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Abstract
The profiles for the valence subbands of anAlGaN-based quantumwell (QW) is investigated by
considering quantumconfinement effect (QCE) and strain through the k·p theory.We have found
that to increase theQCE and the compressive strainwould rise the relative position of the heavy hole
(HH) subband to the crystal field splitting hole (CH) subband in the valence band of theQW.
However, although the variation trend of the relative valance subbands position is similar, the
underlyingmechanisms of themodulation by theQCE and strain are not the same. In addition, we
have found that if the energy level between theHHand theCH subbands is close at a certain kt point,
the subband anti-crossing effect of theQWwill enhance their coupling level, causing dipolemoments
from the conduction subbands to these valence subbands transformation between each other. These
results can provide important basis for the active region design of someAlGaN-based short
wavelength, high carrier injection, ormonolithic integration optoelectronic devices.

1. Introduction

Deep ultraviolet (DUV) light sources have important applications in biomedical disinfection,medical
treatment, information communication, and so on [1–7]. Among the candidates that can generateDUV light,
AlGaN-basedDUV light-emission diode (LED) is one of themost promising solid-state light sources at the
present stage because of its direct and adjustable ultra-wide band gap from3.4 to 6.2 eV, corresponding to the
workingwavelength from365 to 210 nm,withAl composition [5, 6]. However, when the emissionwavelength of
AlGaN-based LED is in theDUVband, especially below 250 nm, the external quantum efficiency (EQE)will
decrease dramatically [8–10]. As for Al-richAlGaN, except for poor crystal quality and low doping efficiency
[8, 11], the difficulty for extracting the photons from theQWs also takes the responsivity for the lowEQE [12].
The reason is that, with the Al content increasing, the intensity of transverse electric (TE)field polarized light
propagating along c-axis decreases obviously, while that of transversemagnetic (TM)field polarized light,
propagating perpendicularly to the c-axis, escaping from the sidewalls, enhances [8, 12–16]. From this point of
view, it is necessary to improve the TE-polarized light intensity. On the other side, however, as a very hot and
promising topic,monolithic photonics integration circuit (PIC) requires the light to propagate and couple
laterally [17–19]. Consequently, it is necessary to improve the TM-polarized light intensity, instead. In short, to
investigate the regulationmethods of the TE/TMpolarization ratio for AlGaN-basedDUVLED is important for
their applications.

In thewurtzite AlGaNmaterial, under the crystalfield and spin–orbit coupling, the valence band contains
heavy hole (HH), light hole (LH), and crystal field splitting hole (CH) subbands [15, 20]. The luminescence of
AlGaN-basedDUVLEDmainly comes from the electron-hole recombination between conduction subband
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and valence subband in theQWs. The conduction subbands consist of symmetrical S orbitals, so the
polarization characteristics of photons produced by the transition fromdifferent conduction bands to the same
valence subbandwill not change.However, due to the asymmetry of wurtzite crystalfield and spin–orbit
coupling, theP orbit of valence band is asymmetric. Hence, the transition from conduction subband to different
valence subbandswill produce photonswith different polarizations [21]. Since the transition probability
between the conduction and top valence subband is larger than that between the conduction and bottom valence
subband, the profiles for the valence subbands largely determine the interband transition polarization
characters. Accordingly, to regulate the valence subband configuration of theQWs is themethod to
fundamentally adjust the optical TE/TMpolarization ratio of theAlGaN-basedDUVLEDs.

Previous studies have shown that to change theQCEof theQWs including the space and potential
confinements and to vary the in-plane strain canmodify the profiles for valence subbands [22–29]. However, for
III-nitrides, there is always a correlation between theQCE and the in-plane strain due to the coherent existence
of piezoelectric and spontaneous polarization field,meaning that only a single parameter change of theQW
structure such as Al-content, well or barrier width, or elastic constants, will result in another changes such as
interface charge, potential, or strain states, which causes that the independent effects of theQCE and the strain
on the valance subband structures are not clear till now. In this work, we have separately studied the effects of
QCE and strain on the valence subband profiles based on the k·p theory.Wefind that both enhancement ofQCE
and compressive strain are helpful to rise theHH subband position relative toCH subband, enhancing the TE
spontaneous emission rate andweakening the TM spontaneous emission rate. It is noteworthy that if the energy
levels of these valance subbands are close, the coupling effect will enhance, leading to the light polarization
conversionwith increasing wave vector. These results can provide important basis for the active region design of
someAlGaN-based short wavelength, high carrier injection, ormonolithic integration optoelectronic devices.

2. k·p theory and simulations

The 6× 6Hamiltonianmatrix k·pmethod is used to calculate the valance subbands [21]. After diagonalizing, the
6× 6Hamiltonianmatrix can be expressed by upper and lowerHamiltonians as equation (1):
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of them-th valence band, ∣ ñ = ~i i, 1 6 are the bases of theHamiltonianmatrix, and A is the normalization
coefficient. Note that, the axial approximation is used in this study [30], and kt is isotropic in the plane, therefore,
we only care about themagnitude of kt is used in the calculation. Because theQW is inversion symmetry, the
upper and lowerHamiltonians have the same energy band structure. Thus, only the upperHamiltonianmatrix
is considered. The effectivemass equation of the upperHamiltonianmatrix ´HU

3 3 of the valence band is
expressed as the following equation (3):
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where the bases of ( )( )g z k; ,
m t

1 ( )( )g z k;
m t

2 and ( )( )g z k;
m t

3 are the ∣ ñ1 , ∣ ñ2 , and ∣ ñ3 , respectively. ∣ ñ1 and ∣ ñ2 are the
combinations of ∣ ñX and ∣ ñY , and ∣ ñ3 only includes ∣ ñZ . ∣ ñX , ∣ ñY , and ∣ ñZ are thewavefunction ofP orbit.

The electronwavefunction is expressed as the following equation (4):
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inwhich ∣ hñS, is thewavefunction of S orbit in the conduction band, h is the spin orientation, and ( )f zn is the
n-th conduction band envelop function. The effectivemass equation for the conduction band is shown as the
following equation (5):
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where me
z and me

t are the effectivemasses at z direction and x-y plane, respectively.
In the AlGaNQW, the conduction subbands to valence subbands transition radiates photonswith different

polarization. The dipolemoment Mnm
TE is for TE-polarized photon and Mnm

TM is for TM-polarized photon
[20, 31]. They are formulated by equations (6):
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where Mb
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TM are the bulk TE/TMdipolemoments, whichwere defined in [20].
By solving the valence band effectivemass equation throughfinite differencemethod, the energy eigenvalues
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The spontaneous emission rates for TE andTMmodes are [30]:
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m is the Fermi–Dirac distribution function of n-th conduction subband ( ( )E kn
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valence subbands ( ( )E km
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t ), nr is the refractive index, w is the angular frequency of the optical wave, e is the
electronic charge, c is the velocity of light in vacuum, e0 is the dielectric constant of vacuum, m0 is the electronic
mass, g is the constant half width of the Lorentzian shape function, EFn and EFp are the quasi-Fermi levels of
electrons and holes respectively.

Accordingly, near theΓ point, since theHH subbandmainly includes ( )( )g z; 0 ,
0

1 the TE dipolemoment is
much large than the TMone, and the TEpolarized photons aremainly generated by the transition from
conduction band toHH subband.While, since theCH subbandmainly includes ( )( )g z; 0 ,

0
3 the TMdipole

moment is lager and the TMpolarized photons aremainly generated by the transition from conduction band to
CH subband. As a result, it is easy to see that the order of valence subbands has a great influence on the
polarization of the emitted photons.

In order to separately investigate the impacts of theQCE and the strain, the upperHamiltonianmatrix ´HU
3 3

can bewritten in two terms as the following equation (8) [21]:
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whereD1,D2,D3,D4 are the deformation potentials, εxx, εyy, εzz are the strains along x, y, z directions, a is the
relaxed in-plane lattice constant, andC13,C33 are the elastic constants, respectively. By tuning theQW in-plane
lattice constant a0, the strain can be adjust.

A singleQWstructure of AlyGa1-yN/AlxGa1-xN/AlyGa1-yN (y� x+ 0.05) is constructed. To independently
study the impacts of theQCEon valance subband profiles, the strain is set to be zero by setting theQW in-plane
lattice constant to be the same as the relaxed one.Meanwhile, the spontaneous polarization electric field is set to
be zero to avoid potential deformation. As for the investigation of the in-plane strain, it is controlled by
modifying the lattice constant a0. Thematerial parameters used in the simulations are from references [31–33].

3. Results and discussion

According to the k·p theory, the quantum structure barrier height andwell width canmainly determine its
QCE. By adjusting the two parameters, theQCE is controlled so that the valence bands distribution is regulated.
According to theVegrad’s Law, the barrier height can be altered by the Al-composition difference between the
barrier andwell of the quantum structure. Hence, the barrier height ismodified by varying the Al-composition
of the barrier andwell. In theHamiltonianmatrix of the valence band effectivemass equation, the effective hole
masses of subbands are different. Therefore, with the variation of the barrier Al composition (y), thewell Al
composition (x), and thewell width (Lw), the boundary conditions of the Schrodinger equation is changed,
influencing the relative energy eigenvalues ofHHandCH subbands. For convenience, the figure ofmerit that

( ) ( )D = -E E E0 0HH CH is calculated to represent the relative energy position forHHandCH subbands. The
HH subband is higher than theCH subband ifΔE> 0, and theCH subband is higher than theHH subband
ifΔE< 0.

Figure 1 is the calculated variation trend ofΔE atΓ point withwell and barrier compositions (x−y) in terms
of different well widths (Lw= 1, 2, 3 nm, respectively). The dashed lines are the boundaries between areas of
ΔE< 0 andΔE> 0 and the dotted lines are thewell and barrier compositions (x−y) emitting the same
wavelength.With the increase of thewell width Lw, the area ofΔE< 0 increases and that ofΔE> 0 decreases,
implying that with thewell width Lw increasing some quantum structures of well and barrier composition
combinations (x–y) that possess higherHH subband thanCH subband (ΔE> 0)will be converted to that
possess higher CH subband thanHH subband (ΔE< 0). Furthermore, it can also be seen that in any cases of well
widths Lw andwell Al compositions x, with the increase of barrier Al composition y,ΔEwill increase gradually .
These results demonstrate that the relative position of theHHandCH subbands can be effectively regulated by
tuning theQCE.Consequently, the degree of polarization (DOP) for the emitting photons can also be regulated
by tuning theQCE. Besides, it is also noteworthy that at stronger space confinement, the emitting wavelength
can bemore effectively controlled by the quantumbarrier. The quantum structure AlyGa1-yN/AlxGa1-xN/
AlyGa1-yNwhere x= 0.6, y= 0.888, Lw= 2 nm is calculated as reference in the following discussion because the
HH subband energy level andCH subband energy level are almost the same atΓ point under these parameters.
Then, we take data near this set of parameters and analyze the changes ofHH andCH subbands, so as to analyze
the reasons for the changes of TE- andTM-polarized emission.

In order to analyze the influences of well width on the valence subbands distribution and to reflect the
change of energy level inmore detail and obviously, the valence subband structure in k space with different well
width of the quantum structure AlyGa1-yN/AlxGa1-xN/AlyGa1-yNwhere x= 0.6, y= 0.888 is calculated as
shown infigure 2.When thewell width is 2 nm, theHHandCH subbands almost coincide atΓ point
(0<ΔE< 0.2meV, figure 2(b)).When thewell width decreases to 1 nm, bothHHandCH subbands shift
downwardswhile the CH subband shiftmuchmore than theHH subband. As a result, theHH subband is 23.3
meVhigher than theCH subband atΓ point (ΔE= 23.3meV,figure 2(a)).When thewell width increases to 3
nm, bothHHandCH subbands shift upwardswhile the CH subband also shiftmuchmore than theHH
subband. As a result, theHH subband is 22.9meV lower than theCH subband atΓ point (ΔE=−22.9meV,
figure 2(c)).

On the other hand, in order to investigate the influences of barrier height on the valence subbands
distribution inmore detail and obviously, the valence subband structure in k space of the quantum structure
AlyGa1-yN/Al0.6Ga0.4N/AlyGa1-yNwith the quantumwell width of 2 nmalso is calculated as shown infigure 3.
Similarly, taking the Al0.888Ga0.112N/Al0.6Ga0.4N/Al0.888Ga0.112NwhoseΔE almost equals to zero as the
reference, as the barrier Al content decreases from0.888 to 0.8, the CH subband shift upwardswhile theHH
subband almost keep constant atΓ point, resulting in a negativeΔE of−19.9meV (figure 3(a)). As the barrier
Al-content increases from0.888 to 1, theCH subband shift downwards while theHH subband also almost keep
constant atΓ point, resulting in a positiveΔE of 31.2meV (figure 3(c)). Consequently, it can be deduced that the
QCE including space and barrier confinement effects canmodify the valance subbands order to control theDOP
for the emitting photons because of the different susceptibility toQCEbetweenCHandHH subbands.
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Figure 1.ΔE value under different well and barrier compositions (x− y) at a well width of (a) Lw= 1 nm, (b) Lw= 2 nm, and (c) Lw=
3 nm.

Figure 2.Valence subband structures of Al0.888Ga0.112N/Al0.6Ga0.4N/Al0.888Ga0.112N singlewell quantum structurewith a different
quantumwell widths of (a) Lw= 1 nm, (b) Lw= 2 nm, and (c) Lw= 3 nm, respectively.

Figure 3.Valence subband structures of AlyGa1-yN/Al0.6Ga0.4N/AlyGa1-yN singlewell quantum structurewithwell width of 2 nmat
different barrier Al contents of (a) y= 0.8, (b) y= 0.888, and (c) y= 1, respectively.
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Obviously, the CH subband ismore susceptible toQCE thanHH subband.Moreover, it seems that the space
confinement effect ismore beneficial to tune the valance subbands than the barrier confinement effect in AlGaN
quantum structures, indicating that it is promising for improving the light extraction efficiency (LEE) of AlGaN
basedDUVLEDs to develop ultrathin quantum structures.

Figure 4(a)–(c) show theQWenergy difference variation trends betweenHHandCH subbands (ΔE) atΓ
point with the biaxial strain for AlyGa1-yN/AlxGa1-xN/AlyGa1-yNquantum structures with different x−y
combinations. As it can be seen, at any cases including different well-barrier combinations andwell widths,ΔE
increases with the increase of compressive strain and decreases with the tensile strain. Itmeans that the
compressive strainwillmake theHH subbandmove upwards relative to theCH subband, while the tensile strain
has the opposite effects on valance subbands in the Al-richAlGaNquantum structures, indicating the strain is an
effective approach to adjust theDOP for the emitting photons. The variation trend of valence band structure
with strain is consistent with the results offirst principles calculation [34].Moreover, it can be deduced that to
fabricate high compressive AlN template substrate is of importance to improve the LEE of AlGaN-basedDUV
LEDs. From this point of view, the recently developed high-temperature-annealing (HTA) sputteredAlN/
Sapphire template fabricationmethod, which can provide strong compressive strain to the upper epilayer, is
promising inAlGaNbasedDUVLED fabrication [35–39].

By comparing the absolute value ofΔE and the slope of the lines for each quantum structures with different
well width asfigure 4(a)–(c), it can be observed that with thewell width decrease the absolute value ofΔE
gradually increases, while the slope of the lines almost unchanged, indicating the influences of theQCE and the
strain on the relative valance subbands are independent. To observe the valance subbands variationwith strain
more clearly, theHHandCH subbands of the Al0.888Ga0.112N/Al0.6Ga0.4N/Al0.888Ga0.112N quantum structure
with Lw= 2 nmunder compressive strain, unstrain, and tensile strain are extracted asfigure 4(d). As is seen, the
impact way of strain on theΔE is different from that ofQCE.With the strain varying, bothHHandCH
subbands change.However, the two subbands shift in opposite directions.When the compressive strain
increases, theHH subband shifts upwardswhile the CH subband shift downwards.When the tensile strain
increases, theHH subband shifts downwards while the CH subband shift upwards.

Figure 4.TheΔE variation trendswith strain of some different AlyGa1-yN/AlxGa1-xN/AlyGa1-yNquantum structures at the well
width of (a) Lw= 1 nm, (b) Lw= 2 nm, and (c) Lw= 3 nm, respectively. (d)Valence subband structures of the Al0.888Ga0.112N/
Al0.6Ga0.4N/Al0.888Ga0.112N quantum structurewith Lw= 2 nmunder different strains.
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There is a kind of well-barrier combinations (x−y) of a quantum structure whose valance subbands are very
close to each other at a certain kt value like the linesΔE= 0 shown infigure 1. As is known,when the energy of
valence subbands are close to each other at some kt values, the subbands couplingwill become very significant
due to the anti-crossing effect in theQW .Hence, the proportion of envelope function in the valence subband
wave functionwill be altered and thus the dipolemoment corresponding to its subbandwill be transformed
according to equations (6a) and (b), whichwill in turn lead to a different TE/TMratio. Especially when the
dipolemoment transformation happens near theΓ point and the carrier concentration in theQW is high
enough, the transformationwill have a great impact on the polarization characteristics of the photons. As for the
HHandCH subbands of the Al0.888Ga0.112N/Al0.6Ga0.4N/Al0.888Ga0.112N quantum structurewithwell width of
2 nm, the energies ofHHandCH subbands atΓ point are very close to each other (0<ΔE< 0.5meV,
figures 2(b), 3(b), 4(d)).With the kt value increase, as shown infigures 5(a) and (b), the TE dipolemoment of the
transition from conduction subband toHH subband (C-HH) dramatically decreases and converts to TMone
very close to theΓ point. Similarly, the dipolemoment of the transition from conduction subband toCH
subband (C-CH) also has a rapid conversion fromTM toTEmode. Therefore, in the cases of theHHandCH
subbands are very close to each other at theΓ point, the polarization characteristics of the emitted photons by the
QWwill significantly be altered by the injected carrier concentration, which is valuable to some high carrier
injection devices such as high-powerDUVLEDs or laser diodes (LDs).

Tomore directly observe the TE andTMemissionmode variationwith theQCE and strain, the spontaneous
emission rate of a series of quantum structures are calculated using equations (7), and the normalized
spontaneous emission rate spectra as shown infigure 6. The quantum structure Al0.888Ga0.112N/Al0.6Ga0.4N/
Al0.888Ga0.112Nwith unstrainedwell of 2 nm is chosen as the reference structure as discussed above (figure 6(a)).
Although the energy level of theHH subband is higher than theCH subband as shown infigure 3(b), the
spontaneous emission rate of TM-polarized light is higher than that of TE-polarized light, which is resulted
from that the anti-crossing effect enhances the coupling effect between the two subbandswhen theHHandCH
subbands are very close to each other.With the decrease of well width, the TE polarization spontaneous emission
rate enhances and the TMone reduces relatively (figure 6(c)), coincidingwith the valance subbands order
variation induced by thewell width change (figure 2(a)).Meanwhile, with the increase of barrier height, a similar
variation of polarization spontaneous emission rate can be observed (figure 6(e)), which is also coincidedwith
the valance subbands order variation induced by the barrier height change (figure 3(c)).Moreover, with the
increase of compressive strain, the TE polarization spontaneous emission rate greatly enhances and the TMone
significantly reduces relatively (figures 6(b),(d),(f)), also inwell accordance with the valance subbands order
variation induced by the strain change (figure 4). The variation trend of TE/TMmodewithwell width, barrier
component and strain calculated in this study is consistent with those reported previously [15, 40–43]. These
results directly demonstrate that theQCE and the strain can independently and effectively control the TE/TM
polarized luminescence in theAl-rich AlGaNquantum structures through the regulation of valence subband
order. By theway, it is noteworthy that the space confinement effect canmore seriously impact the emission
wavelength, which is important forDUV emission, especially below 250 nm.

Figure 5. (a)TE and (b)TMdipolemoment of the unstrainedAl0.888Ga0.112N/Al0.6Ga0.4N/Al0.888Ga0.112Nquantum structurewith
well width of 2 nm.
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4. Conclusion

In summary, the valence subband profiles in AlyGa1-yN/AlxGa1-xN/AlyGa1-yN (y� x+ 0.05) single quantum
well is simulated by using k·p theory, and the factors affecting the distribution of valence subbands including
theQCE and the strain are separately analyzed. It has been found that the enhancement of the QCE and the
compressive strain are both helpful tomake theHH subband above the CH subband in the k space, and this
will promote the generation of TE-polarized light emission. Oppositely, the decrease of the QCE and
increase of the tensile strain can promote the generation of TM-polarized light emission. At a certain kt value
where the anti-crossing effect between valance subbands occurs, the coupling effect will enhance, leading to
the light polarization conversion with increasing wave vector kt, indicating the injected carrier concentration
maymodify the light emissionDOP. These results can provide important basis for the active region design of
some AlGaN-based short wavelength, high carrier injection, ormonolithic integration optoelectronic
devices.

Figure 6.Normalized spontaneous emission rate spectra of the AlyGa1-yN/AlxGa1-xN/AlyGa1-yNquantum structures. The carrier
concentrations in theQWare set to be 1× 1018 cm−3. (a) x= 0.6, y= 0.888, Lw= 2 nm, unstrained; (b) x= 0.6, y= 0.888, Lw= 2 nm,
strain of−0.5%; (c) x= 0.6, y= 0.888, Lw= 1 nm, unstraind; (d) x= 0.6, y= 0.888, Lw= 1 nm, strain of−0.5%; (e) x= 0.6, y= 1,
Lw= 2 nm, unstrained; (f) x= 0.6, y= 0.888, Lw= 2 nm, strain of−0.5%.
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