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ABSTRACT: A microdroplet-based surface-enhanced Raman
spectroscopy (microdroplet SERS) platform was constructed to
envelop individual cells in microdroplets, followed by the SERS
detection of their extracellular vesicle-proteins (EV-proteins) via
the in-drop immunoassays by use of immunomagnetic beads
(iMBs) and immuno-SERS tags (iSERS tags). A unique
phenomenon is found that iMBs can start a spontaneous
reorientation on the probed cell surface based on the electrostatic
force-driven interfacial aggregation effect, which leads EV-proteins
and iSERS tags to be gathered from a liquid phase to a cell
membrane interface and significantly improves SERS sensitivity to
the single-cell analysis level due to the formation of numbers of
SERS hotspots. Three EV-proteins from two breast cancer cell
lines were collected and further analyzed by machine learning algorithmic tools, which will be helpful for a deeper understanding of
breast cancer subtypes from the view of EV-proteins.

■ INTRODUCTION
Breast cancer (BC) is the most common female malignancy.
Among the four subtypes of BC, triple-negative breast cancer
(TNBC) has a substantially lower survival rate than the
nonmetastatic subtypes due to its high invasiveness, metastasis
susceptibility, poor prognosis, ease of recurrence, and drug
resistance.1,2 Meanwhile, TNBC lacks a broad spectrum of
marker receptors.3 Therefore, finding appropriate biomarkers
for early diagnosis and detection of different subtypes is
essential for cancer treatment. Related studies have shown that
surface proteins of extracellular vesicles (EVs) isolated from
the body fluids of BC patients are expected to be biomarkers
for prediction, diagnosis, chemotherapy response, and
prognosis.4 EVs are differentiated from endosomes, plasma
membranes, or the endoplasmic reticulum, which are released
from intracellular to extracellular, and they play a crucial role
by carrying a number of bioactive molecules that act as
mediators for intercellular communication.5,6 Among them, the
regulation of intercellular signaling communication events
cannot be achieved without the involvement of integrin
membrane proteins. Tetraspanin proteins, also known as
transmembrane four superfamily proteins, are widely dis-
tributed in EVs, and they are involved in integrin-dependent
functions of tumor cells through extracellular structural
domains, transmembrane structural domains, and cytoplasmic

structural domains, as well as in the regulation of
physiopathological events such as receptor signaling.7−10 In
refractory BC, focal adhesion kinase (FAK), closely associated
with tumorigenesis, progression, and metastasis, plays a vital
role in maintaining tumor angiogenesis and becomes a target
for cancer therapy. Increased FAK expression is usually
associated with metastatic diseases.11−13 Thus, analyzing
exosomal markers can help reveal the characteristics of
different BC subtypes and provide a better strategy for early
cancer diagnosis.
Various techniques have been reported for studying EV-

proteins, including thermophoretic aptasensors,14 nanomixing-
enhanced EV subpopulation characterization platforms,15

surface plasmon resonance (SPR) sensors,16 electrochemical
immunoassay,17 immunofluorescence, and surface-enhanced
Raman spectroscopy (SERS).16 Most of these studies have
been conducted on population cells, and studies based on
single-cell diversity and heterogeneity have been little
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developed. In contrast, biological heterogeneity is widespread
and intricate in tumor cells, especially in highly metastatic
subtypes. Thus, single-cell analysis is critical in identifying
different subpopulations and revealing the interactions of
analytes. The microfluidic droplet technology that allows for
high-throughput production of picoliter volumes of micro-
droplets by precisely manipulating the reagent feed volume has
become one of the popular single-cell analysis techniques. Each
microdroplet is an individual microreactor, and each micro-
chamber is an independent closed system, which makes the
microdroplet-based technology available for high-throughput
single-cell analysis.18

Single-cell analysis is always accompanied by a large amount
of high-dimensional sample data, which is increasingly limited
by manual control-based methods. High-dimensional computa-
tional tools not only allow the handling of richer and more
complex samples but also enable exploratory analysis, such as
exploiting biological component interaction networks and
patterns to reveal latent cellular subpopulations, which can be
adopted clinically to predict disease progression outcomes.
Machine learning-related dimensionality reduction, clustering,
and prediction algorithms are the most widely used methods,
in which unsupervised learning-based dimensionality reduction
or clustering methods can explore and characterize unknown
subpopulations for single-cell data from multiple samples that
can be analyzed combinatorially or compared, and supervised
learning-based prediction class methods rely on input from
external variables to return interpretable models for prediction
of new samples. These algorithms generate different insights
from single-cell data sets.19−21

SERS technology has been widely used in the biomedical
field because of its high sensitivity, noninvasive in situ analysis,
multiplexed detection with single wavelength excitation, and
subcellular region analysis.22 SERS hotspots, where the SERS
gain is very significant, arise from metallic nanogaps when two
metal nanoparticles are close enough. The combination of
SERS technology and microdroplet technology enables high-
throughput, nondestructive, and long-term monitoring of
single cells.23 In order to analyze biological samples secreted
from a single cell by SERS, constructing an elaborate SERS
strategy that supports enough SERS hotspots is highly required
to meet high demands for single-cell detection sensitivity.24

The developed single-cell SERS strategies are mainly based on
magnetic SERS, which can form collective metal nano-
aggregates due to the magnetic field driving.23 Recently, a
cell membrane pretreatment strategy was developed by our
group for building an immunoassay above the cell membrane
for secreted proteins in microdroplets, which achieved the
SERS collections of the single-cell secreted vascular endothelial
growth factors.25

Here, we constructed a novel microdroplet SERS-based
single-cell detection platform and developed a workflow for
single-cell heterogeneity analysis and classification of different
BC subtypes. In this study, single cells were encapsulated in
microdroplets along with capture probes (immunomagnetic
beads, iMBs) and reporter probes (immuno-SERS tags, iSERS
tags). In these microdroplets, we observed a unique interfacial
oriented aggregation (IOA) effect of iMBs, in which the
negatively charged cell membranes tend to attract the
electrically neutral capture probes (iMBs) to accumulate
them on the cell membrane surface spontaneously. The EV-
proteins and the iSERS tags were sequentially bioconjugated
above the iMBs to realize sandwich assays. The collection of

iSERS tags contributes dramatically to the SERS signal
amplification due to the SERS hotspot effect.
Nonmetastatic (MCF-7) and metastatic (MDA-MB-231)

cell lines were selected to explore the expression differences of
three EV-proteins. CD9 and CD63 belong to the tetraspanin
protein family, which are located in the exosomal membrane
and play essential roles in cell adhesion and metastasis. FAK
protein belongs to the exosomal intramembrane protein and is
highly expressed in metastatic breast tumor exosomes.4,13

Based on this platform, we explored the levels of three EV-
proteins related to metastasis in two BC cell lines and further
analyzed and classified single-cell SERS spectra using
supervised/unsupervised machine learning algorithms. Based
on the single-cell data set, the presence of different feature
subpopulations was identified, and a method to distinguish
different BC subtypes was established. This study helps reveal
the existence of potential subtypes mediated by tumor cell
heterogeneity, analyze the association between different
variable proteins, and establish classification methods for the
diagnosis of BC subtypes.

■ MATERIALS AND METHODS
Synthesis of iSERS Tags. The preparation process of

labeling probes is shown in Figure S1A. Silver nanoparticles
were selected as the SERS-active substrate and synthesized by
the silver nitrate-sodium citrate reduction.26 AgNPs (3.0 mL)
and Tween 20 (2 μL) were added into glass jars and stirred at
room temperature for 30 min. Then, the carboxyl activation
reagents, including EDC (1 μL, 0.05 M) and NHS (1 μL, 0.05
M), were added to the mixture with stirring for 0.5 h. Two
microliters of the probe molecules [4-nitrophenylthiophenol
(NTP), 2-mercapto-4-methyl-5-thiazolyl acetic acid
(MMTAA), or 3-hydroxythiophenol (HTP), 1.0 mM] and 2
μL of the monoclonal antibodies (CD63, CD9, or FAK, 0.05
mg/mL) were added to jars containing the activated AgNPs.
The mixtures were stirred for 3 h. Finally, BSA (1 μL, 0.1 mg/
mL) was added and kept stirring for 0.5 h to block the
unoccupied sites above the Ag nanoparticle surfaces. The
mixture was centrifuged at 3310 g for 10 min to remove the
supernatant and concentrated to 1.0 mL. Thus, the iSERS tags,
AgNP@probe@mAb, were obtained.
Synthesis of iMBs. The iMBs were used as a capture probe

in this study. Figure S1B shows the preparation process for the
capture probe. Carboxyl paramagnetic nanoparticles (MBs)
with a size of about 250 nm were used for preparing iMBs,
which have a superparamagnetic characteristic and a long
suspension time. MBs (diluted to 1 mg/mL) were washed
three times with deionized water. Then, EDC and NHS (250
μL, 0.05 M) were added to the MBs and the mixture was
shaken for 0.5 h, followed by deionized water washing twice
and magnetic separation. After this, monoclonal antibodies of
CD63, CD9, and FAK (13.3 μL, 0.5 mg/mL, for each) were
added to the MBs with 0.8 mL of deionized water for constant
volume. The MBs were shaken overnight (12−18 h) and
washed twice. Next, BSA (0.8 mL, 10 mg/mL) was added
subsequently. After 4 h of shaking and washing twice with
deionized water, the iMBs were achieved.
Fabrication of Microfluidic Chips and Preparation of

Liquid Droplets. The microfluidic chip fabrication process
for the microdroplet is presented in Figure S2. The chip was
constructed using the soft lithography technique.27 The chip
channel pattern was designed using AutoCAD and printed to a
high-resolution transparent photomask. Briefly, a 4 inch silicon
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wafer was rinsed with deionized water, ethanol, and acetone,
respectively, to clean its surface. The wafer was dried on a 95
°C heating plate for 1 h. Then, the negative photoresist (SU-8)
was spun onto the wafer using a spin coater (500 rpm for 10 s,
then 1000 rpm for 50 s). The SU-8 layers were then cured on a
heating plate at 65 °C for 3 min and at 95 °C for 9 min. The
cured SU-8 layers were then exposed to Xenon lamp radiation
through a photomask (20 s, 20 mW/cm2) and next baked at 65
°C for 2 min and 95 °C for 7 min. The unexposed SU-8 was
removed by soaking in the SU-8 developer for 10 min. The
wafer was then cleaned with isopropyl alcohol and dried with
filtered nitrogen gas. The silicon wafer with patterns was
achieved, which was used as a template for PDMS.
The PDMS base and curing agent were mixed at a ratio of

10:1 w/w. After air bubbles were removed, they were poured
onto a wafer template and fully cured for 30 min at 85 °C.
After heat curing, the PDMS layer was stripped from the Si
wafer. Above the PDMS layer, the entrance and exit holes were
made with a 1.2 mm biopsy punch. The PDMS layer was
bonded immediately after oxygen plasma treatment (oxygen
plasma processor).
As shown in Figure S3, the width of the obtained chip is 50

μm. The chip has two water phases: one is cell suspension with
gradient solution and the other is the mixture of capturing
probes and labeling probes (v/v: 1:1) with lysate (10 μL). The
oil phase consisted of hexadecane and surfactants. Two water
phases met and mixed at the fork and flowed in a laminar way

to the intersection. At the crossing, the water and oil phases in
the microchannel formed continuous and stable droplets by
extrusion and shearing. The solutions were connected to a chip
by a syringe, steel needle, and capillary tube, while the injection
pump controlled the injection rate. The oil phase flow rate is
850 μL/h, and for both water phases, the flow rate is 50 μL/h.
The iSERS tags (9 × 10−11 M), iMBs (0.5 mg/mL), and cells
(107 cells/mL) with a cell lysis solution were encapsulated in
microdroplets by our prepared microfluidic chip.
The probability that the droplet contains only one cell

follows the Poisson distribution. As shown in Figure S4, more
than half of the droplets contain no cells, and more than 30%
of the droplets contain one cell.
Single-Cell EV-Protein SERS Measurements. SERS

measurements were performed using a HORIBA ARAMIS
confocal Raman spectrometer with a 633 nm laser and a 20×
objective lens. The output laser power was 8 mW. A grating
scale of 1800 groove/mm was chosen. The SERS spectra were
obtained with an integration time of 400 ms.
The SERS spectrum of iSERS tags in DMEM was first

recorded and the mineral oil used for preparing microdroplets
was assessed.
After 1 h of coculture of iSERS tags, iMBs, and cells, EV-

proteins were produced, and they were captured by iMBs. By
applying a magnet, the in-drop iMBs could form a line, which
is a similar phenomenon to the report of Griffiths and co-
workers.28 Interestingly, we observed that the iMBs sponta-

Scheme 1. Schematic Design of the Single-Cell Analysis and Classification according to Multiplexed EV-Proteins Using the
Microdroplet-Based Self-driven Magnetic SERS Platform Assisted with Machine Learning Algorithmic Toolsa

a(A) A platform of microdroplet production using a polydimethylsiloxane (PDMS)-based microfluidic chip. Inlet 1: labeling probes (iSERS tags),
capturing probes (iMBs), and lysate. Inlet 2: cell suspension. Inlet 3: oil phase. (B) The microdroplet states with the incubation time. (a) A mixture
of iSERS tags, iMBs, and a single cell. (b) The iMBs are gathered on the cytomembrane of the target cell. (c) Immunosandwich structures.
Reaction process: (1) electrostatic attraction, and (2) lysis. (C) The platform of the single-cell SERS detection in microdroplets with the liquid seal
protection, the heterogeneity analysis of single-cell multiplexed proteins data set, and the classification of different cell lines from SERS spectra
information, using machine learning algorithms, including group clustering heat map, dimensionality reduction, PhonoGraph clustering, and
random forest.
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neously collected on the cytomembrane under the electrostatic
attraction without applying a magnet. We further performed
the in-drop SERS measurement on the iMB gathered cell
surfaces, which are also the locations of EV-proteins and iSERS
tags according to immune identification. For comparison, we
collected the SERS from the in-drop iMB lines applied by a
magnetic bar. Differences in SERS signal intensity between the
iMB lines or the IOA aggregates were compared. The mineral
oil liquid sealing was applied to prevent the droplets from
drying and breaking, making the immunoassay robust.
In addition, 20 SERS spectra of the single-cell droplet with

and without the cell lysis buffer were recorded. The mean
spectra were obtained to compare the effect of cell lysis buffer.
Spectral Treatments. Spectral pretreatments were per-

formed to obtain the single-cell data sets (Figure S5). First,
batch correction of baseline processing was applied to the
SERS spectra. Second, the characteristic peaks of the iSERS
tags labeling three EV-proteins as the three variable features
were extracted into row 1 of the single-cell data set.
Characteristic peaks from three Raman reporters were chosen
for their labeling proteins: 993 cm−1 for FAK, 1288 cm−1 for
CD9, and 1332 cm−1 for CD63. Third, the spectral intensities
corresponding to the three characteristic peaks were extracted
and normalized, and the normalized values were filled into the
corresponding positions in the blank of single-cell data sets.
Normalization aims to eliminate the difference in Raman peak
intensity and other errors caused by different Raman cross-
sections of the three probe molecules.
Several machine learning algorithmic tools were used: the

group clustering heat map uses color differences to represent
the similarities and differences between different samples.
Usually, the result of hierarchical clustering was added.
Dimensionality reduction, including principal component
analysis (PCA) and t-distributed stochastic neighborhood
embedding (t-SNE), was used. PCA reduces the dimension-
ality of a data set by recombining variables into principal
components (PCs). Biological variables are usually charac-
terized by highly complex relationships, such as polynomials.
Nonlinear dimensionality reduction algorithms can capture
more information than PCA.21,29 t-SNE captures nonlinear
relationships of local structures and places similar results in the
graph to perform different clusters. In the t-SNE result plot, the
degree of aggregation between different cell lines and the
expression of some variables in different cells could be
observed. The PhenoGraph algorithm, developed specifically
for the study of cancer cell heterogeneity, was developed using
a variant of Louvain clustering. The plurality of cells with
similarity to the single-cell data set should be clustered into a
class.30 Finally, to establish a model that can classify the two
types of cell lines, the random forest classification method was
used to train the data and test the model to verify the
classification accuracy. Data were processed using RStudio.

■ RESULTS AND DISCUSSION
Workflow of Single-Cell Analysis of Multiplexed EV-

Proteins. We performed microfluidic droplet technology to
produce water-in-oil microdroplets that envelop single cells to
realize single-cell analysis. The microfluidic chip consists of
two water-phase inlets and one oil-phase inlet. Cells and
probes were encapsulated in microdroplets by regulating the
flow rate and cell suspension density, and the cells within the
microdroplet were allowed to incubate and lysate without the
spatial crosstalk. SERS technology utilized the superposition of

various probe molecules to realize multiplexed detection. The
measurement of multiplexed analytes based on single cells
could be realized by combining SERS technology. As shown in
Scheme 1A, a single-cell suspension was mixed with iSERS tags
and iMBs in a cell lysis solution. After passing through the
intersection, the mixture was divided into picoliter droplets by
the oil phase. The initial state with iSERS tags, iMBs, and a
single cell in one droplet is shown in Scheme 1B(a).
Interestingly, we found that a spontaneous oriented movement
of iMBs happened in each droplet without applying a magnetic
bar, as displayed in Scheme 1B(b). Eventually, a great number
of iMBs gathered on the cell membrane surface, becoming
distinct dark aggregates surrounding the probed cell [Scheme
1B(c)].
Subsequently, EV-proteins were released from the lysed cell

and they were captured by the iMBs, followed by the reporter
probes to form immunosandwich structures. The incubated
microdroplets were then subjected to multiplexed SERS
detections (Scheme 1C). There are two main advantages to
this in-drop SERS detection due to the IOA of iMBs. One is
that a high SERS sensitivity will be achieved from the collective
iSERS tags that supply plenty of hotspots on an interface. The
other is that the iMB aggregates around the probed cell and
give a high imaging contrast under bright-field (BF) imaging,
which is convenient for laser focusing during the in-drop
measurements and makes the single-cell SERS detection more
robust. As shown in Scheme 1C, the tetraspanins of CD9,
CD63, and FAK were selected as biomarkers for single-cell
heterogeneity analysis and classification of two BC cell lines
(MCF-7and MDA-MB-231).
Characterization of iMBs and iSERS Tags. Our sensing

mechanism was based on the in-drop construction of
immunosandwich structures for different EV-proteins. Thus,
our probes used for this study were first enriched with
antibodies, followed by the unoccupied site blocking. The
citrate-coated AgNPs with a size of 54.15 ± 6.28 nm (Figures
1A, S6, and S7A) were chosen to prepare iSERS tags due to
their high SERS activity. Carboxyl MBs with a size of 200−300
nm were purchased from Zhengzhou Xiyan Biotechnology Co.,

Figure 1. (A) SEM image of AgNPs. (B) UV−vis spectra of AgNPs
and AgNP@probe@mAb. (C) Zeta potentials of AgNPs and MBs
before and after the monoclonal antibody modification (iSERS tags
and iMBs). (D) SERS spectra of a mixture of three iSERS tags. HTP,
MMTAA, and NTP represent FAK, CD9, and CD63, respectively.
The acquisition time was 2 s.
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Ltd. for preparing iMBs (Figure S7B,C). UV−vis spectroscopy
(Figure 1B) confirmed the antibody modification above the
surfaces of AgNPs, owing to the Ag plasmonic band changes.
The surface modifications of AgNPs and MBs with antibodies
were characterized by zeta potentials. Figure 1C shows that the
potential of MBs changes from −28.54 to −1.11 mV, while the
potential of AgNPs varies from −11.62 to −3.77, −2.6, or 3.1
mV, due to the antibody modification. It should be noted that
the iMBs display nearly neutral charges in this case. Figure 1D
shows the SERS spectrum of a mixture containing three iSERS
tags, in which HTP (993 cm−1, C−C in-plane bending31),
MMTAA (1288 cm−1, CH in-plane bending32), and NTP
(1330 cm−1, O−N−O stretching33) mark FAK, CD9, and
CD63 proteins, respectively, and the SERS spectra of each
probe are shown in Figure S8. All three Raman reporters have
large Raman cross-sections and exhibit distinguishable peaks,
which makes these iSERS tags applicable for multiplexed
detection.
SERS Amplification due to the IOA Effect. In many in-

drop immunoassays, additional carriers are needed, such as
polymer beads and MBs, which are enveloped with a single cell
in one drop to collect proteins and reporters.28 In this SERS
sensing system, we adopted MBs due to their controllable
collection, which can provide additional SERS amplification
from the formation of multiscale SERS hotspots.23 Interest-
ingly, we found that without a magnetic bar, they can start an
IOA behavior, which allows most iMBs to gather around the
target cell (Figures 2 and S9B), providing identifiable dark
aggregates around the probed cell.

We conjecture that the electrostatic attraction between the
neutrally charged iMBs and the negatively charged cytomem-
brane dominates this self-driven phenomenon.34,35 The
aggregates of iMBs at the biological interface are caused by
electrostatic attraction, and the binding dynamics of this
process can be explained by the Langmuir adsorption
equation.36,37 The negatively charged part of the cell surface
can absorb electrically neutral iMBs through electrostatic
interactions.
In the IOA effect, the neutral magnetic nanoparticles are

driven toward the negatively charged cell membrane by
electrostatic attraction and eventually accumulate on the
surface of the cell membrane, while this effect will fail under
the disturbance of external forces. When a magnet was applied

around the microdroplet, a noticeable MB line was formed
inside the microdroplet (Figures 2A and S9A).
During the sensing step, the iMBs will capture the EV-

proteins, followed by the recognition of iSERS tags, the
immunosandwich structures. When focusing a laser on the iMB
aggregates, the SERS signals from the iSERS tags will be
obtained. A comparison of SERS recorded above the iMB line
and IOA aggregates was carried out, and the results are
displayed in Figure 2C. It can be found that the IOA
aggregates exhibit higher SERS intensity than the iMB lines.
Such strong SERS enhancement can be attributed to the more
concentrated, multiscale hotspots formed in IOA aggregates,
involving nanogaps between the iSERS tags and the iMBs, or
among iSERS tags. For the iMB lines, nanogaps are dispersed
along the line, which leads to a relatively mild enhancement
activity for SERS.
During the SERS measurement, we can easily focus laser

spots on the collective iMBs in each microdroplet due to their
high imaging contrast. Differently, we found that the iMB line
was quickly destroyed by laser irradiation when recording
SERS spectra, but the IOA aggregate exhibits relatively higher
stability. Therefore, the subsequent experiments were carried
out in the IOA system, and the integration time was set as 0.4 s
to avoid photodamage.
The IOA of iMBs can be observed under the BF imaging. As

shown in Figure 3A, after a single cell mixed with iMBs, iSERS

tags, and lysate, the iMBs would be loaded onto the cell surface
within 5 min. At the same time, the lysate-stimulated cell starts
to release EV-proteins. Within the following 1 h, the iMBs
captured these EV-protein, followed by the iSERS tag fixing, to
form immunosandwich structures.
The reproducibility of the iMB loading above the cell surface

was verified. First, we counted the number of iMBs loaded on
the surface of 25 single cells by converting the BF images by
ImageJ software, since it determined the subsequent capture of
exosome proteins and SERS labels. Figure 3B shows that the
number of iMBs loaded on a single cell fluctuated around 140,
with a relative standard deviation of 4.77%. Subsequently, three
repeated experiments were conducted on the level test of three
proteins in a single cell, as shown in Figure 3C, and the results
showed good repeatability.
Single-Cell Heterogeneity Analysis by SERS. By using

the microdroplet SERS platform, we started the cell
heterogeneity analysis of two kinds of BC cells according to
their EV-proteins. Before in-drop SERS recording of immuno-
assays, DMEM and mineral oil used for preparing micro-
droplets were measured. Figure S10 shows the SERS spectra of
iSERS tags in DMEM, demonstrating that DMEM brings no

Figure 2. (A, B) Schematic diagram of the magnetic field driving and
the IOA effect, and the BF images of the iMB line or iMB aggregates
on the cytomembrane in a single microdroplet. The scale bars are 20
μm. (C) Comparison of SERS signals of the immunosandwich
structures in droplets, enhanced by a magnetic action-driven iMB line
(1) or iMB aggregates formed under two different incubation periods,
20 spectra, respectively (1 and 2).

Figure 3. (A) Loading time of the iMBs self-driving to the cell
membrane. The scale bar is 20 μm. (B) IntDen of single-cell loading.
(C) Reproducibility of three experiments.
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additional peaks that overlap with the Raman bands of
reporters. Also, mineral oil indicates no interference with the
spectral profiles of Raman reporters.
The single-cell heterogeneity analysis started with the in-

drop SERS measurements of iSERS tags collected by iMBs
above the cell surface. The cell was cocultured with lysate to
assist the EV-protein release. It should be noted that the cell
lysis buffer dose was set as 10 μL to keep the cell morphology
integrity. The effect of lysate for the in-drop single-cell assay
was also assessed. Figure S11 shows that the mean SERS
spectra from single-cell droplets with lysis and without lysis
display different natures, which indicates that the lysate is
conducive to the release of EV-proteins that can be bridges for
iSERS tags.
After this, spectral pretreatments were performed to obtain

the single-cell data sets, followed by machine learning
algorithmic tools. First, we performed the violin plots to
analyze the mean levels of three EV-proteins based on two
types of cells. Figure 4A shows the violin plots of the three EV-

protein levels of MCF-7 and MDA-MB-231 cell lines with the
normalized levels on the vertical axis. The median value in the
box (bright red dot) represents the overall situation (mean) of
the single-cell data, the scatter reflects the protein distribution
of individual cells, the violin waveform represents the degree of
concentration, and the box length of the violin shows the
degree of dispersion of the single-cell data. The p value analysis
shows a significant difference in the secretion of CD63/CD9
and FAK proteins in MCF-7 cells (p value < 0.05), and FAK
levels show significant differences between MDA-MB-231 and
MCF-7 cells. No significant differences are observed between
other proteins. Moreover, CD63 and CD9 show heteroge-
neous distributions among single cells, and the presence of
multiple peaks implies the existence of different subpopula-
tions, and these conditions may be related to the
heterogeneous distribution of tetraspanins in the exosomes of
individual cells.38

We performed the PCA method to evaluate the contribution
of the three variables to the overall difference of the single-cell
data set. The PCA results are shown in Figure 4B−D. The
interpretation degree of PC 1 is 72.1%, and the interpretation

degree of PC 2 is 18.1%. The variable correlation plots reveal
the correlation between the three exosomal proteins (Figure
4B), which helps find subpopulations that exhibit functional
similarity. The weakest correlation lies between CD9 and FAK,
indicating a lack of interaction between two proteins.39 There
was some positive correlation between CD9 and CD63,
indicating that their expressions are interrelated.40 These facts
emphasize the presence of a CD9+CD63+EV subpopulation.41 In
addition, we noticed that the difference between CD9 and
CD63 may be attributed to different intracellular origins, that
is, CD9 originates mainly from the plasma membrane, and a
small number of EVs carry CD9 in the endosomal machinery,
whereas CD63 is abundantly enriched in late endosomes.42

The heat map of the contribution of variables to the principal
component measured the importance of the original variables
to the PC (Figure 4C). FAK and CD9 have a strong
correlation for both PC1 (Dim.1) and PC2 (Dim.2) and need
to be prioritized in explaining the differences between these
two cell lines. In particular, results highlight the involvement of
FAK and the signaling events of FAK leading to the invasion
and metastasis of BC.43 This suggests that FAK proteins may
be a potential marker in distinguishing between different
subtypes of BC (metastatic vs nonmetastatic). The scatter plot
based on PCA analysis (Figure 4D) divides two cell lines
according to the concentrated ellipse, which provides poor
dimensionality reduction due to the weak correlation between
the original variables and the linear dimensionality of PCA.
To further assess the probability of heterogeneity in the

single-cell data set, we performed clustered heat maps, t-SNE,
and PhenoGraph clustering to find potential subgroups. The
subgroup clustering heat map reflects the differences and
similarities between samples through color changes and
dendrogram classification. Differences in single-cell protein
levels are noticed by color depths, with green and purple
representing high and low abundance. The dendrogram was
obtained by clustering based on the similarity of abundance.
Figures S12 and 5A show that the single-cell clustering heat
map and the population cell clustering heat map cluster the
data set into two subpopulations. The statistical results at the
single-cell level and the average level of the population cells
show that the levels of three EV-proteins are significantly
different between MCF-7 and MDA-MB-231 cells, where,
regarding the levels of tetraspanins, the CD9 level of MCF-7 is
higher than that of MDA-MB-231. The CD63 level of MDA-
MB-231 is also higher than that of CD63 levels of MCF-7.
There was no significant difference between CD63 and CD9 in
MCF-7 cells. The CD63 levels of MDA-MB-231 are much
higher than the CD9 levels. The results are consistent with
other EV-protein studies.44 Overall, CD63 levels are highly
expressed in both malignant BC subtypes, which is consistent
with previous reports.45 FAK is more frequently found in
metastatic BC subtypes, and the overexpression of FAK
highlights their role in BC invasion and metastasis.43

To further validate the heterogeneous distribution character-
istics of the single-cell data set, the data set was dimensionally
reduced. The t-SNE method takes the data on the relative
secretion levels of the three EV-proteins in each cell line group
as variables and projects them onto a two-dimensional plane,
where individuals with high similarity start clustering. The cell
colors encode the cell line types (Figure 5C) and their EV-
protein levels (Figure 5D−F). As seen in the t-SNE plots,
unlike the PCA results, two cell types can be well
distinguished. The distribution characteristics of MCF-7 cells

Figure 4. (A) Violin plots of the expression levels of three EV-
proteins from MCF-7 and MDA-MB-231 cells. The vertical
coordinate was a normalized value. (B) Variable correlation plot.
(C) Heat map of the contribution of variables to the principal
component. (D) PCA plot, the pink points represent the MCF-7 cell
line and the blue points represent the MDA-MB-231 cell line.
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are different from those of MDA-MB-231 cells, which are more
dispersed overall. Figure 5D−F directly shows the horizontal
distributions of three proteins, and it can be seen that some
subpopulations are similar in the expression levels of the three
proteins.
Furthermore, cluster analysis was performed using the

single-cell data set. Unlike the clustering results of the single-
cell heat map, as shown in Figure 5B, the single-cell data sets of
two cell lines are divided into four subgroups by PhenoGraph
clustering, in which, in subgroup 1, the levels of all three
proteins are at high levels in single cells (Figure 5F−D) and
most of them are derived from MDA-MB-231 cells. The other
subgroups (2, 3, and 4) distribute in the coordinates of both
cell lines, suggesting that the exosome protein level may be
close in two cell lines. Among them, CD9, CD63, and FAK in
subgroup 3 show moderate levels, while they present low levels
in subgroup 2. In group 4, CD63 and CD9 are at moderate
levels, and FAK is at low levels. The heterogeneity of EV-
protein explained these differences in protein levels between
subgroups.46

Classification of Two BC Cell Lines. We constructed
classifiers for distinguishing different subtypes of BC cell lines.
As shown in Figure 6A, 500 decision trees are generated by
randomly selecting 70 observations by the random forest
algorithm and 1 variable from the classification nodes. The
error rate of the classifier is 18.57%, in which 88.89% of MCF-
7 cells and 73.53% of MDA-MB-231 cells are correctly
classified. The constructed classifier was tested on the training
and test set samples, as shown in Figure 6B,C. The random
forest classifier could classify the training set samples
accurately, both 100%, and the classification accuracy of the
test set samples are 100% (MCF-7 cells) and 87.5% (MDA-
MB-231 cells), respectively. In Figure 6D, the ROC curve was
used for evaluating the accuracy of the classifier with an AUC
(area under the curve) value of 0.938, which is close to 1,
indicating the good performance of this classifier. To assess the
importance of each protein in the classification model, the

variables were characterized using MDA (mean decrease
accuracy) and MDG (mean decrease Gini), and CD9 proteins
show critical importance with FAK proteins, as shown in
Figure 6E, which are consistent with the PCA results. In
addition, we can observe that CD63 is not distinguishable
between the two cell lines, which may attribute to the fact that
CD63 expression is comparable in all malignant cells.42 In
conclusion, with the random forest model, key EV-proteins
could be screened as biomarkers to distinguish between these
two BC cell lines.

■ CONCLUSIONS
In summary, we established a microfluidic droplet-based
multiplexed SERS method to analyze EV-proteins at the
single-cell level. The key to this method is the IOA effect,
which can collect the target protein as well as the iSERS tags
by converging iMBs on the probed cell membrane surface,
enabling the enrichment of dispersed proteins to the detection
spots, while allowing signal amplification by forming hotspots
to improve the in-drop detection sensitivity. The IOA process
was easy to prepare samples and fast to detect. Using this
technology, we studied three EV-proteins from two BC cell
lines and the results evidenced that this IOA-based platform
can trace the EV-proteins of an individual cell. We also
introduced machine learning algorithms to discover the
presence of different subpopulations in the single-cell data
set and to analyze the association between different proteins.
Based on the single-cell data set, different performance
characteristics of different subpopulations were found,
confirming the presence of heterogeneity in single cells.
Furthermore, we validated FAK and CD9 to be key biomarkers
in distinguishing two BC cell lines. In addition to the detection
of different EV-proteins presented in this protocol, the use of
this platform also allows metabolic analysis at the single-cell
level as well as drug analysis through probe molecule−analyte
interactions.

Figure 5. (A) Group clustering heat map of population cell data,
clustering by rows. (B) PhenoGraph clustering resulted from single-
cell data sets in the coordinate of t-SNE, colored by four subgroups.
(C) t-SNE plot, each point represents a single cell, turquoise points
are MCF-7 cells and pink points are MDA-MB-231 cells. (D, E, and
F) EV-protein of FAK, CD63, and CD9 levels in the two cell lines in
the coordinate of t-SNE.

Figure 6. (A) Random forest error rate matrix. (B) Classifier tested
with the training set. (C) Classifier tested with the test set, the units
are in %. The training set and a test set are randomly divided by the
“createDataPartition” function in R language, setting 80% as the
training set and 20% as the test set. (D) Dichotomous receiver
operator characteristic (ROC) curve of a classifier. (E) Importance
rankings of three variables using the MDA and MDG index.
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