solution could better meet the design requirements of 
the system. Therefore, a compromise solution is considered as the optimal design of the TCS of the SORS. In addition, it can be seen 
from Table 3 that the maximum relative error between the predicted and simulated values of μ and σ2 is 9.5%, less than 10%, which 
meets the requirements of engineering applications and further verifies the prediction reliability of the PSO-BPNN surrogate model. 
Table 4 lists the decision variables of the initial design scheme and the optimal design scheme, and the specific parameter descriptions 
are listed in Table 1. 

Fig. 7. Regression plot of predicted and true values on the test set.  
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Table 5 lists the means and variances of the MTFs at the Nyquist frequency for the 12 fields of view of the SORS for the two TCS 
design schemes. As shown in the simulated values in Table 5, the mean of the MTFs based on the optimal design scheme of TCS 
increased by 0.13793, and the optical performance of the SORS was improved by 34.4%. Simultaneously, the variance of the MTFs 
based on the optimal design scheme of TCS reduced by 0.565× 10− 4, and the differences in the optical performance of different fields 
of view of the SORS reduced by 31.3%. The results showed that the comprehensive optical performance of the SORS could be 
significantly improved by adopting the optimal design scheme of TCS. 

5. Conclusion 

In this paper, a multidisciplinary optimization method for the TCS of a SORS was proposed. Based on the surrogate model, a 
mapping relationship between the design parameters of the TCS and the optical performance of the SORS was established. Considering 
the mean and variance of the MTFs of 12 fields of view of the SORS at the Nyquist frequency as the objectives, the multi-objective 
optimization method NSGA-II was used to obtain a series of Pareto solutions. Some important conclusions are as follows:  

1) The surrogate model established using PSO-BPNN could accurately predict the optical performance of the SORS, thus saving the 
time cost of simulation based on opto-mechanical-thermal integration. 

Fig. 8. Pareto front of NSGA-II  

Table 3 
Performance indicators of different optimization schemes.  

Optimization Scheme Predicted value Simulated value Relative error(%) 

μ σ2 μ σ2 μ σ2 

Optimization scheme targeting the mean of MTFs 0.60692 1.649× 10− 4 0.55416 1.594× 10− 4 9.5 3.5 
Compromise solution 0.537 1.228× 10− 4 0.53866 1.241× 10− 4 − 0.3 − 1.0 
Optimization scheme targeting the variance of MTFs 0.02324 0.274× 10− 4 0.02512 0.298× 10− 4 − 7.5 − 8  

Table 4 
Decision variables of different design schemes.  

Design Scheme X1 X2 X3 X4 X5 X6 X7 

Initial design scheme 1000 500 750 0.7 0.7 0.7 0.1 
Optimal design scheme 482.57 1637 373.43 0.859 0.688 0.871 0.865 

Design Scheme X8 X9 X10 X11 X12 X13 X14 

Initial design scheme 0.5 0.8 0.5 0.1 0.1 0.7 0.1 
Optimal design scheme 0.177 0.249 0.376 0.301 0.895 0.893 0.831 

Design Scheme X15 X16 X17 X18 X19 X20 X21 

Initial design scheme 47.3 44.35 28.8 33.8 19.3 0.1 0.16 
Optimal design scheme 37.9 35.29 91.5 56.7 32.89 0.05 0.19  
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2) The optimization scheme targeting the mean of the MTFs exhibited the largest μ (0.60692), but also the largest variance σ2 (1.649×

10− 4). The optimization scheme targeting the variance of the MTFs obtained the smallest σ2 (0.274× 10− 4), but also the smallest 
mean μ (0.02324). The optimization scheme balanced these two objectives.  

3) Based on the optimal design scheme obtained using NSGA-II, the SORS showed better comprehensive optical performance. 
Compared with the initial design scheme, the optical performance of the SORS was improved by 34.4%, and the differences in 
optical performance of different fields of view was reduced by 31.3%.  

4) The optimal parameters of the TCS could be determined based on both the opto-mechanical-thermal integration analysis and 
NSGA-II method, thus guiding thermal engineers to better select design parameters during the design process of TCS of SORS. 
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