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Abstract
It is difficult to build dynamic models for 3D-printed soft actuators because of their material and
structural flexibility and the complex intrinsic and extrinsic interactions encountered in
human-centric or complex non-structural environments. Soft actuators require the control error
during motion to be limited. However, existing control methods with predefined boundary
constraints are designed for rigid actuators and are not directly applicable to soft actuators. In
this paper, an adaptive neural controller based on a quasi-static model is proposed. The
quasi-static model of the soft actuator is used to determine how the viscoelasticity of the flexible
material influences the neural network, enabling the neural network to identify a better fit to the
dynamic model of the soft actuator. Finally, experimental results verify that the proposed
controller constrains the tracking error of the soft actuator to within the predefined boundary.

Keywords: soft actuator, adaptive neural controller, predefined boundary constraints,
Euler–Bernoulli beam

(Some figures may appear in colour only in the online journal)

1. Introduction

Inspired by natural biology, soft robotics aims to reproduce
biological softness and a soft structure with infinite degrees
of freedom (DoF), resulting in more adaptable, robust, and
effective robots. Soft actuators have intrinsic flexural compli-
ance, which avoids the need for fine kinematic control during
contact with fragile objects [1, 2]. They combine compliant
machinery and flexible drivers to provide better solutions than
traditional rigid industrial robots in natural and human-centric
environments, where safety and adaptability to uncertainty are
fundamental [3].

∗
Author to whom any correspondence should be addressed.

In recent decades, many soft robotic arms have been
developed [4–9]. In science and processing, especially 3D
printing, several smart materials and structures have achieved
greater levels of machinability, such as dielectric elastomers
[10, 11], shape memory alloys [12], and other soft actuators
[13]. However, the viscoelasticity of flexible materials makes
existing control methods unsuitable. Some researchers have
used fluidic actuators in their soft robotic arms to achieve
bending motions [4, 5, 9, 14–16], but the fluid is difficult to
control precisely and fine manipulation remains challenging.
Another straightforward method for controlling soft robots is
cable-driven actuation, whereby the bending motion of soft
robotic arms can be precisely controlled by pulling a cable
[17–20]. The advantage of this approach is that the proven
technology of traditional rigid robots can be used to precisely
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control the length of the cable, allowing accurate bending con-
trol of the soft actuator.

The flexibility and viscoelasticity of materials and the non-
linearity of systems involving complex structures pose sev-
eral new challenges [21]. Current research can be divided
into two main strands: model-based and non-model-based.
Efforts have been devoted to developing a valid and reliable
model for flexible actuators such as lumped-mass models,
finite element methods [22, 23], Cosserat rod models [24],
kinematics-based approaches such as constant-curvature mod-
els, Denavit–Hartenberg parameter models [25, 26] and serial-
link Lagrangian models. This problem has been considered
in the study of continuum robotic arms approximating to soft
arms with the aim of improving the modeling accuracy. The
static and dynamic control of a continuum robot with a single
cross-section has been analyzed [27], where three-dimensional
deformation was achieved and modeled by passing a cable
through a general curved path. A static model of a continuum
robot that considers most of the common forces and moments
applied by its own actuators and the external environment has
also been developed [28]. However, these models can only
handle actuators with simple structures and do not consider
the properties of flexible materials. Non-model-basedmethods
mainly rely on machine learning to solve nonlinear problems
[29]. These approaches circumvent the need to define the
parameters of the configuration space and are independent of
the specific structure of the actuator. The complex kinematic
or dynamical model is completely fitted by a training pro-
cess that requires sufficient sample data. This approach usu-
ally achieves better performance in unstructured environments
that are highly nonlinear, nonuniform, or difficult to model
[30]. Particularly in the case of underwater robots, model-
based methods may involve complex fluid dynamics model-
ing and analysis [31, 32]. Furthermore, the black box nature
of machine learning makes stability analysis and convergence
proofs difficult to establish [21].

Conventional control methods based on actuator dynamic
models can effectively exploit the performance of the actuators
[33]. However, the complex structures of 3D printing mean
that accurate dynamic models are challenging. This makes it
difficult to achieve trajectory tracking and output force control
using traditional model-based control algorithms. Adaptive
neural controllers have been developed to deal with such com-
plex scenarios [34, 35]. To guarantee that the tracking error
ultimately converges to within the predetermined boundaries,
Bechlioulis and Rovithakis [36, 37] proposed a significant
error transformation method, called ‘prescribed performance’,
for the single-input/single-output strict-feedback nonlinear
systems and the multiple-input/multiple-output affine nonlin-
ear systems. Prescribed performance refers to the output error
converging to a predefined arbitrarily small residual set, with
convergence rate no less than a certain prespecified value,
and a maximum overshoot of less than a preassigned level.
Radial basis function neural networks (RBFNNs) are capable
of approximating arbitrary continuous functions with arbitrary
accuracy. Their application to the control of soft actuators can

be used to fit complex nonlinear models. The network can
be combined with an adaptive controller, and can solve the
problem of non-strict-feedback nonlinear systems with input
delays and prescribed boundary constraints [38, 39]. This
makes it possible to achieve high-precision tracking of flex-
ible actuator trajectories. However, the viscous differentiation
of 3D-printed flexible resin compared with common damp-
ing in industrial materials creates a significant delay in the
position feedback on the controller side. Adaptive controllers
may generate large tracking errors or even non-convergence
errors when fitting such large delays, leading to tracking fail-
ure. Therefore, developing an adaptive controller that is not
based on a model of soft actuator dynamics remains a great
challenge.

In this paper, an experimentally validated neural adaptive
controller based on Euler–Bernoulli beam theory with pre-
scribed boundary constraints is proposed. The controller is
shown to achieve high-precision trajectory tracking of cable-
driven soft actuators. The main contributions of this study are
as follows.

• The designed control method contains an adaptive neural
network and a quasi-static model of the soft actuator for
fitting the dynamics of the system in operation, so that the
controller is not based on the dynamics of the system. This
avoids the need to model the complex dynamics of the soft
robotic arm.

• An experimentally validated Euler–Bernoulli quasi-static
model is used to calculate the stable position in the current
drive state. Thus eliminating the output instability caused
by unstable position delay and addressing the issue of the
limited applicability of predefined boundary constraint con-
trollers in soft actuator systems.

• Through a target trajectory tracking experiment, we show
that the position of the end of the flexible actuator can
quickly follow the set trajectory during the motion. This
proves that the proposed control method achieves accurate
trajectory tracking of a cable-driven flexible actuator.

Section 2 introduces the design of the soft actuator structure
used for testing. Section 3 describes the proposed and valid-
ated quasi-static model used for the control. Section 4 presents
the designed controller and section 5 verifies that this control-
ler effectively implements the trajectory tracking of the soft
actuator through a series of experiments. Finally, section 6
concludes with comments on the potential applications of the
proposed controller and some ideas for future work.

2. Soft actuator design

The design of the soft actuator is based on several criteria: flex-
ibility, reliability, and ease of manufacturing. In this study,
we use silicone resin, a 3D-printable and elastomeric mater-
ial. The soft actuator consists of two parts, the soft body and
the drive system.
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Figure 1. Construction of the soft actuator.

2.1. Soft body design

Given the criteria stated above, a cable-driven mechanism is
selected for our design. In view of flexibility, the 3D-printed
body is designed to be coupledwith lateral dentation structures
on four sides, the shape of which was optimized via finite ele-
ment simulation. Following optimization, the actuator could
achieve a bending angle of approximately 180◦ when sub-
jected to a 30 N drive force, with the maximum equivalent
stress on each groove constituting around 80% of the tensile
strength of FLAX9795. This design feature fully capitalizes
on the flexibility of the material. The primary structure of the
soft actuator was fabricated using FLAX9795, a photosensit-
ive silicone resin with mechanical properties akin to those of
silicone rubber. Specifically, FLAX9795 exhibits a Young’s
modulus of approximately 10MPa, a tensile strength of 3MPa,
and strong viscoelastic behavior. Each dentation structure has
a hole that can be threadedwith the cable. The 3D-printed body
is actuated by power transmission elements. As discussed in
the Introduction, the cable-driven mechanism is selected for
our design. However, to achieve multi-directional bending in
conventional rigid-link cable-driven robots or actuators, sev-
eral cables must pass through the lumen. One of the most strik-
ing features of a soft actuator is that it cannotmaintain its shape
as a rigid-link actuator. Therefore, the shape and length of the
driven cables in the actuator may not reflect its state, which
complicates the control system. In contrast, our design allows
cables to pass through via-holes, which constrain these cables
to the approximate shape of the 3D-printed body. These four
cables with central symmetry provide two DoFs. The cables
are made of Dyneema, and each can bear more than 400N. As
Dyneema is not as sharp as metal cable, there is less danger of
cutting the 3D-printed body. Figure 1 shows the 3D model of
the soft actuator.

During the movement of the robotic actuator, two sym-
metrical drive lines move simultaneously. This generates one
DoF in each direction, and the soft actuators can be bent over
180◦ (θx,θy ⩾ 180◦), as shown in figure 2(A).When four drive
lines are moved simultaneously, the actuator will move in a
specified direction, as shown in figure 2(B). Therefore, there
are two bending DoFs during the movement of the system,

Figure 2. Bending diagram of the soft arm. (A) Two states of
driving with single DoF. (B) Driving using two DoFs
simultaneously.

and they can generate a certain deflection angle to expand
the actuator’s working space. The soft actuator has complete
environmental compliance. Additionally, we have eliminated
the rigid actuator’s multi-component assembly, making the
movement process more coherent and compact. According
to the traditional definition, this soft actuator is continuously
bendable to contain an infinite number of DoFs. In this paper,
we only consider the actuator to have two bending DoFs in
a broad sense. To be precise, this soft actuator is a complete
under-actuated system.

2.2. Drive system design

As shown in figure 3, each drive unit is designed to drag a cable
independently. The drive system consists of 12 drive units,
a transmission mechanism, and motors. It is placed intern-
ally to ensure a compact and efficient robot. Since the soft
actuators are designed to be used in series, this drive system
allows for the scalability of up to twelve drive units, with driv-
ing a maximum of three soft actuators, thus providing up to
six controllable DoFs. In figure 3(D), each unit consists of
a coupling, bearing seat, ball screw, linear slide, cable fix-
ture, connection nut, and supporting board. The control system
includes a microcontroller and the drivers required to operate
the motor, as well as the power supply. The microprocessor
controls the motors, and the motors drive the ball screws to
drag the Dyneema lines. The bearing seat and linear slide are
mounted on the supporting board, and the ball screw is set on
the bearing seat with couplings attached. The 3D-printed body
is mounted on strut members and be fixed with four screws.
Each driven cable is attached to a connector through the center
bore, with a chamfer to prevent them from breaking. The con-
nector is fixed with a corresponding ball screw nut. As shown
in figure 3(B), all transmission units are assembled on the ped-
estal and evenly distributed along the circumference. When
the actuation system works, the cables remain stretched and
tight through the control of the motors. As a result, the motor
movements change the cable lengths, causing the soft actuator
to move.
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Figure 3. Drive system. (A) Drives of motors. (B) Twelve motors mounted on the supporting board. (C) Twelve drive units mounted on the
supporting board. (D) Drive unit.

3. Theoretical modeling

3.1. Mechanical model

The soft actuator can be simplified as a solid cylindrical shaft.
The effect of the dentations on the soft actuator is simplified as
a transformation of the moment of inertia (I). The effect of the
driven cables can be reduced to a concentrated force acting at
the end and a distributed force acting along the cable as a result
of friction. Therefore, the soft robot working in the horizontal
direction can be considered as a root-fixed cantilever beam of
length L and bending stiffnessEI(s). The curvature of the beam
satisfies

ρ=
dφ
ds

=
M(s)
EI

, (1)

where ρ is the deformation curvature of a point on the beam,
φ is the deformation angle of the beam, M(s) is the bend-
ing moment, EI is the bending stiffness, and s is the arc

coordinates. Common external and internal loads on actuators
can be divided into three categories: external concentrated
load, self-gravity load and driving force.

3.1.1. External concentrated load bending. Consider a force
F in a constant direction and with a constant magnitude act-
ing at a distance LF from the root on the soft actuator. The
geometric relationship of the soft actuator under this load is
shown in figure 4(A), where α is the load azimuth. Differenti-
ating equation (1) yields

EI
d2φ
ds2

+Fsin(α+φ) = 0. (2)

The boundary condition can be obtained as{
φ(0) = 0
dφ
ds (s) = 0 (s⩾ LF)

. (3)

4
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Figure 4. External and internal load. (A) Schematic diagram of bending with directional load. (B) Schematic diagram of bending with
follow on load. (C) Schematic diagram of bending with gravity. (D) Schematic diagram of bending with driving force.

Considering the transformation as

z(s) = α+φ(s) , (4)

and substituting equation (4) into equations (2) and (3), a new
governing equation and boundary condition can be obtained
as

EI
d2z
ds2

+Fsin(z) = 0, (5)

and {
z(0) = α
dz
ds (s) = 0 (s⩾ LF)

. (6)

Integrating equation (5) from 0 to s yields

1
2

(
dz
ds

)2
∣∣∣∣∣
s

0

=
F
EI

cosz|s0. (7)

Substituting equation (6) into equation (7), we obtain(
dz
ds

)2
∣∣∣∣∣
0

=
2F
EI

(
cosα− cosz|LF

)
. (8)

Thus, the deflection curve of the manipulator under the direc-
tional load is obtained as(

dz
ds

)2
∣∣∣∣∣
s

=
2F
EI

(
cosz|s− cosz|LF

)
. (9)

Consider a force F at a constant angle in the axial direction
and with a constant magnitude acting at a distance LF from the

root on the soft actuator. The geometric relationship of the soft
actuator under this load is shown in figure 4(B). Differentiating
equation (1) yields the governing equation as

EI
d2φ
ds2

+Fsin(α+φ−φ(L)) = 0. (10)

The boundary condition can be obtained as


φ(0) = 0
dφ
ds (s) = 0 (s⩾ LF)
φ(s) = φ (LF) (s⩾ LF)

. (11)

Considering the transformation as

z(s) = α+φ(s)−φ(LF) , (12)

and substituting equation (12) into equations (10) and (11),
a new governing equation and boundary condition can be
obtained as

EI
d2z
ds2

+Fsin(z) = 0, (13)

and {
z(0) = α−φ(LF)
dz
ds (s) = 0 (s⩾ LF)

. (14)

This is similar to equations (5) and (6), and the result can also
be expressed in the form of equation (9).
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3.1.2. Self-gravity bending. Using the geometric relation-
ship of the beam under a uniform load (figure 4(C)), we
obtain the following governing equation by differentiating
equation (1):

d3 (φ)
ds3

=
f · cos(φ)

EI
. (15)

The boundary condition can be obtained as{
φ(0) = 0
dφ
ds

∣∣∣
L

= 0
. (16)

Substituting the integral of equation (15) into the boundary
condition

1
6

(
dφ
ds

)3
∣∣∣∣∣
s

0

− 1
2

(
d2φ(L)

ds2

)
· s= f

EI
· cos(φ(s))|0s . (17)

We can simplify equation (17) to obtain

1
2

(
d2φ(L)

ds

)2

=− 1
6L

(
dφ
ds

)3
∣∣∣∣∣
0

− f
EIL

[1− cos(φ(L))] .

(18)

Thus, the deflection curve of the manipulator under the action
of gravity is obtained as

1
6

(
dφ
ds

)3
∣∣∣∣∣
s

+
( s
L
− 1
)
· 1
6

(
dφ
ds

)3
∣∣∣∣∣
0

+
f
EI

[ s
L
(1− cos(φ(L)))− (1− cos(φ(s)))

]
= 0. (19)

As a result, the mechanical model of the manipulator under the
action of gravity can be deduced. The static model plays an
essential role in the performance analysis, trajectory control,
and practical manipulator application.

3.1.3. Driving force. As seen in equation (1), the shape of
the soft actuator is influenced by the distribution of the bend-
ing moment to which it is subjected. The bending moment of
the driving force acting on the soft actuator can be decomposed
into two parts: the concentrated moment Md acting at the end
fixed point and the distributed moment mf (s) from the fric-
tion between the drive line and the via-hole. These components
satisfy

F · d=Md+

ˆ L

0
mf(s)ds, (20)

where F denotes the total driving force and d denotes the dis-
tance between the two driving cables.

When the soft actuator is stationary, the direction and mag-
nitude of the friction force and its distribution depend on the
previous state. If the previous state of the soft actuator is not
available an error band can be estimated using the maximum

static friction force along the same direction. The shape of the
soft actuator then falls within this error band. The concentrated
momentMd acting on the end fixed point is considered separ-
ately. According to equation (1), the curvature ρ is a constant.
Thus if the friction between the driving line and the via-hole
can be neglected, the shape of the soft actuator bending under
only the driving force should be a segment arc. We now con-
sider the effect of the maximum static friction. Because the
friction force is related to the normal pressure, the following
relationship can be obtained:

mf = µd ·T(s) · ρ(s) , (21)

where µ denotes the maximum static friction coefficient and
T (s) denotes the tensile force on the drive line at s. From
equation (20), we have that

T(s) = F−
ˆ s

0
T(l)ρ(l)dl. (22)

Differentiating equation (22) gives

T ′ (s) = −T(s)ρ(s). (23)

Solving equation (23) under the condition that T(0) = F, we
find that

T(s) = F · exp
(
−
ˆ s

0
ρ(l)dl

)
. (24)

Equation (21) can then be written as

mf = µdF · exp
(
−
ˆ s

0
ρ(l)dl

)
· ρ(s) . (25)

Substituting equation (25) into equation (1), the drive equation
considering only the frictional drive is

´ L
s µdF · exp

(
−
´ l
0 ρ(l)dl

)
· ρ(l) dl

EI
= ρ(s) . (26)

Using the simplification ρ= dφ
ds , equation (26) can be

formulated as

µdF · exp(−φ(l))|l=Ll=s

EI
=

dφ
ds

. (27)

Integrating the above equation gives

exp

(
µdF
EI

· s
exp(φ(L))

)
=

exp(φ(L))− exp(φ(s))
exp(φ(L))− 1

.

(28)

According to equation (1), when analyzing the trajectory of the
final soft actuator, the bending effect caused by the load and
the concentrated moment acting on the root is first calculated.
Because equation (25) only considers the maximum static
friction that hinders the deformation, the obtained trajectory
will have a unidirectional deviation. The effect of friction will
increase when the driving force is greater, but the direction of
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Figure 5. Comparison of experimental result with analysis. (A) Bending of the soft actuator under different driving forces compared with
the trajectory calculated by the analysis method. (B) Photograph of soft actuator bending under different driving forces.

the friction can be determined by the trajectory before deform-
ation. In addition, because the soft actuator is an underdriven
system, the same drive configuration can form different traject-
ories under different external loads. When changing between
trajectories, the main factors that hinder this change are the
stiffness of the deformer itself and the friction between the
drive line and the via-hole.

3.2. Mechanical performances

The model described above can be used to estimate the static
trajectory of the soft robotic actuator under a driving force.
To verify the validity of this model, a series of experiments
are conducted using a soft actuator with a full length of
L= 200mm, bending stiffness of EI= 1.0× 104N·mm2 and
drive cable spacing of d= 8mm. The friction coefficient
between the drive cable and the via-hole is µ= 0.1. The
soft actuator is bent into different trajectories under differ-
ent driving forces. The trajectories of the soft actuator under
these driving forces are also calculated separately, as shown
in figure 5. The trajectories shown in the figure account for
the maximum static friction that impedes the motion. This
is closer to the actual situation, but the overall result has a
small one-way deviation. This means that, in practice the fric-
tion between the drive cable and the via-hole is closer to the
maximum static friction in one direction, but at rest the fric-
tion between the two is less than the maximum static friction.
Thus, for a certain trajectory, the current trajectory is main-
tained differently in each direction. Coupled with the fact that
soft actuators are often used in non-structural environments
that do not require particularly precise control, the friction

can be simplified to a one-way maximum friction in prac-
tical applications. The soft actuator design used in this study
features grooves aligned in the same direction as the drive
lines, with each pair of drive lines orthogonal to one another.
This configuration ensures that the motion between the two
pairs of drive lines remains uncoupled. Thus, the proposed
model can be applied to multi-axis motion with comparable
results.

4. Adaptive neural control

An adaptive neural controller that can converge to a prescribed
error limit in finite time for model-free control has previ-
ously been designed [39]. This study combines this adapt-
ive neural controller with the quasi-static model described
above to provide an effective soft-actuator control method that
does not depend on the dynamics model. We also account for
the flexible 3D printing material being highly viscous, which
can reduce the RBFNN fitting accuracy. The whole control-
ler structure is shown in figure 6. The controller mainly con-
sists of seven parts: OpenCV-based target extraction, RBFNN,
Euler–Bernoulli beam model, intermediate variable, coordin-
ate transformation, adaptation law and driving force control-
ler. The OpenCV-based target point velocity extraction mod-
ule achieves the extraction of the velocity of the target point
from the image stream returned by the camera using binariza-
tion of the image feedback, and extracting the center coordin-
ates of the elliptical highlighted area of the target point in
the image. The RBFNN is used to fit the dynamic model of
the soft actuator using the feedback driving force, velocity
and estimated position. The Euler–Bernoulli beam model is

7
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Figure 6. Control flowchart of the proposed control scheme.

used to estimate the steady-state position of the soft actu-
ator from the sensor feedback drive, preventing the position
delay caused by viscoelasticity from slowing the RBFNN
convergence. Intermediate variables are used to calculate the
virtual control law, while the coordinate transformation uses
the auxiliary system to transform the input speed and position.
The driving force controller uses the virtual control law and
the current soft actuator state to calculate the driving force and
output it to the motor drive.

Given the orthogonal arrangement of the drive cables in
the soft actuator utilized in this study, no inter-cable coupling
exists. The system function of the soft actuator satisfies the
following relations:

ẋ1 (t) = φ 1j (x(t))x2 (t)+ϕ 1j (x(t))
ẋ2 (t) = φ 2j (x(t))uj (t)+ϕ 2j (x(t))
y(t) = x1 (t)

, (29)

where x(t) = [x1 (t) ,x2 (t) , . . . ,xn (t)]
T ∈ Rn are the state vari-

able and system output, respectively. uj(t) ∈ R is the input cor-
responding to the jth drive cable, andφij(·), ϕij(·) are unknown
smooth nonlinear functions. Because φ is related to the mass
and damping distribution of the soft actuator, the two known
constants φ

i
and φ̄ i satisfy 0< φ

i
< φ ij (·)< φ̄ i. To facilitate

the description, the input x(t) is transformed according to

z1 =
e2he

e2h− e2
(30)

z2 = x2 −α1, (31)

where e(t) = y(t)− yr(t) is the tracking error. The tracking
restraint condition eh(t) should satisfy −eh(t)< e(t)< eh(t).
α is the virtual control law and yr(t) is the tracking result.
For equation (29), the system functions are unknown and can-
not be directly used to design the desired controller. Thus, the
RBFNN is applied to approximate an arbitrary unknown non-
linear function. For a given accuracy τ > 0, with sufficiently
large node number l, the RBFNN can approximate any con-
tinuous function F(Z) over a compact set ΩZ such that

Fi (Z) =Wi
TSi (Z)+ δ (Z) , |δ (Z)|⩽ τ, (32)

where Z ∈ ΩZ ⊆ Rq represents the input vector, Wi ∈ Rl

denotes the weight vector, l> 1 is the node number of the
neural network, δ(Z) is an approximation error, and Si(Z) =
[s1(Z), . . . ,sl(Z)]T is the basis function vector with si(Z) gen-
erally set to a Gaussian function

si (Z) = exp

[
−(Z− υi)

T
(Z− υi)

η2

]
, i= 1,2, . . ., lk, (33)

where ν = [νi1,νi2, . . . ,νiq]
T and η represent the center of the

receptive field and the width of the Gaussian function, respect-
ively. Fi(Z) in equation (32) is the dynamic model to be fit-
ted, and this work uses two RBFNNs for the soft actuator

state-dependentX1 = [x1,yr, ẏr]
T
,X2 =

[
x1,x2,yr, ẏr,λ, θ̂1

]T
as

the input vector, but the ideal weight matrix W i is unknown
and the adaptive parameters are designed as θi = |Wi |2, and θ̂
is used as the estimate of θ for the computation of the driving
parameters. W is an unknown ideal constant weight vector.
Therefore, adaptive parameters are designed as θi = ∥Wi∥2.
The first adaptation law is designed as

˙̂
θ1 =

r1
2l1

(z1λ)
2ST1 (X1)S1 (X1)−σ1θ̂1 −

b1θ̂31
r1

, (34)

where b1,σ,r1 are the positive design parameters, and
λ= ∂z1

∂e . li is the number of nodes in neural network Si. The
first virtual control signal is designed as

α1 =− z1α̃2
1

φ
1
λ
√
z21α̃

2
1 + ε21

, (35)

α̃1 = K11

(
1
2

) 3
4
(
z21
) 3

4

z1
+K12

(
1
2

)2

z31

+
z1λ2

2l1
θ̂1S

T
1 (X1)S1 (X1)+Ψ , (36)

where ε1,K11,K12 are the positive design parameters, andΨ =
∂z1
∂eh
ėh. For the system described by equation (29), a second

8
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Figure 7. Experimental system for a soft actuator.

virtual control signal and adaptation law are designed as

α̃2 = K21

(
1
2

) 3
4
(
z22
) 3

4

z2
+K22

(
1
2

)2

z32 +
z2
2l2

θ̂2S
T
2 (X2)S2 (X2) ,

(37)

˙̂
θ2 =

r2
2l2

z22S
T
2 (X2)S2 (X2)−σ2θ̂2 −

b2θ̂32
r2

. (38)

According to equation (35) the driving force controller of
jth cable can be designed as

uj =− z2α̃2
2

φ
2

√
z22α̃

2
2 + ε22

. (39)

5. Experimental results and discussions

This section reports the result from a series of experiments to
validate the effectiveness of the designed control scheme. The
soft actuator and its drive system are as described in section 2.
The experimental system is shown in figure 7. An external bin-
ocular camera (1920× 1080@60 FPS for each camera) and a
target reflector for tracking are added to the soft actuator and
drive system. The binocular camera is directly connected to the
computer and the position of the target reflector is extracted
by OpenCV. The controller runs under the Simulink toolbox

of MATLAB on a computer terminal, and the driving force
can be calculated from the feedback target reflector position
and the preset target trajectory. The calculated driving force is
transmitted to the MCU(STM32F103VET6) via the USART
serial port to control the motor motion and the driving force
on the drive cable is sent back to the computer by the MCU.
The communication frequency is about 100Hz. The improved
control method in this paper, the control method proposed in
[39], and the conventional PID method are tested. The three
methods are used to test tracking exponential functions and
sine respectively.

5.1. Exponential tracking experiment

Figure 7 shows the initial zero position of the soft actu-
ator. The trajectory is set to yr(t) =−0.075+ 0.1exp(−t)−
0.025exp(−4t), and the tracking restraint condition is
assigned as eh = 0.005exp(−t)+ 0.002. The test considers
single-DoF motion. A pair of drive cables is controlled to
drive the vertical motion, so that the projection of the tar-
get reflector in the vertical direction tracks the given tra-
jectory. The controller output driving force is that on the
upper drive cable minus that on the lower drive cable. If the
controller output force is positive, the lower drive cable is
assigned the default tension of 0.2N; if the controller out-
put force is negative, the upper drive cable is assigned the
default driving force of 0.2N. The three experiments were

9
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Figure 8. Tracking position of the actuator with exponential signal.

performed using are tracking the same trajectory using the
method proposed in [39], the modified method of this paper
and the traditional PID method. The parameters of the con-
troller are set to K11 = K12 = K21 = K22 = 0.1,ε1 = ε2 =
1,r1 = r2 = σ1 = σ2 = b1 = b2 = 1. The initial conditions are
θ̂(0) = [0.2,0.1]T.

The experimental results are presented in figures 8–10.
Figure 8 shows the tracking trajectories under the three
control methods. The tracking speed of proportion-integral-
differential (PID) controller is weaker than the other twometh-
ods, but the error range is smaller than that of the method from
[39] when reaching the stable position of the target. Figure 9
shows the position tracking error for the controller experi-
ments based on the three methods. When quasi-static model
feedback is not used, the control errors all fail to converge
to the given tracking constraints, indicating that the control-
ler has failed. However, using the control method proposed
in this paper, the tracking error is smaller than the specified
tracking constraint for the entire process, demonstrating that
this method effectively improves the convergence of the error.
Figure 10 gives the measured driving force of the control-
ler experiments based on the three methods. These prescribed
boundary-constrained control methods require higher drive
force control performance for fast convergence. In contrast,
the drive force of the PID method fluctuates much less around
the stable poses. While the drive force required by the control-
ler proposed in [39] fluctuates more throughout. This shows
that the controller proposed in this paper can achieve bet-
ter control results when used to soft actuators. It effectively
eliminates jitter in the control of soft actuators by predefined
boundary constraint controllers with direct position feedback.
In practice, soft actuators have lower driving force and are
more prone to force saturation. Therefore, the adaptive track-
ing control with prescribed boundary constraints in [39] is not
suitable for soft actuators. However, a quasi-static model of
the soft actuator can be applied to allow the control error to
converge.

5.2. Sine tracking experiment

In this experiment, the trajectory is set to yr (t) =
−0.1cos

(
π
15 t
)
+ 0.1, and the tracking restraint condition

Figure 9. Tracking position error of the actuator with exponential
signal.

Figure 10. Driving force of the actuator with exponential signal.

is assigned as eh = 0.005exp(−t)+ 0.002. The remaining
parameters are kept the same as in the exponential tracking
experiment.

The experimental results are presented in figures 11–13.
Figure 11 illustrates the position results of the three con-
trol methods utilized to track the sine wave signal. The PID
method experiences difficulty in accurately tracking the tar-
get signal. On the other hand, the two prescribed boundary-
constrained control methods can effectively track the target
trajectory. Notably, the proposed method displays less fluc-
tuation near the target. Figure 12 displays the error results of
the three control methods when tracking the sine signal. Only
the control method proposed in this paper achieves the pre-
scribed boundary-constrained. The method proposed in [39]
exhibits fluctuations in the error beyond the limit, indicat-
ing control method failure. Figure 13 portrays the results of
driving force for each of the three control methods track-
ing the sine signal. The PID method experiences the smal-
lest fluctuation of the driving force, followed by the method
proposed in this paper. In contrast, the method proposed in
[39] experiences the largest fluctuation. This finding further
confirms that the improved method in this paper successfully
resolves the problem that the method proposed in [39] fails
to address when utilized for soft actuators, while retaining
the characteristics and dynamic performance of the prescribed
boundary-constrained.

10
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Figure 11. Tracking position of the actuator with sine signal.

Figure 12. Tracking position error of the actuator with sine signal.

Figure 13. Driving force of the actuator with sine signal.

5.3. Discussions

In general, this paper proposes an adaptive tracking controller
with position feedback using a quasi-static model, which can
be applied to soft actuators. The proposed method not only
fully harnesses the actuator’s performance, thereby achieving
faster error convergence compared to the PID method, but
also effectively maintains the error within prescribed boundar-
ies during the convergence process. Additionally, this method
addresses the convergence failure encountered in soft actuat-
ors, as the method described in [39]. As the quasi-static model
is relatively simple, the complexity of the control system
is not significantly increased. Nevertheless, the accuracy of
the quasi-static model implies that control results may be
impacted by steady-state errors. However, as illustrated in
figures 9 and 12, the magnitude of such errors remains within

the prescribed boundary constraint, thereby not affecting the
practical application of the actuator.

6. Conclusions

This paper has described a control method for 3D-printed
cable-driven soft actuators. As the 3D-printed flexible material
is viscous, adaptive neural controllers are ineffective. Thus, a
new control method based on Euler–Bernoulli model feedback
has been developed. The proposed method achieves trajectory
tracking of the 3D-printed cable-driven soft actuator by estab-
lishing a quasi-static model with a predefined boundary-
constrained adaptive neural controller. The method uses
Euler–Bernoulli quasi-static model feedback along with a
neural network technique to fit the dynamics of the actu-
ator and constrain the actuator trajectory error within pre-
defined bounds. Experimental results show that the tracking
error of the soft actuator converges to within the predefined
constraints. The potential of the predefined boundary control
theory for the control of soft actuators has been demonstrated.
In future work, we will consider the design of control methods
for various flexible actuators made by 3D printing with pre-
scribed performance constraints that match their characterist-
ics. To leverage the flexibility advantages of soft robots, efforts
are underway to design and test soft actuators with higher
aspect ratios.
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