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Abstract

Effective identification of the control model is one of the key aspects in improving the perfor-

mance of the single gimbal control moment gyroscope (SGCMG) servo system. The accu-

racy and stability of the servo system can be improved by studying system identification and

mechanical resonance frequency. In this study, firstly, the SGCMG gimbal servo system

was simplified to a two-mass block model. The theoretical mathematical model of the sys-

tem’s transfer function and mechanical resonance frequency was derived. Secondly, this

paper studied the effective suppression method for mechanical resonance. Thirdly, the

mathematical model of the orthogonal correlation analysis method was deduced for system

identification. Then, an experimental platform was investigated to obtain the frequency char-

acteristic curve and the transfer function. Finally, the frequency characteristic curve

obtained using the transfer function model was plotted and compared with the frequency

characteristic curve obtained experimentally. Our results indicate that the orthogonal corre-

lation analysis has a high identification accuracy.

1. Introduction

The single gimbal control moment gyroscope (SGCMG)has the advantages of a large output

torque, simple structure, frameless locking, and simple control, because of which it is widely

used in spacecraft. Its application in spacecraft attitude control has always been an active area

of research [1–3]. The rotor used in the SGCMG has a constant angular momentum. There-

fore, the control accuracy mainly depends on the accuracy of the gimbal servo control system.

The need to improve the accuracy of servo control system has led to renewed interest in the

development of servo control algorithms in recent studies, including the closed-loop I/f con-

trol scheme [4], the sliding mode control method using a new approach combined with an

iterative learning controller and extended state observer [5], and torque ripple minimization

by modulation of the phase current [6].
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The motor selected for the SGCMG servo system is a permanent magnet synchronous

motor (PMSM) [7,8], which is a complex nonlinear system with strong coupling and multivar-

iable characteristics. Therefore, it is necessary to establish an accurate mathematical model

before studying the servo control algorithms. There are two methods to establish a mathemati-

cal model, one is by theoretical analysis [9–11], the other is by system identification through

experiment. System identification obtains the dynamic characteristics of the system through

its input and outpu to establish the mathematical model of the system. One of the most com-

mon problems in servo motion control systems is mechanical resonance [12,13]. Mechanical

resonance is caused by the flexible connection between two or more components during

mechanical transmission. Among them, the most critical part is caused by the flexible connec-

tion between the motor and the load. Mechanical resonance affects the control accuracy of a

precision servo system and the mechanical resonance frequency determines the upper limit of

the system bandwidth. When the mechanical resonance frequency is low and the system band-

width requirement is high, it may cause the entire servo system to resonate and make the sys-

tem unable to operate normally. In operation, strong resonance can even lead to bearing

fracture and damage to the entire servo system [14]. Therefore, it is of considerable importance

to identify control system models that can predict the mechanical resonance frequency. Kang

et al. [15] indicated mechanical resonance often degrades the performance of the servo system

and have employed shifted discrete Fourier translations to determine the properties of the

mechanical resonance. Chen et al. [16] used a binary multifrequency excitation test signal to

perform system identification. Yang et al. [17] explained the cause of mechanical resonance

and have presented a tracking scheme using the velocity error and bandpass filters to track the

mechanical resonance frequency.

In this study, the mechanical resonance frequency of the servo control was identified using

orthogonal correlation analysis and a method for suppressing the mechanical resonance fre-

quency was developed. Owing to the relative complexity of the PMSM and the difficulty in

establishing an accurate system model through theoretical derivation and simulation, identify-

ing the precise system transfer function is a prerequisite for accurate system control. The liter-

ature includes a strong body of work on the identification of the PMSM system model.

Previous studies [18–22] identified the parameters of PMSM and then constructed the system

model through theoretical model derivations. However, some simplifications and trade-offs

are often made in the theoretical derivation process, and the real system is subjected to many

external sources of interference. Therefore, theoretical model derivations would always be

prone to a certain degree of error. Consequently, the determination of an accurate method of

system model identification is still an active research subject in various fields of industrial

research. An identification method was devised using the iterative process of the linearized

and weighted total least-squares method [23]. Wen et al. [24] used a pseudo-random binary

sequence as the input signal, acquired the impulse response based on correlation analysis, and

derived the state space model from the impulse response through singular value decomposi-

tion and the frequency-domain model, obtaining the explicit values of variable parameters by

parameter fitting. Ishak et al. [25] studied system identification using a fractional-order model

because real systems and dynamical processes display fractional-orderbehavior.

Previous studies on system identification have not considered the identification accuracy

and suppression of the mechanical resonance frequency. In this study, we conducted a system

identification experiment to establish an accurate system model. Simultaneously, we developed

a method for suppressing the mechanical resonance frequency. Our experiment verified the

effectiveness of the mechanical resonance frequency suppression method and the identifica-

tion algorithm. We obtained the amplitude–frequency and phase–frequency characteristics of

the system through the orthogonal correlation analysis method. Further, we obtained the
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transfer function and mechanical resonance frequency of the entire system by fitting the fre-

quency characteristics.

The contribution of this study is the development of a system identification method that

considers the mechanical resonance frequency and the system model. Moreover, methods for

suppressing the mechanical resonance frequency were developed. In addition, we demon-

strated that the orthogonal correlation analysis has a high identification accuracy.

The remainder of this paper is organized as follows. Section 2 describes the model of the

SGCMG servo system and its mechanical resonance; it also details the method of mechanical

resonance frequency suppression. Section 3 derives the orthogonal correlation analysis

method for system identification. Section 4 describes the principle and the elements of the sys-

tem identification experiment. Section 5 presents detailed results for the mechanical resonance

frequency and the servo system model identification. Section 6 concludes the study.

2. Modeling and mechanical resonance frequency suppression of

the SGCMG servo system

2.1 Modeling of the SGCMG servo system

The relationship between the motor assembly and the load of the SGCMG system is illustrated

in Fig 1, where the shaft assembly, flywheel connector, and flywheel as a load are driven by the

motor assembly.

To facilitate the analysis of the flexible coupling relationship between the motor and the

load, we recognize that it is, in principle, equivalent to a two-mass model. Fig 2 depicts the

equivalent model diagram.

The command current iq receives the feedback current iq
�

through the current controller,

and the feedback current is multiplied by the motor torque constant to obtain the electromag-

netic torque TE. The electromagnetic torque directly drives the PMSM to generate the motor

acceleration AM. The motor acceleration is integrated with respect to time to obtain the motor

speed VM, and the motor speed is integrated with respect to time to obtain the motor position

θM. When the motor starts running, the two-mass spring deforms and tightens so that the load

produces a torque proportional to the difference in position of the motor and the load. The

load torque causes the load to accelerate, producing an acceleration AL, the load acceleration is

integrated to obtain the load speed VL, and the load speed is integrated to obtain the load posi-

tion θL. The torque transmitted by the motor causes the load to rotate, and the torque trans-

mitted by the load further restricts the rotation of the motor.

The transmission principle block diagram is depicted in Fig 3. The stiffness torque Ks
�(θM-

θL) transmitted by the stiffness coefficient KS applies a negative torque to the motor and a posi-

tive torque to the load based on the position difference. The transmission of a damping torque

is based on the velocity difference, and the rest of the transmission principle is the same as that

for the stiffness torque.

According to the transfer function block diagram of the two-mass model of the servo sys-

tem shown in Fig 3, the following matrix equation can be obtained:

TE

0

" #

¼
JMs2 þ sKCV þ KS � sKCV � KS

� sKCV � KS JLs2 þ sKCV þ KS

" #
yM

yL

" #

ð1Þ

where TE is the electromagnetic torque output by the motor, JM is the moment of inertia of the

motor, JL is the moment of inertia of the load, KS is the stiffness coefficient of the system, KCV

is the damping coefficient of the system, θM is the angular position of the motor output, and θL

is the angular position of the load output.
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According to Eq (1), it is easy to deduce the transfer function between the electromagnetic

torque TE of the motor and the output angular velocity VM of the motor as shown in Eq (2):

VMðsÞ
TEðsÞ

¼
1

ðJM þ JLÞs
JLs2 þ KCVsþ KS

JMJL
JMþJL

s2 þ KCVsþ KS

" #

ð2Þ

Fig 1. SGCMG system structure diagram.

https://doi.org/10.1371/journal.pone.0267450.g001

Fig 2. Servo system two-mass model.

https://doi.org/10.1371/journal.pone.0267450.g002
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2.2 Mechanical resonance frequency suppression

In order to facilitate the introduction of the mechanical resonance frequency, the frequency

characteristic curve containing the mechanical resonance frequency is shown in Fig 4. The gain

in the amplitude–frequency characteristic of the valley frequency is called the anti-resonance

frequency (fAR). The relationship between fAR, the stiffness coefficient, and the moment of iner-

tia of the load is shown in Eq (3). According to Eq (3), the anti-resonant frequency is the natural

oscillation frequency of the load and the spring, which is independent of the motor, but the sys-

tem is difficult to operate under the anti-resonant frequency condition as all the energy input

into the motor will flow quickly to the load. Although the motor is near to a calm state at the

anti-resonant frequency, the load may be oscillating at a higher intensity at that time.

fAR ¼

ffiffiffiffiffi
KS

JL

s

rad=s ð3Þ

The peak frequency of the gain at the amplitude–frequency characteristic is called the reso-

nant frequency (fR). The expression of the resonant frequency is shown in Eq (4). At this reso-

nant frequency, the motor and the load offer almost no obstacle to the movement. As the total

inertia is small, the loop gain becomes large.

fR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KSðJM þ JLÞ

JMJL

s

rad=s ð4Þ

As the motor and the load are in free oscillation at the anti-resonance frequency, the focus

is usually on the anti-resonance frequency rather than on the mechanical resonance frequency.

The mechanical resonance frequency will lead to extreme instability of the motor and the load,

imposing much greater difficulty on the controller design. In this study, the occurrence of the

mechanical resonance frequency is suppressed by taking the following three measures:

1. Increasing the ratio of the motor’s rotational inertia to the load’s rotational inertia.

Fig 3. Servo system two-mass model transfer function block diagram.

https://doi.org/10.1371/journal.pone.0267450.g003
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Increasing the ratio between the motor’s rotational inertia and the load’s rotational inertia

is the most reliable method for improving the resonance problem. This is because a larger

ratio of the motor’s rotational inertia to the load’s rotational inertia will result in less flexure of

the system, and the prevalent resonance problems are caused by the flexure between the motor

and the load. An increase in the ratio between the motor’s rotational inertia and the load’s

rotational inertia can be achieved by either increasing the rotational inertia of the motor or

decreasing the rotational inertia of the load. Increasing the motor’s rotational inertia will also

increase the total inertia of the system. Assuming that the motor’s rotational inertia is

increased by 25%, the available acceleration will be reduced by 25%; consequently, the torque

would need to be increased by 25% to ensure the same acceleration as before. Increasing the

motor’s rotational inertia will increase the cost of both the driver and the motor, which is con-

trary to the development goals of commercial satellites of high precision, low cost, low weight,

and low power consumption. Therefore, reducing the rotational inertia of the load is the best

way to increase the ratio of the motor’s rotational inertia to the load’s rotational inertia. As

rotational inertia is a physical quantity that reflects the mass distribution of a rigid body, the

rotational inertia of a load can be reduced by either reducing the mass of the load, or changing

the dimensions of the load, or both. The magnitudes of the motor’s rotational inertia and the

load’s rotational inertia of the SGCMG gimbal servo system designed in this study are shown

in Table 1.

Fig 4. Frequency characteristic curve including the mechanical resonance frequency.

https://doi.org/10.1371/journal.pone.0267450.g004
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2. Increasing the stiffness of the system.

Increasing the stiffness of the SGCMG rotating mechanism is another important measure

to prevent the occurrence of mechanical resonance. The SGCMG rotating mechanism is

shown in Fig 5. It is designed to increase the stiffness by including the following features:

a. The direct drive of the motor is used to avoid the introduction of additional flexible links.

b. A compact structure design is adopted to shorten the length of the transmission shaft.

c. Subject to the weight and size constraints, the diameter of the transmission shaft is

increased as much as possible.

d. The rotating mechanism structures are designed using materials with high specific stiffness.

e. An axial preload is applied on the bearing to improve the supporting stiffness, rotation

accuracy, and stability of the bearing unit.

Following the modal analysis of the entire machine construction of the SGCMG system, the

frequency nephogram of each order is shown in Fig 6, and the natural frequency of each order

is shown in Table 2. According to the modal analysis, the system possesses sufficient stiffness

and avoids being detrimentally affected by the flywheel rotation frequency or the natural fre-

quency of the gimbal structure; effectively, the design avoids the occurrence of resonance

problems.

3. Designing filters.

The resonance problem can be further attenuated in the SGCMG gimbal servo control sys-

tem by designing filters, which are placed before the current loop and used to attenuate the

gain variation caused by the flexibility between the motor and the load. The filters can be low-

pass filters or hysteresis filters; adding filters can reduce the gain around the resonance fre-

quency. The transfer function of the low-pass filter is shown in Eq (5). When the frequency of

the low-pass filter is increased to the turning frequency ω, the attenuation becomes increas-

ingly severe, and the low-pass filter causes a relatively large phase lag problem, which is equiva-

lent to reducing the phase margin to some extent. The transfer function of the hysteresis filter

is shown in Eq (6), where ω2< ω1, which has the maximum attenuation ω2/ω1 at high frequen-

cies. As the hysteresis filter has the advantage of a relatively small phase lag, a hysteresis filter is

added before the current loop in this study.

Gfl ¼
1

s=oþ 1
ð5Þ

Gfd ¼
s=o1 þ 1

s=o2 þ 1
ð6Þ

Table 1. Rotational inertia of the SGCMG gimbal servo system.

Parameter JM JL

Value 44340000 g�mm2 10058854.28 g�mm2

https://doi.org/10.1371/journal.pone.0267450.t001
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3. Modeling the SGCMG servo system identification method

The SGCMG servo system identification process treats the SGCMG servo system as a black

box [26]. A given input signal generates a specific output signal. The particular black-

box model for a system is identified according to the characteristics of the input and output

signals. According to the relevant identification algorithm, the frequency characteristic curve

of the input and output signals is obtained, and then the transfer function of the black-

box model of the system is identified. The system identification process is shown in Fig 7.

First, an input of the corresponding excitation signal is made to the system. The speed

response signal calculated by the circular grating of the SGCMG servo system is recorded. Sec-

ondly, the appropriate identification algorithm is used to obtain the spectrum characteristic

response curve of the system. Then, the transfer function of the system is obtained by curve

fitting.

The input excitation signal can take the form of either a white noise signal or a sinusoidal

frequency sweep signal. Because the ideal white noise signal is difficult to generate, it will lead

to poor repeatability of the identification experiment if the white noise signal is chosen as the

excitation signal. In addition, because the frequency components contained in white noise

cannot be controlled, there will be no excitation signal at certain frequencies, resulting in large

errors in the calculation. Therefore, we select a sinusoidal frequency sweep signal as the input

excitation signal in this study. The input signal frequency should be selected to ensure that the

lowest frequency is at most 50% of the first corner frequency of the servo system.It is simulta-

neously necessary to ensure that the amplitude of the input current signal is reasonable. If the

input current amplitude is too large, it will lead to an inappropriately high speed of the

SGCMG servo system, which may cause permanent damage to the SGCMG. If the input cur-

rent amplitude is too small, it would appear (because of the servo system) to overcome the fric-

tion of the shaft system, resulting in the entire system having no output response. As for the

sampling frequency of the input and output signals, according to the Shannon sampling theo-

rem, the sampling frequency of the signal should not be less than twice the highest resonant

frequency of each link of the servo system.

The servo system frequency characteristics can be classified according to the type of input

signal: deterministic (which can be described by an analytic expression), random, or pseudo-

random (which can be described by an analytic expression while approaching a random

nature). The signal processing method can be either a frequency response test, a Fourier analy-

sis, or a correlation analysis. The frequency response test requires the evaluation of multiple

frequency points to obtain the frequency response characteristics of the system; the accuracy

of the result obtained with this test is relatively high, and the use of orthogonal correlation

analysis is highly effective in this test. Fourier analysis can identify the frequency response of a

Fig 5. Schematic diagram of the SGCMG rotating mechanism.

https://doi.org/10.1371/journal.pone.0267450.g005
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Fig 6. Frequency nephogram of each order.

https://doi.org/10.1371/journal.pone.0267450.g006

PLOS ONE System identification and mechanical resonance frequency suppression

PLOS ONE | https://doi.org/10.1371/journal.pone.0267450 August 18, 2022 9 / 22

https://doi.org/10.1371/journal.pone.0267450.g006
https://doi.org/10.1371/journal.pone.0267450


linear system based on impulse and step responses; although this method is computationally

less intensive, relatively simple to implement, and can be performed in a short time, it is only

suitable for systems with a good signal-to-noise ratio. The correlation analysis method must be

performed in the time domain, targeting linear systems that can be either continuous or dis-

crete time signals, and it is equally applicable under poor signal-to-noise ratio conditions.

The input signal selected in this study is a deterministic signal, and the signal processing

method is selected based on the frequency response test of the orthogonal correlation analysis

method to obtain the amplitude–frequency and phase–frequency characteristic curves of the

SGCMG servo system. We describe the following orthogonal correlation analysis for obtaining

the frequency response processing method:

For a linear system, the autocorrelation function of the input signal is written as:

RuuðtÞ ¼ lim
T!1

1

T

Z
T
2

� T
2

uðtÞuðt þ tÞdt; ð7Þ

where u(t) is the input response, T is the sampling period, and τ is the time delay.

The cross-correlation function can be written as follows:

RuyðtÞ ¼ EfuðtÞyðt þ tÞg

¼ limT!1
1

T

Z

1

T

�

T
2

uðtÞyðt þ tÞdt

¼ limT!1
1

T

Z

1

T

�

T
2

uðt � tÞyðtÞdt

; ð8Þ

where y(t) is the output response.

Through a convolution integral, the two correlation functions (7) and (8) can be combined

to obtain:

RuyðtÞ ¼

Z1

0

gðt0ÞRuuðt � t0Þdt0; ð9Þ

where g(t’) is the impulse response. The frequency response of the system can be determined

Table 2. Natural frequency of each order.

Order Frequency (Hz)

First-order 209.6

Second-order 226.21

Third-order 453.01

Fourth-order 461.13

Fifth-order 637.72

Sixth-order 662.03

https://doi.org/10.1371/journal.pone.0267450.t002
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Fig 7. System identification flowchart.

https://doi.org/10.1371/journal.pone.0267450.g007
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by the impulse response, and the Fourier transform of the impulse response can be performed

to obtain the frequency response G(ω).

For sinusoidal input, the signal can be expressed as:

uðtÞ ¼ u0sino0t: ð10Þ

In this equation, u0 is the input signal amplitude, and ω0 is the input signal frequency.

According to Eqs (7) and (10), the autocorrelation function can be written as:

RuuðtÞ ¼
2u2

0

T

Z

T
2

0

sino0tsin o0ðt þ tÞð Þdt

¼
u2

0

2
coso0t

: ð11Þ

The expression of the output response y(t) can be given as:

yðtÞ ¼ u0jGðo0Þjsinðo0t � φðo0ÞÞ; ð12Þ

where φ(ω0) represents the frequency response phase.

According to Eq (9), the cross-correlation function between the output response and the

input signal is obtained as follows:

RuyðtÞ ¼ jGðo0Þj
2u2

0

T

Z

T
2

0

sino0ðt � tÞsin o0t � φðo0Þð Þdt

¼ jGðo0Þj
u2

0

2
cos o0t � φðo0Þð Þ

: ð13Þ

Eq (13) leads to the following:

jGðo0Þjcosðo0t � φðo0ÞÞ ¼
RuyðtÞ

u2
0

2

: ð14Þ

The real and imaginary parts of the frequency response can be estimated from Eq (14).

When τ = 0, the real part of the frequency response can be expressed as:

RefGðo0Þg ¼ jGðo0Þjcosðφðo0ÞÞ ¼
Ruyð0Þ

u2
0

2

: ð15Þ

When t ¼ p

2o0
, the imaginary part of the frequency response can be expressed as:

ImfGðo0Þg ¼ jGðo0Þjsinðφðo0ÞÞ ¼
Ruyð

p

2o0
Þ

u2
0

2

: ð16Þ
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According to Eq (8), by multiplying and integrating the input signal and the output signal

of the system, the cross-correlation function when τ = 0 can be calculated as:

Ruyð0Þ ¼
u2

0

2
RefGðo0Þg ¼

u0

nT

ZnT

0

yðtÞsino0tdt; ð17Þ

where n is the number of measurement cycles.

Similarly, the cross-correlation function when t ¼ p

2o0
can be calculated as:

Ruyð
p

2o0

Þ ¼
u2

0

2
ImfGðo0Þg ¼ �

u0

nT

ZnT

0

yðtÞcoso0tdt; ð18Þ

where the phase shift of the velocity measurement signal is π/2 so that the sine signal becomes

a cosine signal with the same frequency.

According to the following equation, the amplitude and phase relationships of the system’s

frequency response can be determined as follows:

jGðo0Þj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Re2fGðo0Þg þ Im2fGðo0Þg

q

; ð19Þ

φðo0Þ ¼ arctan
ImfGðo0Þg

RefGðo0Þg
: ð20Þ

4. SGCMG servo system identification experiment

4.1 Principle

The system identification principle diagram is shown in Fig 8. The system identification exper-

iment adopts the vector control strategy of id = 0. The computer provides an input signal to

the SGCMG gimbal servo system. According to whether the current loop is a closed loop or

not, there are two waysfor signal input:

1. If the current loop is open, a voltage signal is provided as an input to the system. The object

of identification includes the motor part, the coupling part of the motor and the load, and

the drive amplifier part.

2. If the current loop is closed, a current signal is provided as an input to the system. The

object of identification includes the current loop controller, the motor part, the coupling

part of the motor and the load, and the drive amplifier part.

As the current loop is the innermost loop of the SGCMG servo control system, the current

loop is part of the open-loop model of the speed loop. Therefore, in this study, we choose the

second scheme, which uses the closed loop of the current loop. Using the programmable char-

acteristics of the controller, the current signal is input to the servo system at point I to drive

the SGCMG gimbal servo system to rotate. Simultaneously, the frequency is increased from

low to high. The system synchronously records the velocity response signal of the SGCMG

servo system calculated by the circular grating at point O. The sampling can be stopped after

the set sampling period is completed, and the data is stored in the computer.
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4.2 Execution of servo system identification experiment

The experimental system includes the SGCMG system, a data acquisition circuit, a power sup-

ply, and a computer, as shown in Fig 9. The data acquisition circuit is used for transmitting the

control signal and driving the motor rotation. The power supply provides a voltage of 28 V to

the PMSM and a voltage of 5 V to the digital control chip. The computer is used to pass control

instructions to the entire system and to write the control flow code. The software for data

recording and processing is developed in-house. The current signal are provided as inputs to

the SGCMG system, and the velocity signal, which is obtained through the circular grating dif-

ferential, is transmitted by the controller area network (CAN) to the computer for recording.

The main flow of the frequency characteristic identification experiment for the SGCMG

gimbal servo system is specified as follows:

Fig 8. System identification principle diagram.

https://doi.org/10.1371/journal.pone.0267450.g008

Fig 9. System identification experiment.

https://doi.org/10.1371/journal.pone.0267450.g009

PLOS ONE System identification and mechanical resonance frequency suppression

PLOS ONE | https://doi.org/10.1371/journal.pone.0267450 August 18, 2022 14 / 22

https://doi.org/10.1371/journal.pone.0267450.g008
https://doi.org/10.1371/journal.pone.0267450.g009
https://doi.org/10.1371/journal.pone.0267450


1. Time-domain test: a current signal with appropriate frequency and amplitude is selected as

the input signal of the system to drive the SGCMG gimbal to overcome the friction torque

rotation, and the angular velocity response signal is collected and stored in real time.

2. Frequency-domain estimation: the orthogonal correlation analysis method is used to per-

form the calculation of the input and output time-domain signals collected in the system

identification experiment. The frequency characteristic curves containing the amplitude–

frequency and the phase–frequency characteristics are obtained using the previouslyde-

scribed method.

3. Fitting transfer function: the transfer function model of the SGCMG gimbal servo system is

obtained by the curve fitting method, in accordance with the frequency characteristic

curve, and the frequency characteristic curve of the fitting transfer function is plotted and

compared with that obtained by experiment.

An appropriate input signal needs to be designed as an excitation signal to ensure the exper-

iment is appropriate and rigorous. Some scholars take a white noise [27] signal with an appro-

priate frequency band as the input excitation which can give a balanced excitation of each

frequency point of the tested system and allows the dynamic frequency characteristics of the

tested system to be obtained. However, a white noise signal with random characteristics does

not exist in reality, and number of the frequency bands of white noise that can be realized

physically are limited, so the repeatability of using white noise signal as input excitation signal

for system identification is relatively poor. The sinusoidal frequency sweep method is a fast

and effective measurement method of frequency characteristics. Compared with the white

noise method, the biggest advantage is that the repeatability is better. In this paper, a sinusoidal

frequency sweep signal is used as the input excitation signal of the system to test the frequency

characteristics of SGCMG gimbal servo system. The sinusoidal frequency sweep signal is pro-

grammed in the controller according to Formulas (21)–(23).

IðtÞ ¼ Asinð2p� uðtÞÞ; ð21Þ

uðtÞ ¼ f0ð1þ stnÞ t; ð22Þ

s ¼
fT=f0 � 1

ðnþ 1Þ Tn
: ð23Þ

Where I(t) is the sinusoidal frequency sweep signal, A is the amplitude, f0 and fT are the

starting point and end point of sinusoidal frequency sweep signal respectively, T is the period

required for the servo system to complete the frequency sweep, and n is the polynomial order

of the transfer function to identify the controlled object.

The parameters of the sinusoidal frequency sweep signal used in this paper are shown in

Table 3 below.

5. Results and discussion

In order to verify the correctness of the experimental platform, a single frequency sinusoidal

current signal is used as the input to the SGCMG gimbal servo system. The frequency and

Table 3. The parameters of the sinusoidal frequency sweep signal.

Parameter A f0 fT T n
Value 0.08 A 1.2 HZ 100 HZ 30 s 3

https://doi.org/10.1371/journal.pone.0267450.t003
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amplitude of the input signal, respectively, are 2 Hz and 0.08 A. The frequency and amplitude

of the output velocity response signal, respectively, are 2 Hz and 0.4573 rad/s. The input and

output curves are shown in Fig 10.

Because the above experiment only uses one frequency signal as the input, only one ampli-

tude–frequency characteristic and one phase–frequency characteristic can be obtained. The

frequency characteristic curve of the system obtained by repeatedly collecting a single fre-

quency point in this way is not only time-consuming and labor-intensive, but the result

obtained is also not accurate. Therefore, the input current is changed to a sinusoidal frequency

sweep current signal. The frequency and amplitude of the input signal, respectively, are 1.2–

100 Hz and 0.08 A. The input sine sweep signal and the output speed response signal have the

same sampling frequency of 200 Hz. The resulting curves of the input sine sweep current sig-

nal, and the output velocity response, are shown in Fig 11.

Using the method of orthogonal correlation analyze to analyse the input sine sweep current

signal and the output response signal, the frequency characteristic curve of the SGCMG servo

system can be obtained, as shown in Fig 12. In addition to the orthogonal correlation analysis

method used in this paper, the identification algorithm often used by other scholars is the Fou-

rier transform [28–33]. In order to prove the superiority of the identification algorithm pro-

posed in this paper, the frequency characteristic curve of the SGCMG gimbal servo system was

obtained by the Fourier transform at the same time. The comparison of the frequency charac-

teristic curve generated by the two methods is shown in Fig 13. Evidently, the noise on the fre-

quency response characteristic curve calculated by the orthogonal correlation analysis method

is smaller. As the computer is limited by measurement time, the transform can only be carried

out in a limited range; this reduces the accuracy and produces the noise on the system output

signal. The orthogonal correlation analysis method multiplies the input excitation signal and

Fig 10. Single frequency input and output curves.

https://doi.org/10.1371/journal.pone.0267450.g010
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output response of the system to calculate the average value, so it can effectively suppress the

interference harmonics and noise.

Fig 12 indicates that the SGCMG gimbal servo system designed in this study can effectively

prevent mechanical resonance by increasing the ratio of the motor rotational inertia to the

load rotational inertia, increasing the stiffness of the system, and designing a filter. The system

transfer function G(s) can be obtained by fitting the frequency characteristic curve of the

SGCMG servo system, as shown in Eq (24). The result shown in Fig 13 displays the compari-

son between the frequency characteristics measured in the experiments and those calculated

by the theoretical fitting. Fig 14 indicates that the amplitude–frequency and phase–frequency

characteristics of the transfer function identified agree well with the measured curve. Fig 15 is

the error curve between the measured frequency characteristic and the frequency characteristic

of the identified transfer function. It is evident from this curve that the absolute errors in the

amplitude–frequency and phase–frequency characteristics are less than 0.5 dB and 1˚, respec-

tively, in the common used frequency band.

GðsÞ ¼
VMðsÞ
TEðsÞ

¼
320s2 þ 3203000sþ 32000000

0:17s3 þ 854s2 þ 2000s
: ð24Þ

6. Conclusions

This paper mainly focuses on the study of mechanical resonance and transfer function using

the system identification method. First, the SGCMG gimbal servo system was modelled as the

equivalent of a two-mass block model, and the transfer function between the electromagnetic

torque and the output angular velocity of the gimbal servo system motor was studied. Second,

the typical mechanical resonance frequency in the general servo system was considered. By

Fig 11. Sinusoidal frequency sweep signal input and output curves.

https://doi.org/10.1371/journal.pone.0267450.g011
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Fig 12. The frequency characteristic curve of the SGCMG servo system.

https://doi.org/10.1371/journal.pone.0267450.g012

Fig 13. Comparison of frequency characteristic curves obtained by orthogonal correlation analysis and Fourier

transform method.

https://doi.org/10.1371/journal.pone.0267450.g013
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Fig 14. Frequency characteristic curves of acquisition and identification.

https://doi.org/10.1371/journal.pone.0267450.g014

Fig 15. Identification errors.

https://doi.org/10.1371/journal.pone.0267450.g015
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starting from the underlying cause of the mechanical resonance frequency, methods of pre-

venting the mechanical resonance were proposed. Finally, an input sinusoidal current sweep

signal was used to test the frequency characteristics of the system. The input sinusoidal current

sweep signal and the output velocity response signal were analyzed and processed by the

orthogonal correlation analysis method. The frequency characteristic curves of the system,

including the amplitude–frequency and the phase–frequency characteristics, were obtained.

According to the frequency characteristic curve, it can be observed that the SGCMG designed

in this study has no mechanical resonance problem. The novelty of this research is in propos-

ing the application of orthogonal correlation analysis to servo system identification and com-

paring the identification results with the widely used Fourier transform method. The results

show that the frequency characteristic curve identified by the orthogonal correlation analysis

method has less noise singal than that obtained by Fourier transform. In addition, this paper

also proposes the following options to prevent mechanical resonance: increase the ratio of the

motor rotational inertia to the load rotational inertia, increase the stiffness of the system, and

design a filter; these steps can improve the stability of the servo system.
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