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We study the problem of misalignment aberration analysis and correction of the two-mirror telescopes with stop
on the secondary mirror. The variation law of the system’s aberration field is analyzed with nodal aberration theory
when the primary mirror with an astigmatic figure error is misaligned. The analytic expression among the system
wave aberration, misalignments, and astigmatism figure error is given, and the correction model of system mis-
alignment aberration is established. The simulation experiment shows that the relative error of the prediction of
system misalignment coma and astigmatism based on this model is less than 4.1%. ©2023Optica PublishingGroup

https://doi.org/10.1364/AO.478248

1. INTRODUCTION

The two-mirror telescope has a wide range of applications in
the field of astronomical observation due to its simple struc-
ture, chromatic aberration-free, and large aperture. After the
optical design, the processing quality of the mirrors and the
alignment have an important influence on the imaging qual-
ity of the telescope. Therefore, the analysis and correction of
the misalignment aberration of the two-mirror telescopes are
meaningful.

The influence of the misalignment on the aberration field
in the two-mirror telescope was studied by Schmid [1] with
the nodal aberration theory (NAT); the influence of astigma-
tism and the figure error of the primary mirror (PM) on the
aberration field in the R-C telescope was also analyzed [2,3].
The research points out that the astigmatic error of the PM
and the misalignment of the secondary mirror (SM) would
change the system’s astigmatic field, resulting in the phe-
nomenon of “binodal astigmatism.” The midpoint of the two
astigmatic nodes introduced by the astigmatic figure error of the
PM (at the pupil) was located at the center of the field of view
(FOV), while one of the two astigmatic nodes introduced by the
SM misalignment (in a coma-compensated state) was located
at the center of the FOV, and another was in the off-axis FOV.
Schmid also pointed out that, when there was no figure error
in the two-mirror telescope and the misalignment coma was
corrected, there was still residual misalignment astigmatism,
and one of the astigmatism nodes was located in the center of
the FOV. If there was astigmatism at the central FOV point,
this astigmatism was caused by the astigmatic figure error of the
optical element (the stop).

On this basis, Gu established a model for calculating the
astigmatic error of the PM and the misalignment of the SM in
the two-mirror system [4]; further, it was shown that binodal
astigmatism and field-constant coma were introduced in the
misaligned two-mirror system. Ju considered the calculation of
the SM’s trilobal error [5]. The trefoil deformation was quan-
titatively represented in his equation, where it was shown that
three additional field-dependent aberration terms were gener-
ated in addition to the field-constant elliptical coma (trefoil)
term. The methods of Gu and Ju are both analytical based on
NAT. In addition, there are numerical methods that can also
solve the figure error and misalignment, such as the sensitivity
matrix method [6,7] and the optimization function method
[8,9]. The numerical misalignment solution method is based on
data reduction and numerical methods but without a tie to aber-
ration theory; it is also difficult to reveal the profound internal
law among misalignments, figure error, and aberration fields.
Therefore, the analytic form of NAT has a natural advantage
in analyzing and solving such problems. The aperture stops are
set on the PM in most two-mirror telescopes; however, there
are also some two-mirror telescopes, such as the large binocular
telescope [10], in which the aperture stop is placed on the SM as
an adaptive correction element. The research on the misalign-
ment aberration analysis and misalignment calculation of the
two-mirror telescopes with the aperture stop on the SM is also
meaningful, and this paper analyzes such problems.

The following content of this paper is divided into three parts.
The changes of the astigmatic and coma fields of the two-mirror
telescopes are analyzed in Section 2, when there are alignment
and astigmatic figure errors based on the NAT, and the analytical
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forms of misalignments, astigmatic figure error, and wavefront
Zernike coefficients are established. Section 3 takes a Cassegrain
telescope as an example, wherein the misaligned aberration field
is calculated based on the model in this paper and is compared
with the ray tracing results. Then, according to the Zernike
coefficients of the wavefront, the misalignments and astigma-
tism figure error of the system are calculated, and the system is
corrected by the calculation results. In addition, the correction
results are analyzed and discussed. Section 4 concludes this
paper.

2. MISALIGNMENT-AFFECTED ABERRATION
FIELDS OF TWO-MIRROR TELESCOPES WITH A
STOP ON SM

A. Nodal Aberration Theory

The NAT mainly describes the aberration of the optical system
when there are misalignment errors in the system. It uses a more
general vector form of wave aberration expansion instead of
the scalar form in a rotationally symmetric system, which is
expressed as

W( EH, Eρ)=
∑

j

∞∑
p=0

∞∑
n=0

∞∑
m=0

(
Wklm

)
j

[(
EH − Eσ j

)
·
(
EH − Eσ j

)]p

×
(
Eρ · Eρ

)n
[(
EH − Eσ j

)
· Eρ
]m
,

(1)

where j represents the surface number, Wklm is the aberration
coefficient, EH is the FOV vector, and Eρ is the pupil vector. Eσ j

is the introduced field-center displacement vector of surface j ;
for aspheric surfaces, it is usually decomposed into the spheri-
cal base curve and the aspheric departure from the spherical
base curve of the surface j . As detailed by Thompson [11,12],
the spherical and aspheric component contributions to the
aberration field are given by

Eσ
(sph)
j =−

−−→
ū#

OAR j −

[
−BDE j + XDE j cj

ADE j + YDE j cj

]
+
−−→
ȳ #

OAR j · cj

ū j + ȳ j cj
,

(2)

Eσ
(asph)
j =

1

ȳ j

([
XDE j

YDE j

]
−
−−→
ȳ #

OAR j

)
, (3)

where
−−→
ū#

OAR j and
−−→
ȳ #

OAR j denote the optical axis ray (OAR)
paraxial angle and intersection height at surface j referenced
to the z axis, respectively; ū j and ȳ j correspond to the paraxial
chief ray slope angle and height at surface j ; and cj denotes the
curvature of surface j . The above definitions are all explained
in Fig. 1, and a right-handed coordinate system is utilized in
our paper. In a misaligned optical system, there are six types of
misalignments, which are the decentering along the x , y , and z
axes (XDE, YDE, and ZDE) and the tilt in the y−z, x−z, and
x−y planes (ADE, BDE, and CDE), respectively. A positive
XDE/YDE is the displacement in the +x/y direction, and a
positive ADE/BDE is left-handed rotation about the+x/y axis.

The wave aberration coefficient Wklm has nothing to do with
the decentering and tilt of the surfaces, and the pupil correla-
tion of the aberration is also unchanged. Therefore, there is no
new type of aberration in the misaligned system, only the field
correlation of the aberration has changed.

B. Field-Center Displacement Vectors for Individual
Surfaces of Two-Mirror Telescopes with Stop on SM

For studying the misaligned aberration characteristics of the
two-mirror telescopes with the stop on the SM, the SM is used
as the reference, and the PM is used as the misaligned surface.
The PM has six misalignments in total, i.e., XDEPM, YDEPM,
ZDEPM, ADEPM, BDEPM, and CDEPM. The ZDEPM does
not destroy the system’s symmetry, and it only introduces
spherical aberration and defocus, which are easier to correct in
the alignment. Because the PM is rotationally symmetric, the
CDEPM does not introduce any aberrations. Therefore, this
paper mainly studies four types of misalignments: XDEPM,
YDEPM, ADEPM, and BDEPM.

Fig. 1. Definitions of symbols.
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Using the paraxial ray tracing equation of the axisymmetric
system, we can obtain

ūSM =
rPMūPM

2d1 − rPM
, (4)

ȳPM =−
d1 rPM ūPM

2 d1 − rPM
, (5)

ȳSM = 0, (6)

where rPM and rSM denote the radius of curvature of the PM and
SM, respectively, d1 denotes the distance from the PM to the
SM.

Using the OAR paraxial ray tracing method in the NAT, the
paraxial parameters of the OAR in the two-mirror telescopes
could be calculated as follows:

−−→
ū#

OARPM =

[
0
0

]
, (7)

−−→
ū#

OARSM =−
2

(2 d1 − rPM)

[
XDEPM − BDEPM rPM

YDEPM + ADEPM rPM

]
, (8)

−−→
ȳ #

OARPM =
2

(2 d1 − rPM)

[
XDEPM d1 − BDEPM d1 rPM

YDEPM d1 + ADEPM d1 rPM

]
,

(9)

−−→
ȳ #

OARSM =

[
0
0

]
. (10)

Using Eqs. (2) and (3), field-center displacement vectors of
the two-mirror telescope with the aperture stop on the SM could
be calculated as

Eσ
(sph)
PM =−

1

upr1(d1 − rPM)

[
XDEPM − BDEPMrPM

YDEPM + ADEPMrPM

]
, (11)

Eσ
(sph)
SM =

2
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[
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]
, (12)

Eσ
(asph)
PM =

1

d1upr1

[
XDEPM − 2BDEPMd1

YDEPM + 2ADEPMd1

]
, (13)

Eσ
(asph)
SM =

[
0
0

]
. (14)

Equations (11–14) give the analytical expression between
field-center displacement vectors and the misalignments.

C. Analytical Expression between Zernike Coma
Coefficients and Misalignments of Misaligned
Two-Mirror Telescopes

According to third-order NAT, in a misaligned system, the coma
can be expressed by [11]

WCOMA3 = [(W131 EH − EA131) · Eρ] ( Eρ · Eρ) , (15)

where W131 =
∑

j
W131 j and EA131 =

∑
j

W131 j Eσ j .

According to Eρ = | Eρ|

[
cos ϕ
sin ϕ

]
, Eq. (15) could be expressed

in matrix form so that it can be decomposed in different
directions and combined with Zernike polynomials. The
decomposition result is shown in Eq. (16):

WCOMA3 =

[
W131 EHx − EA131,x

W131 EHy − EA131,y

]
·

[
| Eρ|

3 cos ϕ
| Eρ|

3 sin ϕ

]
, (16)

where
⇀

A131x and
⇀

A131y are the x and y components of the
⇀

A131,
respectively.

According to the relationship between the Seidel coefficients
and the Zernike coma coefficients (C7 and C8), we can obtain[

EA131,x
EA131,y

]
=

[
W131 EHx − 3C7( EH)
W131 EHy − 3C8( EH)

]
. (17)

Therefore, for the case where the stop is on the SM and the
PM is misaligned, we can obtain[

W131 EHx − 3C7( EH)
W131 EHy − 3C8( EH)

]

=

[
Eσ
(sph)
PM,x Eσ

(asph)
PM,x Eσ

(sph)
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Eσ
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PM,y Eσ
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PM,y Eσ

(sph)
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]
W sph

131,PM

W asph
131,PM

W sph
131,SM

 . (18)

Equation (18) is the analytical expression between the
field-center displacement vectors and the Zernike coma
coefficients.

D. Analytical Expression between Zernike
Astigmatism Coefficients and Misalignments of
Misaligned Two-Mirror Telescopes

The third-order astigmatism in the NAT is given by [11]

WAST3 =
1

2

∑
j

W222 j EH2
− 2 EH A222 + EB2

222

 · Eρ2, (19)

where W222 =
∑

j
W222 j , EA222 =

∑
j

W222 j Eσ j , and

EB2
222 =

∑
j

W222 j Eσ
2
j .

According to Eρ2
= ρ2

[ cos 2ϕ
sin 2ϕ

]
, Eq. (19) could be rewritten

as

WAST3 =

[
W222( EH2
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EH2

y )
2 − EHx EA222,x + EHy EA222,y+

EB2
222,x
2
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2

]

·

[
| Eρ|

2 cos (2ϕ)
| Eρ|

2 sin (2ϕ)

]
. (20)

Then, according to the Zernike astigmatism coefficients (C5

and C6), we can obtain
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[
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Therefore, we can obtain
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=
[

C5( EH)−
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2

(
EH2
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EH2

y

)
C6( EH)−W222 EHx EHy

]
.

(22)
Equation (22) gives the analytical expression between the

field-center displacement vectors and the Zernike astigmatism
coefficients.

E. Astigmatic Aberration Field Introduced by
Astigmatic Figure Error of the PM

Due to the influence of gravity or support stress, the astigmatic
figure error is easily generated on the large-aperture PM. For the
astigmatic figure error on the nonstop surface, due to the differ-
ent positions of the ray on the PM in different FOV, the contri-
bution of the astigmatic figure error to the wave aberration is dif-
ferent in different FOV, as shown in Fig. 2.

In the FOV EH, the normalized decenter 1Eh of the imaging
center relative to the aperture center of the PM is

1Eh = ūt EH/y , (23)

where ū is the slope angle of the chief ray of the maximum FOV
on the PM, t is the distance between the entrance pupil and the
PM, and y is the height of the pupil.

[
− EHx EHy

1
2 0

− EHy − EHx 0 1
2

]
Eσ
(sph)
PM,x Eσ

(asph)
PM,x Eσ

(sph)
SM,x

Eσ
(sph)
PM,y Eσ

(asph)
PM,y Eσ

(sph)
SM,y

Eσ
(sph)2
PM,x − Eσ

(sph)2
PM,y Eσ

(asph)2
PM,x − Eσ

(asph)2
PM,y Eσ

(sph)2
SM,x − Eσ

(sph)2
SM,y

2Eσ (sph)
PM,x Eσ

(sph)
PM,y 2Eσ (asph)

PM,x Eσ
(asph)
PM,y 2Eσ (sph)

SM,x Eσ
(sph)
SM,y


W sph

222,PM

W asph
222,PM

W sph
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= [C5 + 2(FIGURE)C5 −
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x −
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y )
2

C6 + 2(FIGURE)C6 − EHx EHy W222

]
.

(26)

Fig. 2. Different FOV have different positions of the ray on the PM.

When the PM is with the astigmatic figure error, its wavefront
contribution to the FOV EH is

W
(
EH, Eρ

)
=1n

∑
n

Cn · Zn

[
±
(
Eρ +1Eh

)]
. (24)

If there are an even number of intermediate images between
the PM and the exit pupil, ( Eρ ′ +1Eh) takes a positive sign;
otherwise, ( Eρ ′ +1Eh) takes a negative sign. Where 1n is the
change of index in optical space before/after the surface, for the

PM,1n is−2. The contribution of the astigmatic figure error of
the PM to the wavefront of the FOV EH is

W
(
EH, Eρ

)
=1n

[
C5
C6

]
·
(
Eρ +1Eh

)2

=1n
[

C5
C6

]
· Eρ2︸ ︷︷ ︸

Astigmatism

+1n
[

C5
C6

]
· 21Eh Eρ︸ ︷︷ ︸

Tilt

+1n
[

C5
C6

]
·1Eh2︸ ︷︷ ︸

Piston

.

(25)

As shown in Eq. (25), for the two-mirror telescopes with the
stop on the SM, when there is astigmatic figure error on the PM,
the off-axis FOV has more tilt and piston contributions than
the on-axis FOV, but the astigmatic contribution is the same.
Therefore, when there is an astigmatic figure error on the PM
(represented by fringe Zernike coefficients C5 and C6), Eq. (25)
should be rewritten as

Per the analyzed model of the misalignments, the astigmatism
figure error of the PM and the wavefront Zernike coefficients
could be established by Eqs. (11–14), (18), (22), and (26).

3. SIMULATION EXPERIMENT

A. Model Prediction Accuracy for Misalignment
Aberrations

In this section, an F/8 Cassegrain telescope will be used to verify
the prediction accuracy of misalignment aberrations with our
model. The aperture of the telescope is 1000 mm, and the FOV
is ±0.5◦. The Cassegrain telescope’s optical parameters are
shown in Table 1; its layout is shown in Fig. 3.
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Table 1. Optical Parameters of the Cassegrain
Telescope

Surface Type Conic
Radius of

Curvature (mm)
Thickness

(mm)

PM Quadric −1 −2666.667 −1000
SM (stop) Quadric −1.96 −800 2000
Image – – −368.449 –

Fig. 3. Layout of Cassegrain telescope.

Table 2. Wave Aberration Coefficients of Cassegrain
Telescope

a

Surface W040(λ) W131(λ) W222(λ) W220M(λ) W311(λ)

PM (sph) 1302.109 −606.045 70.518 −5.641 −6.892
PM (asph) −1302.109 363.627 −25.387 0.000 1.772
SM (sph) −369.232 235.684 −37.610 18.805 0.000
SM (asph) 369.232 0.000 0.000 0.000 0.000
Sum 0.000 −6.734 7.522 13.163 −5.120

aλ= 632.8 nm, the same below.

The telescope’s wave aberration coefficients can be calcu-
lated by the Seidel formula; the calculation results are shown in
Table 2.

Using the FFD function of Code V, we can obtain the tele-
scope’s coma and astigmatism fields, as shown in Fig. 4. When
the telescope is not misaligned, these two aberration fields are

Table 3. Set of Random Misalignments

Type
XDEPM

(mm)
YDEPM

(mm)
ADEPM

(deg)
BDEPM

(deg) C5− f (λ) C6− f (λ)

Value 0.25 −0.2 −0.003 −0.005 1 −1.5

axisymmetric, and the coma and astigmatism are both zero
at the center point of the FOV. The coma varies linearly with
the FOV, and the average coma of the full FOV is 1.96λ. The
astigmatism changes with the quadratic side of the FOV, and the
average astigmatism of the full FOV is 3.06λ. The average wave
aberration of the telescope is 1.40λ.

In order to verify the model in this paper, we randomly give a
set of misalignments, as shown in Table 3.

Substituting the misalignments in Table 3 into the model of
this paper, we can obtain the misaligned coma and astigmatism
fields, which are predicted by the model in this paper, as shown
in Fig. 5.

The binodal astigmatism in Fig. 5 is actually not strictly
symmetrical about the central FOV. This is due to the influence
of the misalignments, which introduces the astigmatism of the
FOV asymmetry. Although the magnitude is small, it can also
affect the symmetry of the dual nodes. The two astigmatism
nodes in Fig. 5 are located at (−0.4◦, 0.2◦) FOV and (0.4◦,
−0.25◦) FOV.

Using the FFD function of Code V, we can obtain the Zernike
coma and astigmatism field map, as shown in Fig. 6.

The result of ray tracing can be used as the true value for com-
parison. The errors of Zernike coma and astigmatism predicted
by the model in this paper relative to the ray tracing results are
shown in Fig. 7.

The average errors of C5, C6, C7, and C8 are 0.040, 0.065,
0.057, and 0.058λ, respectively, and the corresponding average
relative errors are 1.75%, 1.84%, 3.95%, and 4.10%, which
confirms that the model in this paper has good accuracy.

B. Correction Effect of the Model for Misalignment
Aberrations

The six misalignments in Table 3 could be calculated according
to the Zernike coefficient. Since the testing results of one point

Fig. 4. When the telescope is not misaligned. (a) Coma field. (b) Astigmatism field. (c) Wave aberration RMS value.
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Fig. 5. When the system is misaligned, we predict (a) the coma field and (b) astigmatism field of the system by this model.

Fig. 6. When the system is misaligned. (a) Coma field and (b) astigmatism field of the system by ray tracing.

Fig. 7. Prediction error of misaligned fringe Zernike aberration
coefficients C5, C6, C7, and C8.

Table 4. Zernike Aberration Coefficients for Two FOV
Points by Ray Tracing

C5 (λ) C6 (λ) C7 (λ) C8 (λ)

(0◦, 0◦) −1.950 2.927 0.886 −0.855
(0.5◦, 0◦) −5.979 2.759 0.897 −3.211

of the FOV can list four equations, at least two FOV points
need to be tested to solve the six misalignments. We select the
wavefront Zernike coefficients of the central field point (0◦

and 0◦) and the fringe field point (0.5◦ and 0◦) for calculation.
Using the wavefront analysis function of Code V, the Zernike
coefficients of the above two FOV points could be obtained, as
shown in Table 4.

Substituting the above Zernike coefficients into the model
of this paper, six misalignments can be obtained, as shown in
Table 5.

Table 5 also shows that the calculation errors of the decenter
and the tilt misalignments are large, and the calculation accuracy
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Table 5. Misalignments Calculated by the Model in This Paper

Type XDEPM (mm) YDEPM (mm) ADEPM (deg) BDEPM (deg) C5− f (λ) C6− f (λ)

Value 0.068817 −0.515662 −0.01716 0.00251 0.972905 −1.46421
Absolute error −0.18118 −0.31566 −0.01416 0.00751 −0.0271 0.03579
Relative error 72.47% 157.83% 472.00% 150.20% 2.71% 2.39%

Fig. 8. FFDs for fringe Zernike coefficients after system correction based on calculated misalignments. (a) C7/8, (b) C5/6, and (c) RMS wavefront
error for the nominal Cassegrain telescope.

Table 6. Misalignments Calculated by the Model with Boresight Error Added in This Paper

Type XDEPM (mm) YDEPM (mm) ADEPM (deg) BDEPM (deg) C5− f (λ) C6− f (λ)

Value 0.22754 −0.19214 −0.00283 −0.00452 0.97023 −1.47272
Absolute error 0.02246 −0.00786 −0.00017 −0.00048 0.02977 −0.02728
Relative error 8.99% 3.93% 5.63% 9.65% 2.98% 1.82%

of the astigmatic figure error is high. The wave aberration field
obtained after correcting the misaligned system according to the
calculated misalignments is shown in Fig. 8.

After correction, the average coma and astigmatism in the
FOV are 1.96 and 3.06 λ, respectively, which show that it is con-
sistent with the designed state in distribution and magnitude. It
can be seen that the aberrations caused by decentering and tilt
compensate each other, resulting in a relatively large calculation
error of decentering and tilt; thus, even if the decentering and tilt
of the system do not reach the designed values, the system still
has the same image quality as the design state. That is to say, the
PM not only has good image quality in the design state but also
can achieve the design image quality because of the aberration
compensation in a certain misalignment state. However, since
the astigmatic figure error cannot be compensated by other
degrees of freedom, the calculation accuracy is high and basically
returns to the design state. In general, because the telescope’s
user pays more attention to the imaging quality of the system
rather than whether the decentering and tilt of the system can
be restored to the designed state, the method in this paper is
effective from the perspective of aberration correction.

At the same time, we found that, if we can detect the boresight
error and add the analytical relationship between boresight error
and misalignments in the model, the solution accuracy of the
misalignments could be greatly improved. By tracing the OAR

rays, the calculation formula of the boresight error1 EHIMG can
be obtained:

1 EHIMG =

[
2d2(XDEPM−BDEPMrPM)

2d1−rPM
2d2(YDEPM+ADEPMrPM)

2d1−rPM

]
. (27)

A new model is established from Eqs. (11–14), (18), (26), and
(27); the calculated misalignments are shown in Table 6.

According to the solution result in Table 6, we correct the mis-
aligned system. The wave aberration field and the RMS value of
the wave aberration are shown in Fig. 9.

As also shown in Fig. 9, the image quality is restored to the
design state after adding the boresight error for correction, and
the solution accuracy of the misalignments is greatly improved.

4. CONCLUSION

In this paper, for the two-mirror telescopes with stop on the
SM, the NAT theory is used to analyze the quantitative analytic
expression among the misalignment aberration, the astigmatism
figure error of the PM, and the misalignments, and a correction
model for the system misalignment aberration is established.
We use a Cassegrain telescope as an example to verify the pre-
diction accuracy of the model for misalignment aberration. The
results show that the prediction accuracy of the misalignment
coma and astigmatism based on this model is high, and the
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Fig. 9. FFDs for fringe Zernike coefficients after system correction based on calculated misalignments after adding the detection of boresight error.
(a) C7/8, (b) C5/6, and (c) nominal RMS wavefront error for the telescope.

relative error of prediction is less than 4.1%. The aberration
correction of the misaligned system is carried out through the
misalignment aberration correction model in this paper. The
misalignment calculation and the actual value are quite differ-
ent, but the aberration correction result is consistent with the
design state. After adding the boresight error in the model, the
calculation error of the misalignments could be reduced to less
than 10%, and the aberration correction result is also consistent
with the design state.
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