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Abstract: In space gravitational wave detection missions, the laser heterodyne interference signal
(LHI signal) has a high-dynamic characteristic due to the Doppler shift. Therefore, the three beat-notes
frequencies of the LHI signal are changeable and unknown. This may further lead to the unlocking of
the digital phase-locked loop (DPLL). Traditionally, fast Fourier transform (FFT) has been used as a
method for frequency estimation. However, the estimation accuracy cannot meet the requirement of
space missions because of the limited spectrum resolution. In order to improve the multi-frequency
estimation accuracy, a method based on center of gravity (COG) is proposed. The method improves
the estimation accuracy by using the amplitude of the peak points and the neighboring points of the
discrete spectrum. For different windows that may be used for signal sampling, a general expression
for multi-frequency correction of the windowed signal is derived. Meanwhile, a method based on
error integration to reduce the acquisition error is proposed, which solves the problem of acquisition
accuracy degradation caused by communication codes. The experimental results show that the
multi-frequency acquisition method is able to accurately acquire the three beat-notes of the LHI signal
and meet the requirement of space missions.

Keywords: frequency acquisition; space gravitational wave detection; laser heterodyne interference;
Doppler shift

1. Introduction

Gravitational wave detection in space is based on laser heterodyne interferometry [1].
By measuring the phase change of the LHI signal, the distance change information between
different satellite test masses can be calculated [2], so as to achieve gravitational wave signal
inversion. However, because the displacement change caused by the gravitational wave
signal is very weak, many other functions need to be implemented to ensure the measurement
accuracy, for example, inter-satellite ranging and communication, and pilot tone jitter correc-
tion [3]. Therefore, the components of the LHI signal are very complicated, including the main
carrier beat-note (carrier beat-note), two clock sideband beat-notes (two side beat-notes or side
beat-notes), communication codes, and various noises [4]. The distance change information
can be obtained by measuring the phase changes of three beat-notes.

The phasemeter is the payload for high-accuracy phase measurement [5]. The phaseme-
ter applies the principle of the digital phase-locked loop to measure the phase change of
three beat-notes. However, due to the relative speed between spacecraft, when the laser
travels from one spacecraft to another, the Doppler shift [6,7] will shift the frequencies
of three beat-notes. Take the LISA as an example [1,2,7]: the frequency range can reach
9 MHz [3], resulting in unknown frequencies of three beat-notes. This may lead to the
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locking time of the digital phase-locked loop being too long, or even out of lock [8], which
will lead to phase information errors. Therefore, before measuring the phase, it is necessary
to accurately calculate the frequency of the three beat-notes.

The design of the LISA frequency acquisition algorithm for the carrier beat-note was
based on FFT [3]. However, due to the picket fence effect and spectrum leakage of the
discrete spectrum [9,10], the frequency error is large [11], and can not meet the requirements
of high accuracy. Taiji Plan is a space gravitational wave detection plan proposed by China
Academy of Sciences. In the Taiji plan, the current set frequency acquisition accuracy is not
less than 30 Hz, and this index may be further improved in the future.

In the fields of harmonic detection [12] and power systems [13–15], the interpolated
discrete Fourier method has been proposed to analyze exponential signals and estimate
frequency [16]. Additionally, the accuracy of frequency estimation is further improved by
different interpolation methods [17–20]. However, these methods are difficult to realize and
take up a lot of resources. In addition, based on discrete wavelet packet transformation [21],
all-phase [22], decomposition filtering-based dual-window correction algorithms [23], auto-
correlation [24], and neural network methods [25], the frequency estimation can be realized.
The influence of white noise on frequency estimation has also been analyzed [26,27]. No-
tably, the COG method is often use for position measurements [28,29]. The real position of
the discrete spectrum peak can be obtained by the amplitude ratio of the discrete spectrum.
Therefore, applying the COG method after FFT can estimate frequencies. Compared with
other methods, the COG method has the characteristics of easy implementation and simple
operation, but the estimation accuracy is easily affected by communication codes or noises.

We therefore propose a high-accuracy multi-frequency acquisition method based on the
COG method. The method improves the estimation accuracy by using the amplitude of the
peak points and the neighboring points of the discrete spectrum. For different windows that
may be used for signal sampling, a general expression for multi-frequency correction of the
windowed signal is derived. Meanwhile, a method based on error integration to reduce the
acquisition error is proposed, which solves the problem of acquisition accuracy degradation
caused by communication codes. The proposed method is implemented in VHDL based on
the Field Programmable Gate Array (FPGA) platform and experimentally verified.

The structure of the paper is as follows. Section 2 describes the composition of the
LHI signal. Section 3 derives a general expression for multi-frequency correction. The
error integration method is illustrated in Section 4. Section 5 shows the simulation results.
Section 6 describes the implementation of the method on an FPGA platform. Section 7
describes the experimental facilities and test results. Section 8 gives the conclusions.

2. Composition of the LHI Signal

In the LISA, the initial setting of the frequency of carrier beat-note is 11 MHz and
the frequencies of side beat-notes are 11 MHz ± 1 MHz. The relative velocities of the
two spacecraft can reach 10 ms−1. When the laser wavelength is 1064 nm, the maximum
Doppler shift is defined as:

∆f = f×
(√

c + ∆v√
c− ∆v

− 1

)
≈ ∆v · f

c
=

∆v
cλ

= 9MHz (1)

where ∆f is the maximum Doppler shift, f is the laser frequency, c is the speed of light, ∆v
is the relative velocity and λ is the laser wavelength.

Three frequencies of beat-notes are unknown due to Doppler shift, as shown in
Figure 1. The frequency of carrier beat-note ranges from 2 MHz to 20 MHz, and the range
of frequency variation of the LHI signal is 1 MHz to 21 MHz.

Reference [4] derived the single quadrant voltage formula of the LHI signal output
through a Trans-Impedance Amplifier (TIA):

V = J2
0(msb) sin

[
2π(fm + fD)t +ϕm + mprncn + n(t)

]
+J2

1(msb){sin[2π(fu + fD)t +ϕu + n(t)] + sin[2π(fl + fD)t +ϕl + n(t)]} (2)
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where Jk(m) is the first kind of k-order Bessel function, and msb ≈ 0.45 is the phase modu-
lation index. fm, fu, fl are the frequencies of three beat-notes, respectively, fD is the Doppler
shift, and ϕm,ϕu,ϕl are the phases of three beat-notes, respectively; mprn = 0.1 rad is the
communication modulation index, and cn is communication codes composed of binary [–1, 1]
sequences; n(t) stands for noise. The amplitude ratio of three beat-notes is about 18:1:1. The
logarithmic spectrum of the LHI signal is shown in Figure 2.

Figure 1. Illustration of the effect of Doppler shift. The LHI signal consists of three beat-notes. The
initial setting of the frequency of the carrier beat-note is 11 MHz and the frequencies of side beat-notes
are 11 MHz ± 1 MHz. Affected by Doppler shift, three frequencies are unknown. The frequency of
carrier beat-notes ranges from 2 MHz to 20 MHz, and the range of frequency variation of LHI signal
is 1 MHz to 21 MHz.

Figure 2. The logarithmic spectrum of the LHI signal. The frequency of carrier beat-note is 15 MHz,
including the Doppler shift of 4 MHz. Because the signal modulates the communication code of
2.5 MHz, the spectral envelope is symmetrical about carrier beat-note and the distance is 2.5 MHz.

3. Multi-Frequency Correction
3.1. Limitations of the Traditional Method

Traditional frequency estimation algorithms are generally based on the FFT, which
converts a signal in the time domain into a discrete spectral sequence. The maximum
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value of the spectral sequence corresponds to the frequency of the signal. The expression is
defined as:

X(k) =
N−1

∑
n=0

xne−j 2πnk
N , 0 ≤ k ≤ N− 1 (3)

f =
find max[k, abs(X(k))]

N
fs (4)

where N is the number of sampling points, xn is the sampling signal, X(k) is the spectrum
sequence, abs(X(k)) is the spectrum amplitude, fs is the sampling frequency, and f is the
frequency of xn. The function of findmax[k, A(k)] is to find the maximum value of A(k)
and return the serial number k corresponding to the maximum value. The calculation
process of FFT generally adopts a base 2 butterfly algorithm, and N is set to an integer
multiple of 2.

However, because the discrete spectrum is the sampling of the real spectrum, only the
amplitude at the discrete points can be observed, and the real maximum value is often not
obtained. Therefore, the frequency estimation method based on the FFT has error, and the
maximum error is half of the spectral resolution, which is defined by:

maxess =
δf
2

=
fs

2N
(5)

where maxess is the maximum error and δf is the spectral resolution.
Because the frequency range of the LHI signal is 21 MHz, according to Nyquist sampling

theorem, fs should be greater than 42 MHz. In order to ensure the quality of the sampling
signal, fs is set to 80 MHz. Additionally, the number of sampling points needs to be greater
than 221, because the error of frequency estimation needs to be less than 30 Hz. This leads to a
serious waste of resources and a long operation time, and so it needs to be optimized.

3.2. Principles of COG

On the basis of the discrete spectrum, the frequency can be corrected by using the
amplitude of the peak points of the spectrum sequence relative to the neighboring points.
Therefore, the accuracy of frequency estimation can be improved by introducing a simple
calculation after performing FFT with a smaller number of sampling points. The principle
is shown in Figure 3.

Figure 3. Principle of spectrum correction. f (x) is the main lobe function, k is the smaller index of
discrete spectrum peak and the amplitude of the adjacent point. yk+1 is the peak of the spectrum, yk
is the amplitude of the neighboring point, ∆x is the corrected value of k. Construct the monotonic
function yk/yk+1 to calculate ∆x.

By using the monotonicity of the main lobe function near the peak point, the corre-
sponding relationship between the ratio function f(∆x− 1)/f(∆x) and ∆x is constructed.
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By calculating the ratio of yk and yk+1, ∆x can be obtained in reverse. The expression is
determined by:

g(x) =
f(x)

f(x + 1)
, x ∈ [−1, 0] (6)

∆x = g−1(
yk

yk+1
) (7)

fc = (k− ∆x)
fs

N
(8)

where, f(x) is the main lobe function, g(x) is the constructed monotonic function, k is the
smaller index of discrete spectrum peak and the amplitude of the adjacent point. If yk+1 is the
discrete spectrum peak, then fc is the amplitude of the adjacent point. fc is the corrected value
of fc, fc is the corrected frequency. Additionally, when the value of ∆x is −0.5, fc is equal to
yk+1. In this way, the specific expression for f(x) is obtained to enable frequency correction.

3.3. Derivation of the Main Lobe Function

The LHI signal contains three beat-notes, and its spectrum is superimposed on the
spectrum of three beat-notes, as shown in Figure 4.

1 
 

 
 

 

Figure 4. Illustration of spectrum superposition. Gray represents the carrier beat-note, pink represents
the lower side beat-note, blue represents the upper side beat-note, and the black dashed line represents
the LHI signal.

By simplifying the LHI signal, the general expression of the superposition signal
is obtained:

x(t) =
M

∑
m=1

xm(t) =
M

∑
m=1

Am cos(2πfmt +ϕm) (9)

where M is the number of signals, and fm, Am and ϕm are the frequency, amplitude, and
phase of the mth signal, respectively. x(t) is expressed as a complex sine:

x(t) = Re

[
M

∑
m=1

Am · ej(2πfmt+ϕm)

]
(10)

The real signal x(t) can be obtained by ignoring the imaginary part of the complex
function x̂. The complex signal x̂ is denoted as:

x̂(t) =
M

∑
m=1

Am · ej(2πfmt+ϕm) (11)
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The sampling truncation of x̂(t), fs is the sampling frequency, N is the number of
sampling points, the sampled signal is represented as:

x̂(k) =
M

∑
m=1

Am · ej(2π fm
fs

k+ϕm), k ∈ [0, N− 1] (12)

Denoteωm as the digital angular frequency. ωm is determined by:

ωm = 2π
fm

fs
(13)

Substitute Equation (13) into Equation (12) and x(k) is defined as:

x̂(k) =
M

∑
m=1

Am · ej(ωmk+ϕm), k ∈ [0, N− 1] (14)

Typically, a window is used to sample the signal in order to minimize the spectrum
leakage caused by data truncation. Signal sampling without an extra window is equivalent
to adding a rectangular window. The general expression for the time domain of a window
function is:

w(k) =
I

∑
i=0

(−1)i · αi · cos
(

2πi
N
· k
)

, k ∈ [0, N− 1] (15)

I

∑
i=0
αi = 1 (16)

where I is the number of terms in the window function, N is the number of window
function points (signal sampling points), and αi is the coefficient of the ith term. For
example, α0 = 1, indicates a rectangular window. α0 = 0.5,α1 = 0.5, indicates a Hann
window. α0 = 0.42,α1 = 0.5,α2 = 0.08, indicates a Blackman window. α0 = 0.35875,
α1 = 0.48829,α2 = 0.14128,α3 = 0.01168, indicate a Blackman–Harris window.

A windowed signal is expressed as:

xN(k) = x̂(k) ·w(k) (17)

xN(k) is the product of x(k) and w(k) in the time domain, the discrete Fourier trans-
formation of xN(k) is convolved in the frequency domain, and the Fourier transformation
of xN(k) is defined as:

XN

(
ejω
)
= F[x̂(k) ·w(k)] =

1
2π

X
(

ejω
)
∗W

(
ejω
)
=

1
2π

∫ ∞

−∞
X
(

ejθ
)

W
(

ej(ω−θ)
)

dθ (18)

where F is the Fourier transform function, and ∗ is the convolution operator. The spectral
amplitude of the windowed signal is expressed as:

∣∣∣XN

(
ejω
)∣∣∣ = ∣∣∣∣∣ M

∑
m=1

Am ·W
(

ej(ω−ωm)
)
· ejϕm

∣∣∣∣∣ = M

∑
m=1

Am ·
∣∣∣W(ej(ω−ωm)

)∣∣∣ (19)

The above formula ignores the influence of the initial phase of the signal, so
this method is susceptible to phase noise. The spectral function of the window is
determined by:

W
(

ejω
)
= e−j N

2 ω

{
a0D(ω) +

1
2

I

∑
i=1

(−1)iαi

[
D
(
ω− 2πi

N

)
+ D

(
ω+

2πi
N

)]}
(20)
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where D(ω) is the Dirichlet kernel, which is defined as:

D(ω) =
sin Nω

2
sin ω2

ejω2 (21)

The spectrum modulus of w(k) is denoted as:

∣∣∣W(ejω
)∣∣∣ = α0

sin Nω
2

sin ω2
+

1
2

I

∑
i=1
αi

 sin
(

Nω
2 − πi

)
sin
(
ω
2 −

πi
N

) +
sin
(

Nω
2 + πi

)
sin
(
ω
2 + πi

N

)
 (22)

Substitute Equation (22) into Equation (19). For the lth frequency component, ∆ωil
is expressed as the frequency difference between the ith frequency component and the
lth frequency component, and the expression for obtaining the lth main lobe function is
represented as:

fl(ω) =
M

∑
i=1

Ai ·
∣∣∣W(ej(ω−∆ωil)

)∣∣∣ = Al ·
∣∣∣W(ejω

)∣∣∣+ M

∑
i=1,i 6=l

Ai ·
∣∣∣W(ej(ω−∆ωil)

)∣∣∣ (23)

∆ωil = ωi −ωl (24)

Let ω = 2πx/N, substitute ω into Equation (23), the general formula fm(x) is deter-
mined by:

fm(x) =
R

∑
r=1

Ar

sin
(

xπ+ Nπ∆fmr
fs

)
sin
(

xπ
N + π∆fmr

fs

)
 I

∑
i=0

(−1)i αi

cos
(

iπ
N

)
 (25)

where R is the number of signal frequencies, Ar is the signal amplitude of the rth frequency
component, N is the number of sampling points, ∆fmr is the difference between the mth and
the rth frequency component, fs is the sampling frequency, I is the number of terms of the
cosine combined window function, and αi is the ith coefficient. Theoretically, Equation (25)
is suitable for cosine window functions, and it has the same correction accuracy for different
window functions. However, due to the impact of data truncation in the calculation process,
the number of terms of the window function does not easily become too large.

4. Error Integration

LISA utilizes the direct sequence spread spectrum communication method. It employs
the pseudo-random noise code (PRN code) as the communication code to phase modulate
the carrier laser. The modulation information is then read out via demodulation, and
distance measurement is completed. However, the phase of the signal is unknown during
frequency acquisition. The PRN code in the signal acts as a type of phase noise. This creates
a deviation between the actual main lobe function and the theoretical function, as shown in
Figure 5. Consequently, there will be errors when estimating the actual frequency using the
theoretical main lobe function.

In fact, the communication codes used in inter-satellite ranging communication are
one or more fixed groups, and the modulation order is fixed. By studying the error of
corrected frequency under different sampling starting conditions, it is found that the error
of corrected frequency is sinusoidal with the delayed sampling of the signal. Figure 6
shows the relationship between the delayed sampling of the signal and the correction error
when the signal is modulated with 2 different groups of communication codes.

By integrating the corrected frequency within the error fluctuation period, the influ-
ence of the signal-coupled communication codes or phase noise can be suppressed. The
calculation formula is:

−
fc =

1
U

∫ U

0
fc(u)du =

1
Q

Q

∑
q=1

fc(q) (26)
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where U is the period of error fluctuation, Q is the sampling number within one period,

and
−
fc is the integral corrected frequency.

Figure 5. The effect of communication codes on the method. x is the corrected value of peak index.

Figure 6. To the left is the relationship between signal delay sampling and frequency errors. Let the
signal sequence be x(k), the number of points used in each calculation be N, and the signal sequence
for the ith calculation be x(i) to x(i + N− 1). To the right is the spectrum of the frequency error. By
analyzing the composition of the spectrum, it is possible to calculate the error fluctuation period.

5. Simulation

The signal shown in Equation (27) is simulated. First, the frequency estimation error
of the traditional method is calculated. When the sampling frequency is 80 MHz and the
number of sampling points is 65,536, the maximum sampling error is 611 Hz, which is
equivalent to half of the spectral resolution. Then, the multi-frequency acquisition method
is simulated by using three different window functions, and the acquisition errors of
the three methods are similar, which verifies the universality of the proposed method.
Finally, the maximum frequency error with and without error integration is compared. The
accuracy can be further improved by using error integration, and the probability of the
error being less than 1 Hz is about 90 percent.

s(k) = 0.9 sin
(

2π
fm

fs
k + 0.1mprn

)
+ 0.05 sin

(
2π

fu

fs
k
)
+ 0.05 sin

(
2π

fl
fs

k
)

(27)
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fm = 2MHz + ∆f× (M− 1) (28)

where fm, fu, fl are the frequency of the three beat-notes, fu = fm + 1MHz, fl = fm − 1MHz,
fs = 80 MHz, N = 65,536, mprn is communication codes. The method was tested fm from
2 MHz to 19,997,989.4 Hz. Additionally, the number of test points M = 3383. ∆f = 5321.7 Hz.
Table 1 shows the maximum error of the frequency acquisition simulation.

Table 1. The maximum error of the frequency acquisition simulation.

Method Error of fm Error of fu Error of fl

FFT 610.5531 Hz 610.5632 Hz 610.7658 Hz

frequency correction
Hann 1.5336 Hz 25.7858 Hz 30.6588 Hz

Blackman 1.8053 Hz 28.5197 Hz 43.9575 Hz
Blackman–Harris 2.3936 Hz 35.9808 Hz 37.8291 Hz

error integration
Hann 0.3325 Hz 4.0745 Hz 4.5455 Hz

Blackman 0.2945 Hz 4.0925 Hz 4.1662 Hz
Blackman–Harris 0.3708 Hz 2.9534 Hz 3.3880 Hz

The simulation results without error integration are shown in Figure 7. The acquisition
errors of three kinds of window function are similar, the maximum acquisition error of
the carrier beat-note is about 2.4 Hz, and the maximum acquisition error of the two side
beat-notes is about 36 Hz. Compared with 610 Hz of the FFT method, the precision of two
side beat-notes is improved by an order of magnitude and the carrier beat-note is improved
by two orders of magnitude. This method is only compared with the FFT method because
it is an improvement on FFT. Of course, this method is not the most accurate method, but it
is suitable for space gravitational wave detection. This is because this method requires less
computation, so it is suitable for real-time processing.

Figure 7. Simulation results of frequency acquisition algorithm without error integration.

The simulation results of error integration are shown in Figure 8. The acquisition
errors under the three window functions are similar. The maximum acquisition error of the
carrier beat-note is below 0.4 Hz, and the maximum acquisition error of the two side beat-
notes are below 4.6 Hz. Compared with the simulation results without error integration,
the acquisition accuracy is increased by about an order of magnitude. Additionally, the
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probability of two side beat-notes between −1 Hz and 0 is about 0.9. Figure 9 shows the
probability distribution of frequency acquisition errors, where P represents the probability.

Figure 8. Simulation results of frequency acquisition algorithm with error integration.

1 
 

 
 

 
Figure 9. The probability distribution of the frequency acquisition error. Red represents the probabil-
ity that the error is between −1 Hz and 0 Hz.

6. Implementation of the Algorithm

The multi-frequency acquisition algorithm consists of clock module, communication
module, signal windowing sampling (SWS) module, discrete spectral amplitude calculation
(DSAC) module, peak search (PS) module, frequency correction (FC) module, and error
integration (EI) module, as shown in Figure 10.
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Figure 10. Block diagram of the algorithm.

The clock module divides the 20 MHz external clock into the 80 MHz system clock
and 320 MHz AD sampling clock; the communication module uses an RS 232 serial port
to read the operation instructions sent by the PC and receive the calculation results for
the three frequencies; the SWS module adopts the ADI’s high-speed ADC chip, with a
sampling rate of 80 MHz and a 16-bit digital signals output, and a serial data rate of
320 Mbps. The window is Hanning, and the sequence of 16-bit window functions is stored
in ROM. Windowing is realized by multiplication, and the 32-bit windowed signal is the
output. The DSAC module uses the existing algorithm packages: the FFT algorithm and
CORDIC algorithm calculate the modulus of the FFT results; the PS module calculates the
peak value and peak index of the spectrum by peak search algorithm, and the flow chart of
the algorithm is shown in Figure 11. The FC module stores the frequency correction curve in
ROM, and calculates the inverse solution of the amplitude ratio using a division algorithm.
Finally, the EI module further reduces the acquisition error based on Equation (26).

Figure 11. The peak search algorithm logic. M, S and T are the maximum, second and third peak of
the amplitude spectrum, MC, SC and TC are the corrected amplitudes, and index is the corresponding
spectral sequences.

7. Experimental Facilities and Test Results

The experimental facilities of the frequency acquisition experiment included an LHI
signal simulation system for space gravitational wave detection, a frequency acquisition
algorithm experimental circuit board, an external reference clock, a power supply, and a
PC, as shown in Figure 12.
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Figure 12. The system platform.

The signal simulation system was used to generate the simulated LHI signal. The
signal is shown in Equation (27). fm ranged from 2 MHz to 20 MHz. The number of test
frequency M was 34. The frequency change interval ∆f was 532,170 Hz. Each frequency
was acquired 10 times. Figure 13 shows the results of the frequency acquisition experi-
ment. The maximum error of the carrier beat-note was less than 1 Hz. Additionally, the
maximum error of two side beat-notes was less than 10 Hz. The acquisition time was
125 ms. Comparing Figures 8 and 13, the experimental acquisition error was slightly larger
than the theoretical simulation value. This was caused by the experimental circuit and
the truncation error of AD sampling, and further analysis of this influence is needed in
the future. At present, the maximum acquisition error meets the task requirement of less
than 30 Hz. However, in the future, with the improvement of index requirements, higher
requirements may be put forward for acquisition accuracy.

 

2 

 
Figure 13. The experimental results.
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8. Conclusions

In this paper, a multi-frequency acquisition metod of LHI signals is presented, and a
system platform was built. A signal simulation system was used to output an LHI simulation
signal, which was analyzed using the frequency acquisition method in FPGA, and then the
frequency was obtained using a PC. In addition, the simulation results of frequency acquisition
under different window functions show that the frequency acquisition errors are basically
the same, which verifies the universal applicability of this method. The experimental results
show that the method can reduce the fluctuation of communication codes, and acquire signals
from 1 MHz to 21 MHz. Compared with FFT, the maximum acquisition error of this method
is reduced to 10 Hz, which meets the requirements of current frequency acquisition tasks.
However, due to the noise of the experimental circuit or the truncation error of AD sampling,
the acquisition error of the experimental results was slightly larger than that of the theoretical
simulation. Therefore, in future work, it is necessary to analyze the influence of noise and
clarify the influence mechanism, so as to apply the method better. In addition, we need to
further optimize the structure and computational complexity of the method, so as to improve
the computational efficiency in engineering while maintaining accuracy. Finally, it is worth
noting that the method is not only suitable for space gravitational wave detection, but also
for other occasions of high-accuracy acquisition of multi-frequency signals, such as harmonic
detection of power signals.

Author Contributions: Conceptualization, Z.W. (Zhenpeng Wang); methodology, Z.W. (Zhenpeng
Wang) and T.Y.; software, Z.W. (Zhenpeng Wang); validation, Z.W. (Zhenpeng Wang) and T.Y.; formal
analysis, Z.W. (Zhenpeng Wang); investigation, Z.W. (Zhenpeng Wang); writing—original draft
preparation, Z.W. (Zhenpeng Wang); writing—review and editing, Z.W. (Zhenpeng Wang) and T.Y.;
visualization, Y.S.; resources, Y.S.; supervision, Z.W. (Zhi Wang), T.Y. and Y.S; funding acquisition,
Z.W. (Zhi Wang) and T.Y. All authors have read and agreed to the published version of the manuscript.

Funding: National Key R&D Program of China, grant number 2020YFC2200604; External Coopera-
tion Program of Chinese Academy of Sciences, grant number 181722KYSB20190040; National Key
R&D Program of China, grant number 2020YFC2200600.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data and the source code are publicly available on https://github.
com/zhenpengwang/data_Frequency_Estimation (accessed on 30 December 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Barausse, E.; Berti, E.; Hertog, T.; Hughes, S.A.; Jetzer, P.; Pani, P.; Sotiriou, T.P.; Tamanini, N.; Witek, H.; Yagi, K.; et al. Prospects

for fundamental physics with LISA. Gen. Relativ. Gravit. 2020, 52, 81. [CrossRef]
2. Arun, K.G.; Belgacem, E.; Benkel, R.; Bernard, L.; Berti, E.; Bertone, G.; Besancon, M.; Blas, D.; Böhmer, C.G.; Brito, R.; et al. New

horizons for fundamental physics with LISA. Living Rev. Relativ. 2022, 25, 4. [CrossRef]
3. Barke, S.; Brause, N.; Bykov, I.; Jose Esteban Delgado, J.; Enggaard, A.; Gerberding, O.; Heinzel, G.; Kullmann, J.; Pedersen, S.M.;

Rasmussen, T. LISA Metrology System-Final Report; PubMan Inc.: Atlanta, GA, USA, 2014.
4. Han, S.; Tong, J.Z.; Wang, Z.P.; Yu, T.; Sui, Y.L. A Simulation System of Laser Heterodyne Interference Signal for Space Gravitational

Wave Detection. Infrared Laser Eng. 2022, 51, 217–226.
5. Gerberding, O. Phase Readout for Satellite Interferometry. Ph.D. Theses, Leibniz Universit, Hannover, Germany, 2014.
6. Li, X.; Tao, J.; Li, J.; Jia, Q.; Wang, C.; Liu, J. A Simple Photonic System for DFS and AOA Simultaneous Measurement. Photonics

2022, 9, 980. [CrossRef]
7. Pitkin, M.; Reid, S.; Rowan, S.; Hough, J. Gravitational Wave Detection by Interferometry (Ground and Space). Living Rev. Relativ.

2011, 14, 5. [CrossRef] [PubMed]
8. Brause, N.C. Auxiliary Function Development for the LISA Metrology System. Ph.D. Theses, Leibniz Universit, Hannover,

Germany, 2018.
9. Xie, Q.; Chi, C.; Jin, S.; Wang, G.; Li, Y.; Huang, H. Underwater Tone Detection with Robust Coherently-Averaged Power Processor.

J. Mar. Sci. Eng. 2022, 10, 1505. [CrossRef]

https://github.com/zhenpengwang/data_Frequency_Estimation
https://github.com/zhenpengwang/data_Frequency_Estimation
http://doi.org/10.1007/s10714-020-02691-1
http://doi.org/10.1007/s41114-022-00036-9
http://doi.org/10.3390/photonics9120980
http://doi.org/10.12942/lrr-2011-5
http://www.ncbi.nlm.nih.gov/pubmed/28163618
http://doi.org/10.3390/jmse10101505


Sensors 2023, 23, 3124 14 of 14

10. Qin, Y.; Li, X.; Han, X.; Tong, J.; Gao, M. Research on Spectral Restoration and Gas Concentration Inversion Accuracy Based on
Quasi-Trapezoidal Window. Photonics Multidiscip. Digit. Publ. Inst. 2022, 9, 885. [CrossRef]

11. Chioncel, C.P.; Gillich, N.; Tirian, G.O.; Irian, G. Limits of the discrete Fourier transform in exact identifying of the vibrations
frequency. Rom. J. Acoust. Vib. 2015, 12, 16–19.

12. Wen, H.; Zhang, J.; Meng, Z.; Guo, S.; Li, F.; Yang, Y. Harmonic estimation using symmetrical interpolation FFT based on
triangular self-convolution window. IEEE Trans. Ind. Inform. 2014, 11, 16–26. [CrossRef]

13. Kim, Y.H.; Son, K.J.; Kang, S.H.; Chang, T.G. Improved frequency estimation algorithm based on the compensation of the
unbalance effect in power systems. IEEE Trans. Instrum. Meas. 2020, 69, 9880–9892. [CrossRef]
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