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A B S T R A C T   

High-power white light-emitting diodes (LEDs) have demonstrated superior efficiency and reliability compared 
to traditional white light sources. However, ensuring maximum performance for a prolonged lifetime use pre-
sents a significant challenge for manufacturers and end users, especially in safety–critical applications. Thus, 
identifying functional anomalies and predicting the remaining useful lifetime (RUL) is of enormous importance 
in the operational longevity of the device. To address such challenges, this study proposes a combination of 
distance-based Mahalanobis distance (MD), entropy generation rate (EGR), and deep learning models for 
improved anomaly detection and RUL prediction accuracy. Unlike conventional health indicators based on lu-
minous flux data that are challenging to monitor relevant optical performance, the MD and EGR methods are 
employed to extract in-situ monitored thermal and electrical data as new health indicators. Long short-term 
memory recurrent neural networks (LSTM-RNN) and convolutional neural networks (CNN) are established to 
detect anomalies and predict the RUL. The accelerated degradation tests of 3 W high-power white LED have been 
conducted, and the online and offline collected experimental data are deployed for model development and 
performance evaluation. The performance of the proposed methods is compared against the Illuminating Engi-
neering Society of North America (IESNA) TM-21 method. The results indicate that LSTM-RNN, when combined 
with either MD or EGR, can detect anomalies with significantly fewer data (70 %) than is typically required. 
Furthermore, a significant improvement in prediction accuracy in RUL prediction based on MD and EGR- 
constructed time series health indicators and employed with the LSTM-RNN model demonstrates the effective-
ness of the proposed methods.   

1. Introduction 

Coupled with their superior efficiency, reliability, and versatility, the 
high-power white light-emitting diodes (LEDs) have shown an increased 
market demand and a wide range of applications, including general 
lighting, aerospace lighting, automotive lighting, medical applications, 

and communication devices (Ibrahim et al., 2020; Pode, 2020; Schubert 
& Kim, 2005). However, ensuring maximum performance over a long 
lifetime of use presented a significant challenge for manufacturers and 
end users, especially in safety–critical applications. Thus, identifying 
operational anomalies and predicting the remaining useful lifetime 
(RUL) is of enormous importance in the functional longevity of the 
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device and has become one of the critical issues in the field of solid-state 
lighting (Driel & Fan, 2013; Ibrahim et al., 2021a; Wang, 2021). 

Prognostics and health management (PHM) has become an emerging 
research topic getting much attention. It permits the health state 
assessment (reliability) of a component or complex system in its actual 
working condition and helps make the right decision in maintenance 
(Hu et al., 2022). Specifically, the purpose of prognostics is to monitor 
the state of health of a product, detect anomalies, and predict RUL based 
on the extent of deviation from its expected state of health under the 
conditions it is expected to be used (Wiley & Leong Gan, 2020). Existing 
literature categorizes the prognostics approach into physical model- 
based, data-driven, and hybrid/fusion methods (Chang et al., 2018; 
Ibrahim et al., 2022; Sun et al., 2017). The physical model-based 
approach involves understanding the physics of the failure mechanism 
and using this knowledge to formulate a mathematical model that 
captures the degradation trajectory of components or systems. However, 
this approach may not be practical when the physical processes are 
poorly understood or when multiple failure modes are present. 

On the other hand, a data-driven approach uses operational and non- 
operational historical data and information collected from condition 
monitoring installed sensors to determine anomalies and predict future 
health without using any particular physical model (Si et al., 2011; Tsui 
et al., 2015). The performance of a data-driven approach in detecting 
anomalies and predicting RUL depends on having sufficient high-quality 
data and selecting the appropriate algorithms and techniques for data 
processing and modelling. Thus, data-driven approach can be a valuable 
alternative where physical models are difficult to develop or validate. 
Anomaly detection is always an essential and inevitable task for critical 
components in complex engineering systems. Various studies have re-
ported the applications of conventional machine learning and deep 
learning models to detect anomalies in multiple domains (Li et al., 2019; 
Moallemi et al., 2021; Zhao et al., 2010). In the case of anomaly 
detection of LED products, Fan et al. (2012) used the Weibull statistical 
model to detect chromaticity shift anomalies. A similar study using 
forward voltage, drive current, and case temperature to detect anoma-
lies in high-power white LEDs has also been reported (Fan et al., 2015a). 
Park and Ko (2021) also proposed an unsupervised learning-based in-
spection method for anomaly detection that requires unlabeled data 
with a micro-LED chip defect inspection dataset. 

The prognostics and health management process typically involves 
fault diagnosis or RUL predictions after anomaly detection. Similar to 
anomaly detection, several studies have reported using conventional 
machine learning and deep learning models to predict RUL across 
different domains, including batteries, LEDs, power devices, semi-
conductor lasers and aero-propulsion systems (Abdelli et al., 2022b; 

Abdelli et al., 2022a; Chen et al., 2019; Chen et al., 2020; Ibrahim et al., 
2023; Jing et al., 2020; Khelif et al., 2017; Qian et al., 2021). In the RUL 
prediction domain of LED products, Ibrahim et al. (2019) and Fan et al. 
(2021) proposed the Gamma process model, Ibrahim et al. (2021b) 
employed a Bayesian methods combined with the Monte Carlo Markov 
Chain and Fan et al. (2015b) proposed a particle filter method for high- 
power white LEDs. Liu et al. (2019) employed two artificial neural 
networks to get the temperature distribution and the lifetime for a multi- 
chip high-power LED light source. Jing et al. (2020) fitted the radiation 
flux data of ultraviolet LEDs with the LSTM-RNN algorithm. These 
proposed methods have been compared with the Illuminating Engi-
neering Society of North America (IESNA) TM-21 method, which 
demonstrated advantages in accuracy and robustness. 

Various parameters have been used as LED health indicators, 
including photometric, colorimetric, radiometric, geometric, electrical, 
thermal, and others (Li et al., 2020). Photometric and colorimetric pa-
rameters are widely used for LED health indicators, where the most 
critical parameter is the lumen maintenance (LM) data. In addition, 
electrical and thermal parameters such as forward voltage, drive cur-
rent, and case and junction temperatures can be used in PHM. Param-
eters such as those mentioned above are often used to characterize LED 
degradation and are synthesized from actual field data or accelerated 
aging test data. Photometric and colorimetric data are generally the 
most intuitive indicators of LED degradation (Li et al., 2020). They are 
typically obtained through integrating spheres, which is a great deal of 
inconvenience for manufacturers and users to achieve real-time moni-
toring. On the other hand, sensors can monitor electrical and thermal 
parameters in situ but are less direct. Overall, achieving efficient in-situ 
monitoring and establishing effective health indicators are essential to 
anomaly detection for high-power white LEDs. However, literature 
shows that most studies involving anomaly detection and RUL predic-
tion of high-power white LED rarely consider establishing proper health 
indicators, which is critical for data-driven diagnostics and prognostics. 
Cuadras et al. (2017) proposed that optical degradation is related to 
thermodynamic entropy, which simultaneously considers the input 
electrical power, the temperature, and the optical efficiency and 
compared the thermoelectrical results with the optical light emission 
evolution during degradation. However, entropy generation rate (EGR) 
is a suggestive approach because LEDs’ performance highly depends on 
operating temperature. Fan et al. (2015a) stated that the Mahalanobis 
distance (MD)-based anomaly detection approach could provide an 
early anomaly warning at around 45 % of the lifetime before actual 
failure happens in all test LEDs evaluated. As a preliminary attempt, our 
research team proposed (Wen et al., 2021) a method of EGR with Wei-
bull distribution and LM with Back Propagation Neural Network for 

Fig. 1. The accelerated degradation test design with (a) an in-situ monitoring system and (b) a PCB test board.  
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high-power white LED anomaly detection and RUL prediction. Yet, the 
prediction accuracy achieved was not significant. 

This study proposes distance-based MD and entropy-based EGR 
models coupled with LSTM-RNN and CNN to improve anomaly detec-
tion accuracy and RUL prediction of high-power white LEDs. Compared 
to the previous study, our proposed approach’s most significant 
contribution is detecting anomalies with considerably less data and 
achieving equivalent RUL prediction accuracy with 15 % less training 
data. This demonstrates the effectiveness of our proposed approach in 
providing an early estimate RUL with comparable prediction accuracy. 

The procedure implemented is described as follows: first, the signifi-
cance of MD and EGR in extracting in-situ monitored thermal and 
electrical data as new health indicators were demonstrated. A new 
anomaly threshold point was then defined using the LSTM-RNN model. 
Using the established threshold as a starting point for RUL prediction, 
both LSTM-RNN and CNN models were used to estimate RUL. Finally, 
the accuracy of the two proposed methods’ prediction was compared 
against the IESNA TM-21 standard recommendation. The remaining 
parts of this paper are organized as follows: Section 2 introduces the 
accelerated degradation test setup and data collection for a 3-W high- 
power white LED. Section 3 presents the proposed methodology and 
models for anomaly detection and RUL prediction. Section 4 reveals all 
results of the proposed methods and detailed discussion, followed by the 
concluding remark drawn in section 5. 

2. Accelerated degradation test and data collection 

This section introduces the test samples, experimental setup, and 
data collection strategy employed in the accelerated degradation tests. 
The type of LED used in this study is a 3 W high-power white LED light 
source from Avago Technologies (ASMT-JN31-NTV0) with rated driven 
current Ir = 350 mA and forward voltage VF = 3.2 V (Boroadcom, 2009). 
The white LEDs used are InGaN-based and phosphor-converted. The 
accelerated degradation test design is described as follows: A DC power 
supply (Agilent E3611A) provides a constant current (Ic = 200 mA) to 
the test samples. Long-term high-temperature accelerated aging was 
achieved by maintaining a constant aging temperature (Ta = 90 ◦C). 
Gigahertz-Optik BTS256-LED tester was used to collect photometric and 
colorimetric data every 23 h for a total of 71 cycles (1633 h) to calculate 
lumen maintenance (LM) and color shift for the LEDs (Fan et al., 2015a). 

As shown in Fig. 1(a), the electrical and thermal data, including 
forward voltage, drive current, and case temperature collected from the 
solder joint, were in-situ monitored by an Agilent-34970A data acqui-
sition. The PCB test board was designed as shown in Fig. 1(b). The set-
tings related to the experimental test protocol are shown in Table 1. 
Another thing to keep in mind is that, even though a total of 16 samples 
were tested, only the data from 9 of them met the criteria for the study in 

Table 1 
Experimental Test Protocols.  

Test samples Number of 
samples 

Data collection frequency Online data Offline data 

16 1 h/cycle for online data 
23 h/cycle for offline data a total of 
1633 h 

Forward voltage,  
Drive current, Case 
temperature 

Lumen maintenance, Spectra power distribution and Color 
coordinates  

Fig. 2. The flowchart of the proposed methodology implemented in this study.  

Table 2 
The steps of the MD approach.  

Algorithm 1: Calculating MD values. 

Input: the in-situ monitored data during the accelerated degradation tests in the 
matrix X. /*p,m is the number of row and column size. */ 

Output: MD values MDj 

1: when i < p, do 
Calculating the overall mean Xi and the standard deviation si. (-> Xi and si) 

2: end when 
3: for Xij in matrix X, do 

Performing z-score normalization. (-> ZT
j and Zj) 

4: end for 
7: if p > m, then 
8: for Xi in matrix X, do 

Calculating the covariance matrix C. (-> C and C− 1) 
ZT

j , C− 1 and Zj do multiplication to obtain the MD values. ((ZT
j , C− 1, Zj) ->MD) 

9: end for 
10: end if 
11: return MD  

Fig. 3. LED electrical model.  
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this paper because the lumen maintenance data from 7 of them did not 
degrade as anticipated. 

3. Methodology and model implementation 

The flowchart for the proposed methods and implementation process 
is described in Fig. 2. First, we conducted an accelerated degradation 
test for high-power white LED with an in-situ monitoring design. The 
electrical and thermal parameters were monitored online every hour, 
and the optical and colorimetric data were collected offline. The data 
collected are pre-processed to remove noise and handle missing data. 
Sequential health indicators are constructed using MD and EGR ap-
proaches and are normalized and standardized to ensure the relevancy 
of data points for prediction. Secondly, the time series of the health 
indicators were modeled using LSTM-RNN models with different 
amounts of training data. The results of the LSTM-RNN model were 
evaluated with RMSE and training time to determine the minimum 

amount of data required for anomaly detection, thereby establishing a 
threshold point for the prediction of RUL. Finally, the RUL of the devices 
was estimated using the LSTM-RNN and CNN models. The performances 
of the proposed methods were compared against the conventional 
IESNA TM-21 industrial standard. 

3.1. Health indicator extraction with in-situ monitored data  

(I) Distance-based approach 

Since MD has the advantage of condensing a multivariate system into 
a monolithic system and detecting anomalies based on the correlation of 
several parameters, they have been widely employed in monitoring the 
gradual degradation of electronic machinery and identifying anomalies 
before their occurrence (Ji, 2021). Mathematics and statistics have long 
used MD for dimension reduction. It provides an efficient method of 
calculating similarity among sample sets while considering variable 
correlation without regard to the measurement scale. As Fan et al. 
(2015a) indicated, MD could detect anomalies in all test LEDs at around 
45 % of the lifetime before they failed. 

The pseudo-code for the MD process is shown in Table 2, and a 
detailed procedure of the MD process used in this study is described as 
follows:  

(i) The in-situ monitored data (forward voltage X1, driven current 
X2, and case temperature X3) during the accelerated degradation 
tests are represented by the matrix X: 

X =

⎡

⎣
X11 ⋯ X1m
⋯ Xij ⋯
Xp1 ⋯ Xpm

⎤

⎦ (1) 

The row vectors represent the data collected at the current time, and 
the column vectors represent the data for one performance parameter 
collected from the beginning to the end. Where, p denotes time spent for 
in-situ monitoring and i = 1,2,⋯,p, and m denotes the number of per-
formance parameters and j = 1,2,⋯,m. In this work, p = 1633 and m =

3. 

Fig. 4. Histograms of healthy MD and EGR for test LED 8# before and after the transformation.  

Table 3 
The steps of IESNA TM-21 standard.  

Algorithm 2: The IESNA TM-21 standard 

Input: the offline LM data of LED light sources and project long-term lifetimes. 
Output: the fitting curves and L70 or L80 

1: Data pre-processing: calculating the average values of LM data for all samples, LM =
{LM1,LM2,⋯,LMt}. 

2: Assuming LM = βexp( − αt), that is, a linear fit to lnLM and t,LM′ = mt + b 
3: for i = 1, in t, do 

LM′ = lnLM 
5: end for 
6: Nonlinear least squares regression 

for i = 1, in t, do 
sumt = sumt(the initial value is 0)+ ti 
sum’ = sum’(the initial value is 0)+ LM’

i 

sumt’ = sumt’(the initial value is 0)+ t*LM’
i 

sumt2 = sumt2(the initial value is 0)+ t*t 
end for 

m = (t*sumt′ − sum′*sum′)/(t*sumt2 − sumt*sumt)
b = sumt′/t − m*sumt/t 

7: β = exp(b), α = − m 
8: Calculating L70 and return L70  

M. Wen et al.                                                                                                                                                                                                                                    
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(ii) The overall mean Xi of each sample and the standard deviation si 
are as given in Equation (2) and (3): 

Xi =
1

m − 1
∑m

j=1
Xij (2)  

Si =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑m

j=1

(
Xij − Xi

)2

m − 1

√
√
√
√
√

(3)   

(iii) Perform z-score normalization and calculate the covariance ma-
trix C according to Equation (4) and (5): 

Zij =

(
Xij − Xi

)

Si
(4)  

C =
1

m − 1
∑m

j=1
ZjZT

j (5)    

(iv) MD values could be calculated with Equation (6): 

MDj =
1
p

ZT
j C− 1Zj (6) 

In this work, we calculate the results from each sample point to the 
center of the data.  

(II) Entropy-based approach 

The existing LED reliability model has not established a clear rela-
tionship between degradation parameters (Cuadras et al., 2016). En-
tropy from thermodynamics is considering the input electric power, 

Fig. 5. The process of LSTM-RNN for anomaly detection and RUL prediction.  

Table 4 
The steps of LSTM-RNN model training.  

Algorithm 3: LSTM-RNN model training algorithm 

Input: the health indicators with in-situ monitored data during the accelerated 
degradation tests. 

Output: the prediction values of the health indicators after the setting start point for 
prediction. 

1: Data pre-processing: standardization and normalization. 
2: Data segmentation to convert time series into training and test sets for supervised 

learning. 
3: Stage 1: Setting LSTM-RNN model to train datasets. 

Add data to the neuron cell in order. 
Add the batch and slide window size to the model. 
Set the loss and optimizer functions. This model uses the RMSE loss function and the 
Adam optimizer. 
Delete the internal state and reset the epoch end to ensure the combination between 
each epoch. 
Add the output of each cell and restore the optimal model parameters. 

4: Stage 2: Predicting RUL by LSTM-RNN mode. 
5: for t = 1, m do: 

Callback the previously trained model. 
Calculate the probability of forgetting the t-1th hiding cell state f(t). 
Calculate the current input i(t) and update the cell state C(t) . 
Calculate the output O(t) according to window size. In this model, use 0-60th data to 
prediction 61st values. 
Restore the output data and convert the results into the array. 
Invert the predicted data to keep the same form as the original data. 

6: end for 
7: Evaluate the training time and RMSE 
8: return the LSTM-RNN model  

M. Wen et al.                                                                                                                                                                                                                                    



Expert Systems With Applications 238 (2024) 121832

6

temperature, and optical efficiency. It has been applied to mechanical 
(Basaran et al., 2003) and electrical (Amiri & Modarres, 2014) damage 
characterization. Cuadras et al. (2016) suggested that LED degradation 
is related to thermodynamic entropy. A typical model of an LED is 
illustrated in Fig. 3. The ideal diodes represent diffusion (Id) and non- 
radiative recombination (Ir nr). Rs and Rp are the dissipative elements, 
and Ilight stands for light emission. A thermodynamic approach to the 
LEDs’ failure can be described by introducing the first and second laws 
of thermodynamics as follows (Grundmann, 2006): 

dEin = dW + dQ+ dEirr (7)  

Ṡ = Ṡe + Ṡi (8) 

With 

Ṡi ≥ 0 (9) 

The dot over the variable represents a time derivative, i.e., Ṡi =

dS/dt. In Equation (10), Ein is the electrical input energy delivered to the 
LED; W is the light emitted energy; Q is the dissipated heat; and Eirr is the 
energy devoted to causing irreversible damage. In Equation (8), sub- 
indices e and i refer to external (entropy exchange) and internal en-
tropy (entropy generation), respectively. 

Input energy Ein is usually expressed in terms of the total input 
injected power P 

Ein =

∫

Pdt =
∫

VLEDILEDdt (10) 

where ILED and VLED are the current and voltage drop between the 
external terminals, as shown in Fig. 3. Input power is split into light 
emission and dissipative terms. 

Heat dissipation about the resistances due to the Joule effect is 
depicted in Fig. 3: 

Qd = RsI2
LED +

V2
D

Rp
(11) 

For commercial display LEDs, wall-plug efficiency (ratio of input 
energy (in W) to output energy (in W) is small) is less than 0.1 %, and Eirr 

form is unknown at present. In terms of entropy generation rate, Ṡi =

dS/dt, for electrical systems, it is commonly written as: 

Ṡ =
P
T
=

VLED*ILED

Tj
(12) 

After collecting the original in-situ monitored data, we calculated 
their MDs and EGRs values according to Equations (6) and (12). How-
ever, as demonstrated in Fig. 4 with sample LED#8, the histogram of all 
data does not follow a normal distribution. Therefore, a typical trans-
formation of the original data is needed. Exponential, logarithmic, and 
power transformations are usually used to deal with kurtosis and 
skewness to achieve data normalization. 

In the preliminary preparation, we performed multiple standard 
normal transformations (BOX-COX, logarithmic, square root, square 
root inverse sine, square, and inverse transformation) of MD and EGR 
data. It is found that the BOX-COX transformation for MD data makes 
the MD data compliant with the standard and normal distribution, and 
the logarithmic conversion for EGR data is more compliant. Therefore, 
we perform a power transformation (Box-Cox transformation) on the 
MD data (Fan et al., 2015a) and a logarithmic transformation on the EGR 
data. The Box-Cox transformation is calculated as follows: 

y(λ) =
{ (

yλ − 1
)/

λ; λ ∕= 0
logy; λ = 0 (13) 

Where y(λ) is the new variable obtained after Box-Cox trans-
formation; y is the original continuous dependent variable; λ is a 
transformation parameter. 

The logarithmic transformation is calculated as follows: 

y′ = lny, y > 0 (14) 

Where y′ and y are the values before and after logarithmic 
transformation. 

Fig. 6. The 1D CNN model architecture.  

Table 5 
The steps of 1D CNN model training.  

Algorithm 4: CNN model training algorithm 

Input: the health indicators with in-situ monitored data during the accelerated 
degradation tests. 

Output: the prediction values of the health indicators after the setting start point for 
prediction. 

1: Data pre-processing: standardization and normalization. 
2: Convert 1D time series into more samples with training and test sets. 
3: Stage 1: Setting 1D CNN model to train datasets. 

Add data after segmenting to the input layer in order. 
Set timesteps and features. This model’s timestep size is set to 60, and the feature 
size is 1. 
Add the 1D convolutional, pooling, and full-connection layers. In the 1D 
convolutional layer, window length*1 kernel and tanh activation are used, and the 
parameter is calculated: 
In the full connection layer, liner activation is used. 

7: Set the loss and optimizer function. In this model, the loss function is set to RMSE 
and the optimizer is adam with its parameter tuned. 

8: Add the output of each cell and restore the optimal model parameters. 
9: Stage 2: Predicting time series by 1D CNN model. 
10: Obtain the vector a1 according to P and the edge of the time series. 
11: Initial the parameters of hiding layers W and b. 
12: for l = 2toL − 1, do: 

Callback the previously trained model. 
Calculate the output of the current layer. 

13: end for 
18: Store the output of the whole 1D CNN model 
19: Evaluate the training time and RMSE 
20: return the 1D CNN model  
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3.2. Anomaly detection and RUL prediction  

(I) The IESNA TM-21 standard 

The IESNA released the standard IES-21–11 to predict the lumen 
lifetime for LED light sources based on the lumen maintenance data 
collected from the IES LM-80–08 test report. The TM-21 standard is 
commonly used in the lighting industry to deal with the LM of LED light 
sources and project long-term lifetimes. Among the two failure thresh-
olds, LEDs LM decay to 80 % and 70 % of the initial value; 70 % is 
adopted for this study. The pseudo-code for the TM-21 standard is shown 
in Table 3, and the specific process of the IESNA TM-21 method is 

explained as follows (IESNA, 2011):  

(i) Normalize the luminous flux data of LEDs and take the average 
value to obtain the mean LM of all samples.  

(ii) Use the nonlinear least squares regression method to curve-fit the 
mean LM data according to Equation (15): 

LM(t) = βexp( − αt) (15) 

where LM(t) is the LM data; β is the initial coefficient of curve fitting, 
and α is the derived coefficient of curve fitting, α> 0; t is operation time 
in the aging process. Here, parameters α and β are estimated from his-
torical (or experimental data) using the least-squares regression method.  

(iii) Perform the logarithmic transformation on Equation (15) to 
obtain the lifetime prediction model. The results of L70 in Equa-
tion (16) is the lifetime when the white LED’s LM decays to 70 % 
of the initial value. 

L70 = ln(β/0.7)/α (16)    

(II) LSTM-RNN Model 

Standard RNNs are inefficient for learning long-term dependencies 
along degradation patterns due to the network vanishing gradient. 
Hochreiter and Schmidhuber (1997) introduced the LSTM-RNN model 
to overcome the shortcomings of long-term dependencies in RNN. This 
model has been applied to various sequence learning tasks, including 
handwriting recognition, speech recognition, and sentiment analysis. As 
described earlier, the application of LSTM-RNN is also extended to PHM 
of batteries (Catelani et al., 2021; Wong et al., 2021), bearings (Hinchi & 
Tkiouat, 2018), traffic prediction (Abduljabbar et al., 2021), and other 
products. LSTM is a special RNN with a gate structure, which is the key 
to updating or discarding the output data through the logic control of 
gate units. It overcomes the shortcomings of traditional RNN, such as the 

Fig. 7. The LSTM-RNN prediction on transformed MD values of test sample LED#8 with different training datasets.  

Fig. 8. The MD-LSTM-RNN training results with training time and RMSE.  
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excessive influence of weights, gradient vanishing, and explosion. 
Furthermore, it allows the network to converge faster to help effec-

tively improve prediction accuracy. Based on the historical health in-
dicator data of LEDs, the relationship between the effect of the LED 
performance degradation and the health indicators should be continu-
ously explored, and the corresponding dynamic indexes should be 
established based on this effect. The process of the LSTM-RNN model for 

anomaly detection and RUL prediction proposed in this study and the 
unit network structure is shown in Fig. 5. Internal state (C) is a key to 
LSTM-RNN, which is considered as the heart of each time series 
sequence and as a self-connected recurrent edge with fixed unit weight. 
It can be regarded as a carrier to which information has been added or 
from which it has been removed. A distinctive structure of this approach, 
known as gates, carefully regulates the flow of information. In doing so, 

Fig. 9. Anomaly detection results with transformed MD values of all test samples.  

Fig. 10. The LSTM-RNN prediction on transformed EGR values of test sample LED#8 with different training datasets.  
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it decides which information should pass through and which should not. 
It is a sigmoidal unit that is activated from the current input layer x(t) as 
well as from the hidden layer at the previous time step. The forget gate 
(f c) is a sigmoid layer that decides the information needs to be dis-
carded. It takes health indicator inputs of x(t) and h(t− 1) and outputs a 
number between 0 representing the value to be discarded and 1 repre-
senting the value to be retained for each internal state C. The discarded 
information can be the outliers, noises, and redundant information of 
degradation data among adjacent cycles. The forget gate is calculated as 
Equation (17): 

f (t) = σ
(
WfXx(t) + Wfhh(t− 1) + bf

)
(17) 

In this work, the input data are all one-dimension time series. The 
input gate and input node decide what new information will be stored in 
the internal state. This step has two parts: first, a sigmoid layer called the 
“input gate”, ic, decides which values to update; then, a tanh layer called 
the “input node”, gc, creates a vector of the new candidate state ĉ(t)

which could be added to the state. 

i(t) = σ
(
WiXx(t) + Wihh(t− 1) + bi

)
(18)  

g(t) = tanh
(
WgXx(t) + Wghh(t− 1) + bg

)
(19) 

Combining (17)–(19) to update the previous internal state C(t − 1) 

into the current state c(t) as shown in: 

C(t) = g(t)*x(t) + f (t)C(t− 1) (20) 

Finally, there is a sigmoid layer called the “output gate”, O(t), which 
determines what information to output. After putting the internal state C 
through a tanh layer, it is multiplied by the output of the sigmoid gate to 
obtain the remaining state value. This can be implemented as: 

o(t) = σ
(
WoXx(t) + Wohh(t− 1) + bo

)
(21)  

h(t) = tanh
(
C(t) )*O(t) (22) 

Where W and b values are learnable parameters corresponding to the 
layer weights and biases, respectively. After the model has been trained, 
weight optimization is required to reduce loss and error, and the optimal 
parameters are then stored and used to validate the new model. The test 
dataset is fed into the optimal parameter model to obtain optimized 
data. 

Fig. 11. The EGR-LSTM-RNN training results with training time and RMSE.  

Fig. 12. Anomaly detection results with transformed EGR values of all test samples.  
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In this study, all model configuration and simulation are carried out 
using Python 3.8 version on Windows 10 personal computer built with 
an Intel Core i5-6200U processor (4 MB cache, up to 2.40 GHz), and a 
graphic card of Intel HD Graphics 520 at 4 GB. Accordingly the pa-
rameters are used in developing the set for the model are listed: (i) the 
window size = 60; (ii) the activation function is tanh, and when in 
output fully-connected layers, the activation function is linear; (iii) the 
regularization rate (dropout) for each layer is set 0.2 to avoid over-
fitting; (iv) RMSE is selected to calculate prediction errors; (v) batch size 
= 100; (vi) the optimization method is Adam, and the learning rate is set 
the default values 0.001; (vii) the RMSE and training time are used as the 
indicators of model performance evaluation. The pseudo-code for LSTM 
recurrent neural network model is shown in Table 4.  

(III) 1D CNN model 

CNN can be seen as a modification of traditional neural networks, 
which use a hierarchical network structure capable of learning many 
mapping relations. As illustrated in Fig. 6, 1D CNN for RUL prediction 
comprises the input (LM time series) layer, convolution layer, pooling, 
fully connected layer, and output layer. We opted to use the tanh func-
tion as the activation function in convolutional layers and the linear 
function in the fully connected layer. Convolutional neural networks are 
mainly used for image recognition tasks, which usually involve 2*2 
convolution to extract meaningful features from the input images or 
videos. In this work, the input data is one-dimensional. After each 
convolution layer, a batch normalization technique is applied to 
improve the performance and stability of the CNN mode. The pooling 

layer reduces the model dimensionality by scaling the data in the upper 
layer, keeps the data features scaled invariant, and prevents the data 
from overfitting. Finally, the output layer is fully connected. 

Moreover, the stride sizes in the convolutional and pooling layers are 
artificially set to 1. We used the adaptive moment estimation (Adam) 
optimizer as a preferred choice of optimizer as it has a combined 
advantage of root mean square propagation (RMSProp) and adaptive 
gradient algorithm (AdaGrad) techniques. The Adam optimizer is 
applied with a learning rate of 0.001. Then, in the training process, these 
parameters are updated based on a gradient descent algorithm and mean 
square error loss function. A pseudo code and flowchart of the 1D CNN 
model for RUL prediction is shown in Table 5 and Fig. 6 respectively. 
The parameter in convolutional layers is calculated based on Equation 
(23): 

N =
W − F + 2P

S
+ 1 (23) 

Where N is output size, W is the number of inputs, F is the number of 
convolutional kernels, S is the number of steps (stride), and P is the 
padding value; i.e., in our dataset, W = 1633, F = 2, P = 1, and S = 60, N 
= 28. 

The following three cases should exist for the output of the current 
layer: when the layer is convolutional layer, the output is obtained ac-
cording to Equation (24); when is pooling or full connection, it is by 
Equation (25) and (26), respectively. 

al = σ
(
al− 1*Wl + bl) (24)  

Fig. 13. The LM RUL prediction results of all test samples with different MD-LSTM-RNN anomaly detections.  
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al = pool
(
al− 1) (25)  

al = σ
(
Wlal− 1 + bl) (26) 

where σ is the activation function. 
Finally, the output of the whole model output layer is given in 

Equation (27): 

al = softmax
(
Wlal− 1 + bl) (27)  

4. Results and discussion 

4.1. In-situ anomaly detection results and discussion 

To reduce the computational overhead and improve the accuracy of 
the network model, we normalized and standardized the input data. 
Then, we defined the same window length of 60 for the input data points 
in both MD and EGR approaches. Accordingly, 0-60th input data se-
quences were used to predict the 61st value. Finally, the predicted re-
sults are compared against the actual values.  

(I) MD-LSTM-RNN 

The training data was selected as gradually decreased from 60 % to 
10 % of the total 1633 h. The LSTM-RNN prediction results of the LED 
8# MD values are displayed in Fig. 7, in which the black and red lines 
represent the transformed data, and the blue lines are the predicted 
results. The MD values generally increase but fluctuate slightly. A 

randomly selected nine sets of test samples were modeled with training 
data that was increased from 10 % to 60 %. 

Fig. 8 shows the MD LSTM-RNN model training results for all test 
samples. As the amount of training data gradually decreases to 30 %, the 
RMSE tends to stabilize. Thus, it was determined that 30 % of the overall 
data should be used for MD-based anomaly detection. Only 0–490 h of 
data is sufficient for the anomaly detection threshold. The anomaly 
detection thresholds defined as (μ-3σ or μ + 3σ) (Fan et al., 2015a) were 
calculated according to the mean (μ) and standard deviation (σ) values 
from the 0–490 h (0–30 %) MD values. Finally, anomalies were detected, 
and the starting point of the RUL prediction was determined for each of 
the nine test samples, as shown in Fig. 9. Although all the anomalies 
detected are concentrated between 600 and 700 h, there are rise and fall 
in the time anomaly noticed between samples. This issue is most likely 
due to sample variation.  

(II) EGR-LSTM-RNN 

Instead of BOX-COX transformation, the logarithmical trans-
formation was used in EGR data preprocessing. We followed a similar 
procedure as described in the above section. The LSTM-RNN prediction 
on transformed EGR values of test sample LED#8 with different training 
datasets is depicted in Fig. 10. EGR values generally exhibit a downward 
trend on the negative axis. As a result of substantial thermal energy 
being wasted during accelerated degradation tests, the EGR data dem-
onstrates a non-monotonic increase. 

Similarly, The EGR LSTM-RNN model training results for all test 
samples are shown in Fig. 11. The RMSE tends to stabilize as the amount 

Fig. 14. The LM RUL prediction results of all test samples with different EGR-LSTM-RNN anomaly detections.  
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of training data gradually decreases to 30 %. Therefore, 30 percent of 
the overall data should also be used for detecting anomalies using EGR. 
The anomaly detection thresholds were calculated according to μ-3σ or 
μ + 3σ from the 0–490 h (0–30 %) EGR values. Finally, we integrated the 
times the anomalies were detected of all 9 test samples into Fig. 12 
correspondingly. Compared with the results of the times when the MD- 
LSTM-RNN and EGR-LSTM-RNN detected the anomalies, it was found 
that most samples did not have many peaks and troughs, except for LED 
8#. With that, it was found that before the anomaly was detected, there 
were many discrete points and noisy values in LED #8, nevertheless we 
have not handled it when calculating, which might essentially affect the 
final anomaly threshold results. 

The above results indicate that using EGR and MD for LED anomaly 

detection significantly reduces the amount of accelerated degradation 
test data required. As demonstrated for high-power white LEDs, the EGR 
and MD health indicators can be used to detect LED degradation 
anomalies. However, the EGR-based approach detected anomalies 
earlier than the MD-based approach in a significant proportion of sam-
ples. This phenomenon does not indicate that EGR is more suitable than 
MD as a health indicator to characterize white LED degradation. It is 
widely known that the physical failure model of LEDs is so complex that 
there is no clear relationship between the performance degradation 
parameters. The EGR is simply the product of the relevant factors. 

4.2. RUL prediction results and discussion 

We used the anomaly detection time mentioned in Section 4.1 for 
RUL prediction. IESNA TM-21 considers lumen degradation as the most 
common failure mode of LED light sources (IESNA, 2011). The lumen 
maintenance L70 lifetime is defined as the operating time that 70 % of 
the luminous flux from its initial light output for general applications. 
Based on the anomaly detected times obtained from MD and EGR values 
of each sample, the LM data were imported into the CNN and LSTM-RNN 
models for RUL (L70) prediction, and the prediction errors were then 
calculated as compared to the actual L70 lifetimes. The RUL prediction 
results of the two models MD-LSTM-RNN and EGR-LSTM-RNN anomaly 
detections, are shown in Fig. 13 and Fig. 14, respectively. The results are 
compared against the CNN-based model and the IESNA TM-21 method. 
It can be noted that the CNN model has the least prediction accuracy 
(higher prediction error) results, followed by the IESNA TM-21 method, 
and the LSTM-RNN model is the best, regardless of the starting point of 
RUL prediction with MD or EGR. 

A summary of the results obtained by the IESNA TM-21 and other 
methods are listed in Table 6. Since the L70 lifetimes could not be ob-
tained from the prediction curves of the CNN, only L73, L74, or L75 life-
times are recorded here. A starting point with more data points for the 
prediction will also result in a lower prediction error. The results 
depicted in Fig. 13, Fig. 14, and Table 6 demonstrated that RUL pre-
diction based on LSTM-RNN provided better prediction accuracy than its 
counterpart CNN and IESNA TM-21. The essential difference between 
CNN and LSTM-RNN is the presence or absence of a memory function 
and the ability to associate. In LSTM-RNN, each time series sequence 
selectively forgets and discards the information from the previous 
moment to keep updating. Although CNN can recognize spatial corre-
lation in data, it does not perform as well with sequential data. In con-
volutional and fully connected layers of CNN, the weighted summation 
method is suitable for extracting local information, lacking in the before- 
and-after correlation of time series sequences. The IESNA TM-21 stan-
dard is a nonlinear least squares regression fitting with the data before 
the prediction start point. In this case, the LSTM-RNN model is more 
suitable for large-scale data. Another significant achievement of the 
LSTM-RNN model over the IESNA TM-21 methods is that it only needs 
some sequences with fixed lengths to make better predictions than 
IESNA TM-21 using all available data points. The proposed methods 
achieved equivalent prediction accuracy with 15 % less training data 
when compared to related works by Ibrahim et al. (2021b) and Fan et al. 
(2015b). In this work, to achieve a prediction error of 10 % or less, the 
minimum training data required for MD-LSTM-RNN or EGR-LSTM-RNN 
is 30 % of the experimental data. The comparison showed that the 
starting point of RUL prediction is about 20 % earlier than other studies. 
In other words, this study achieves a better prediction error with the 
premise that the RUL prediction is performed as early as possible. 

5. Conclusions 

In this study, the performance degradation of high-power white LEDs 
was evaluated by the in-situ monitored electro-thermal data from 
accelerated degradation tests. Since the most obvious indicator of LED 
degradation is lumen flux data, two new health indicator metrics, MD 

Table 6 
The LM prediction results and prediction error with MD and EGR-based health 
indicators.  

Test 
Samples 

Method L70 Prediction/h Prediction Error/% 

MD Health 
indicators 

EGR Health 
indicators 

MD Health 
indicators 

EGR Health 
indicators 

LED#1 Actual 1518 1518 – – 
IESNA 
TM-21 

1363 1363 − 10.2108 − 10.2108 

CNN L74 = 1610 L74 = 1610 6.0606 6.0606 
LSTM- 
RNN 

1564 1564 3.0303 3.0303 

LED#2 Actual 1380 1380 – – 
IESNA 
TM-21 

1170 1167 − 15.2174 − 15.2174 

CNN L74 = 1518 L74 = 1518 10 10 
LSTM- 
RNN 

1495 1587 8.3333 15.0000 

LED#3 Actual 1518 1518 – – 
IESNA 
TM-21 

1373 1373 − 9.5520 − 9.5520 

CNN L73 = 1587 L73 = 1587 4.5455 4.5455 
LSTM- 
RNN 

1610 1610 6.0606 6.0606 

LED#4 Actual 1449 1449 – – 
IESNA 
TM-21 

1181 1181 − 18.4955 − 18.4955 

CNN L73 = 1587 L73 = 1587 9.5238 9.5238 
LSTM- 
RNN 

1495 1495 3.1746 3.1746 

LED#5 Actual 1518 1518 – – 
IESNA 
TM-21 

1442 1442 − 5.0066 − 5.0066 

CNN L74 = 1587 L73 = 1587 4.5455 4.5455 
LSTM- 
RNN 

1518 1495 0 − 1.515152 

LED#6 Actual 1518 1518 – – 
IESNA 
TM-21 

1206 1206 − 20.5534 − 20.5534 

CNN L74 = 1610 L74 = 1610 6.0606 6.0606 
LSTM- 
RNN 

1449 1449 − 4.5455 − 4.5455 

LED#7 Actual 1518 1518 – – 
IESNA 
TM-21 

1339 1340 − 11.7918 − 11.7260 

CNN L74 = 1610 L76 = 1610 6.0606 6.0606 
LSTM- 
RNN 

1449 1564 − 4.5455 3.0303 

LED#8 Actual 1426 1426 – – 
IESNA 
TM-21 

1302 1302 − 8.6957 − 8.6957 

CNN L74 = 1518 L73 = 1587 6.4516 11.2903 
LSTM- 
RNN 

1380 1541 − 3.2258 8.0645 

LED#9 Actual 1518 1518 – – 
IESNA 
TM-21 

1520 1534 0.1318 1.0540 

CNN L74 = 1564 L75 = 1633 3.0303 7.5758 
LSTM- 
RNN 

1610 1610 6.0606 6.0606  

M. Wen et al.                                                                                                                                                                                                                                    



Expert Systems With Applications 238 (2024) 121832

13

and EGR, were proposed and feature-extracted by LSTM-RNN to achieve 
in-situ early anomaly detection. After the timely anomaly detection, the 
threshold was used as the starting point to perform RUL prediction. With 
only 30 % of the experimental data, the proposed methods achieved a 
10 % prediction accuracy, an improvement of 15 % over the related 
works. The EGR-based and MD-based approaches as health indicators 
constructors for LED anomaly detection have been shown to signifi-
cantly reduce the amount of accelerated degradation test data required, 
providing a viable solution to achieve dynamic LED failure diagnosis. 
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