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Abstract

Permanent magnet synchronous motors (PMSMs) have expectant low-speed servo per-
formance. However, complex nonlinear disturbances restrict the performance and lead
to speed fluctuations, especially for small inertia PMSMs where the current-loop can-
not be used in special operating conditions. This paper divides complex disturbances
into periodic determinable disturbances and other indeterminate disturbances according
to their characteristics. A refined anti-disturbance control (RADC) method is proposed
to enable the inner loop to compensate for disturbances in targeted manners. Then
ideal low-speed servo can be achieved using a simple outer loop controller. The pro-
posed RADC consists of two parts. One is a backpropagation neural network based
periodic disturbances compensator that is trained using the data from an iterative learn-
ing controller. The other is an adaptive sliding-mode-assisted disturbance observer that
rapidly observes and compensates the residual disturbances. The convergence of the
overall algorithm is analyzed. The effectiveness of the proposal is also verified by
experiments.

1 INTRODUCTION

Permanent magnet synchronous motor (PMSM) has the advan-
tages of a simple structure, high power factor, high energy
utilization, fast dynamic response and especially great low-speed
performance. It has been widely used in high-precision machine
tools, robotics, electric vehicles, and aerospace [1]. However,
some PMSMs are complex controlled objects with multivari-
able, strong coupling, nonlinearity and variable parameters [2,
3]. Meanwhile, its defects such as cogging torque and shaft
friction, as well as parameter uncertainties and environmental
disturbances are inevitably introduced into the system. These
multi-source disturbances seriously affect the low-speed con-
trol performance, especially for the condition of small inertia
and load [4].

With the increasing requirements for control accuracy, reli-
ability and real-time, the traditional control algorithm can no
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longer meet the requirement. To improve the servo control per-
formance, anti-disturbance is the core. Some nonlinear control
theories have been proposed and developed, such as iterative
learning controller (ILC) [5], neural network control [6], sliding
mode control (SMC) [7] etc. These control methods have been
used in PMSM speed control systems.

ILC has the mechanism of memory storage and feedback
correction. This algorithm only needs the error value of the
past time, and it does not need the specific parameters of the
system. The core idea of ILC is to use the last output of the
controller and the current error to correct the current output
of the controller to achieve the purpose of suppressing periodic
disturbances. It is described as a “modeless” or “data-driven”
control method [8, 9]. Compared with traditional controllers,
the ILC has strong adaptability and repeatability, and the opti-
mal control quantity can be obtained through the learning
law. An improved ILC was proposed in ref. [10]. Compared
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with conventional ILC, this method combined with a classical
PID speed controller further suppressed the speed fluctuation
caused by torque ripple through Fourier series expansion in the
frequency domain.

However, ILC takes several iterations to achieve distur-
bance suppression, which needs a longer time. Secondly,
ILC only has an obvious inhibition effect on periodic dis-
turbances. ILC is sensitive to the uncertainty of system
parameters, which makes it have a weak anti-disturbance capa-
bility. There are various uncertain and abrupt disturbances in
the actual working condition, and these disturbances will also
be introduced into the control quantity through the learning
law [11].

The neural network realizes the mapping function from input
to output, and it is also successfully used in the PMSM con-
trol [12]. Some neural networks have simple structures, strong
plasticity, clear mathematical meaning, and clear learning steps,
and have very good advantages in function approximation,
pattern recognition etc. A neural network can realize com-
plex nonlinear mapping. By training the neural network with
a large amount of data, the network structure and neuron
parameters can be obtained, which is particularly suitable for
solving problems with complex internal mechanisms. How-
ever, solely relying on a neural network is still unable to cope
with complex and time-varying disturbances for PMSM servo
control.

To improve the anti-disturbance, SMC is a feasible solution
that has strong robustness [13]. It shows good control perfor-
mance in nonlinear systems and has become a research hotspot.
In ref. [14], SMC has been successfully applied to PMSM and
achieved a good control effect. However, the discontinuous
switching characteristics of SMC make it inevitable to have chat-
tering which not only affects the accuracy of the system but
also accelerates energy consumption. To reduce the chattering
of the sliding mode controller, scholars have proposed various
improved schemes. A new approach law was designed in ref.
[15]. A fuzzy control method was introduced to adjust the gain
of SMC in real-time in ref. [16]. Besides, an adaptive sliding
mode controller (ASMC) was designed to estimate the switching
gain using an adaptive law to reduce system chattering caused by
a fixed switching gain in ref. [17].

These anti-disturbance methods are feasible for any distur-
bances. However, it also means great conservatism in the design
of the control algorithm. The desired low-speed tracking of
the PMSM cannot be achieved by simply using one of the
ILC, SMC, or BPNN algorithms or a simple superposition of
them. In fact, the actual PMSM servo control system can be
described as a mathematical model with multi-source distur-
bance. Some disturbances have their own patterns of changing.
Considering these characteristics is quite helpful to decrease
the conservatism.

The composite hierarchical anti-disturbance control
(CHADC) theory was proposed for multi-source distur-
bance rejection based on disturbance classification modelling
and expounded the idea of combining disturbance observer
(DOB) with other anti-disturbance control methods to deal
with multiple disturbances [18, 19]. Its main purpose is to

analyze the characteristics of various disturbances, make full
use of the characteristics to carry out classification modelling
and adopt different methods to achieve better disturbance
compensation.

The idea of CHADC can be separated into two layers. The
inner layer includes a DOB and an additional disturbance com-
pensator, and the outer layer includes a disturbance rejection
controller. This hierarchical structure not only simplifies the
design and analysis but also improves the control accuracy of
the system. The above CHADC is now regarded as a refined
anti-disturbance control (RADC) method that is customized
[20]. However, CHADC still has its shortcoming. The use of
DOB in the low-frequency domain can well realize the compen-
sation of equivalent interference and improve the performance
of the motor system. However, it cannot compensate for the
high-frequency components of the disturbance such as sudden
external force and coulomb friction of the motor [21]. A sliding
mode assisted disturbance observer (SMADO) was proposed
by skillfully combining SMC with DOB [22]. It uses the sliding
mode technique to assist the DOB to estimate and compen-
sate for the wide-bandwidth disturbances. Then, a new control
method is expected by systematically combining both the ideas
of RADC and SMADO.

To improve the low-speed servo performance of the PMSM
when the current-loop-free control method is used, this
paper considers the various complex disturbances as periodic
determinable disturbances and other indeterminate residual dis-
turbances. A new method of RADC is proposed. When this
method is added to the system as an internal loop control, the
system can illustrate an expected highly linear characteristic even
though there are complex various disturbances. The conver-
gence is proved. Besides, the effectiveness of the proposal is
also verified by objective experiments. The main contributions
of this paper are as follows:

(i) A BPNN-based offline disturbance compensator is
designed to realize a refined, accurate and fast distur-
bance rejection by training with the data from an ILC. The
effect of periodic determinable disturbances on the system
is reflected in the output of an ILC. Therefore, an ILC is
designed to obtain optimal training datasets rather than
being used as the final controller. These datasets are used
to train the BPNN to fit a function between the periodic
disturbance and position response of the PMSM.

(ii) To further compensate for the residual indeterminate
disturbances, an ASMADO with BPNN-based refined
compensator is designed. The rapid switching action pro-
vides the ability to deal with the high-frequency component
of the residual disturbance that DOB cannot observe. This
method eliminates the difference between the expected
dynamics and the actual dynamics of the PMSM. More-
over, a piecewise adaptive switching gain is designed. When
the state of the system deviates from the preset bound-
ary, a large and fixed switching gain is given immediately.
If the state of the system is within the boundary, the switch-
ing gain is determined by the adaptive law and gradually
attenuates to zero, thus reducing the chattering.
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WANG ET AL. 1607

The main contents of the following sections are given below.
Section 2 gives the mathematical model of the PMSM. Section 3
presents the design of the RADC. In Section 4, the convergence
of the RADC is analyzed using Lyapunov functions. Section 5
shows the experimental results. Finally, Section 6 concludes the
whole paper.

2 PROBLEM FORMULATIONS

2.1 System modelling

In order to analyze the speed control system of PMSM, the
mathematical model is established.

The mechanical motion equation of PMSM is:

d𝜔m(t )
dt

=
1
J

[T e(t ) − B𝜔m(t ) − TL(t )], (1)

where, 𝜔m denotes the mechanical speed, T L is the load
torque, T e is the electromagnetic torque, J and B repre-
sent the equivalent moment of inertia and equivalent damping
coefficient, respectively.

In this paper, id = 0 control strategy is adopted, and id is the
d -axis component of stator current. Then the electromagnetic
torque equation is:

T e(t ) =
3
2

p𝜓f(t )iq (t ) = K tiq (t ), (2)

where, p represents the number of pole pairs, 𝜓f denotes
the permanent magnet flux linkage, Kt is the motor torque
coefficient, and iq is the q-axis component of stator current.

Considering the actual PMSM, it is difficult to satisfy the strict
symmetry, i.e. the three-phase windings and equivalent induc-
tances are not identical. The presence of this asymmetry leads
to a more complex coupling of the current equations in the d –q

axes after a mathematical transformation.[
ud

uq

]
=

[
Rs + ΔRd 1 ΔRq2

ΔRd 2 Rs + ΔRq1

][
id

iq

]

+

[
Ld + ΔLd 1 ΔLq2

ΔLd 2 Lq + ΔLq1

]⎡⎢⎢⎢⎣
did
dt
−𝜔e iq

diq

dt
+𝜔e id

⎤⎥⎥⎥⎦+ 𝜔e

[
𝜓d

𝜓q

]
.

(3)

where ud and uq are the d –q axes components of the stator
voltage, respectively, Ld and Lq are the d –q axes equivalent
inductances, respectively, Rs is the stator resistance, 𝜔e is the
electrical angular velocity. 𝜓d and 𝜓q are the d and q axes
components of the stator magnetic flux linkage, respectively.
And ΔRi , as well as, ΔLi represent the parameter uncertainties
caused by asymmetry, respectively.

When magnetic field orientation control is used in an ideal
permanent magnet synchronous motor, the q-axis magnetic flux

linkage 𝜓q is equal to the permanent magnet flux linkage 𝜓f and
contains only the DC component, i.e.[

𝜓d

𝜓q

]
=

[
0

𝜓f

]
. (4)

However, due to core saturation and permanent magnet man-
ufacturing errors, it is difficult to achieve an ideal sinusoidal
flux density distribution for the flux harmonics. Combining
Equations (3) and (2), flux harmonics cause distortions in the
current, which cause electromagnetic torque pulsation. And
Equation (1) shows that torque pulsation causes speed pulsa-
tion. At this point, the magnetic flux linkage generated by the
three-phase current is represented in the d –q coordinate system
as [10]:

[
𝜓d (𝜃e)

𝜓q (𝜃e)

]
=

⎡⎢⎢⎢⎢⎢⎣
𝜓d 0 +

∞∑
i=1

𝜓dicos(6i𝜃e)

𝜓q0 +

∞∑
i=1

𝜓qicos(6i𝜃e)

⎤⎥⎥⎥⎥⎥⎦
, (5)

where 𝜓d 0 and 𝜓q0 are the DC components of the stator mag-
netic flux linkage in the d axis and q axis respectively, 𝜓di and
𝜓qi are the amplitudes of the ith harmonic flux linkage, and 𝜃e
is the electrical angle.

At the same time, cogging torque in the PMSM can also cause
periodic fluctuations in the electromagnetic torque, which can
cause speed fluctuations in the steady state and affect the con-
trol accuracy of the motor. The torque pulsation due to the
cogging effect is a periodic function of the rotor position and
can be expressed in the Fourier series as [23]:

Tcog(𝜃) =
∞∑
j=1

Tj sin(m j𝜃), (6)

where 𝜃 = 𝜃e∕p is the mechanical angular position, Tj is the
Fourier coefficient and m is the least common multiple of the
number of stator slots and the number of poles.

Since the rotational inertia and damping coefficients of the
motor are not constant coefficients, and the parameters usu-
ally obtained by system identification are constants, Equation (1)
can be expressed as:

(Jn + ΔJ )
d𝜔m(t )

dt
+ (Bn + ΔB)𝜔m(t ) = T e(t ) − TL(t ), (7)

where Jn and Bn are the equivalent nominal rotational iner-
tia and equivalent nominal damping coefficients, respectively,
obtained by identifying the system, and ΔJ and ΔB denote the
uncertainty part of the parameters, respectively.

In addition, the use of control with the current-loop in spe-
cial cases can bring disadvantages to the servo system, such as
parameter mismatch in the current loop, current measurement
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1608 WANG ET AL.

errors, power device tube voltage drop, air-gap magnetic field
distortion, and dead time of the inverter can lead to a large
number of harmonic components in the stator current, and
these current harmonics can lead to periodic oscillations in
the steady state of the speed, thus reducing the operational
performance of the servo control system [24]. However, the
simple removal of the current loop and the use of only a speed-
loop control leads to problems such as low control stiffness
and large torque fluctuations. This paper, therefore, uses a
current-loop-free control method based on space vector pulse
width modulation (SVPWM) for velocity closed-loop control
research.

In summary, the lumped disturbance d (t ) includes d –q inter-
axes current coupling, parameter uncertainty, flux harmonics,
cogging torque, shaft friction, and other non-determinable
non-linear disturbances. In this paper, the above disturbances
are briefly classified according to their characteristics and the
lumped disturbance d (t ) is divided into two categories: peri-
odic disturbances d p(t ) and other non-periodic disturbances
dother(t ).

d (t ) = dp(t ) + dother(t ). (8)

Besides, to make the control program generic (i.e. the pro-
gram can still be directly ported and used if the inverter is
powered by a different DC bus voltage.), the control pro-
gram in this paper makes use of the normalisation method,
using a 16 bit signed fixed-point number as the control input,
then the mechanical equations of motion of the motor can be
transformed into:

Jn
d𝜔m(t )

dt
+ Bn𝜔m(t ) = u(t ) + d (t ), (9)

where u(t ) denotes the equivalent control input.

2.2 Control objectives

The control objective of this paper is to use the RADC
method to improve the immunity of a specific controlled
object to disturbances and to reduce velocity fluctuations in the
absence of current-loop control. For the periodic determinable
disturbance d p(t ) and the other non-periodic indeterminate dis-
turbance dother(t ), their equivalent disturbances are obtained
using function fitting and observation, respectively, and targeted
compensation is performed in the control inner loop.

Jn
d𝜔m(t )

dt
+ Bn𝜔m(t ) = u(t ) + d (t ) −d̂ p(t ) −d̂ other(t ). (10)

3 REFINED ANTI-DISTURBANCE
CONTROL OF PMSM

For the complex disturbances of PMSM, we develop the RADC
method to compensate for and suppress the disturbances. The

overall control algorithm contains a compensator for peri-
odic disturbances and a compensator for residual disturbances.
These two parts constitute the refine anti-disturbance internal
loop control. In practice, an additional outer-loop controller,
such as a PID controller, is easy to design. In the following
representation, we will omit the argument t . And bold fonts
represent vectors.

3.1 Compensation for periodic disturbances

BPNN adopts supervised learning. Therefore, when using
BPNN to fit the nonlinear relationship between the angular
position and the periodic determinable disturbance of PMSM,
it is required that mechanical angular position 𝜃 is the input
dataset and the disturbance d p is the output dataset. Moreover,
the datasets need to reflect the relationship to be fitted as fully
as possible, so that the generalization ability of BPNN can be
used to make correct predictions for the data that is not in the
training samples. Therefore, an ILC for PMSM based on the
space domain is designed with the help of the ILC’s ability to
restrain periodic disturbances, to obtain more comprehensive
input and output datasets of BPNN. The block diagram of ILC
is shown in Figure 1, where k is the iterations (k = 1, 2, 3, …),
ek is the velocity error, Memory1 and Memory2 represent
arrays used to store control quantity. Select the correspond-
ing array to store or read the control quantity according to the
value of k.

As we know, the larger the capacity of the array, the
more data can be stored, and the better the learning effect.
But the stored data will occupy a lot of resources of the
chip. In this paper, the control quantity at the integer angle
and half angle is stored when the motor rotates at a low
and constant speed. Each revolution of the motor is an
iteration cycle. The motion of any position of the motor
in this iterative learning process is compensated by linear
interpolation through the control quantity stored in the last
iteration cycle, to achieve the effect of restraining the periodic
disturbances.

Store the control quantity:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Memory[0] = uk−1(0)

Memory[1] = uk−1(0.5)

⋮

Memory[n] = uk−1

(
n

2

)
⋮

Memory[719] = uk−1(359.5)

, n = 0, 1, 2, … , 719, (11)

where uk−1(
n

2
) represents the control quantity of ILC output at

position 𝜃 =
n

2
at iteration k − 1.
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WANG ET AL. 1609

FIGURE 1 Block diagram of ILC, data sampling, and BPNN training.

Read the control quantity stored in the last iteration:

uk−1(𝜃) = 2(Memory[⌊2𝜃⌋ + 1] −Memory[⌊2𝜃⌋])

×

(
𝜃 −

⌊2𝜃⌋
2

)
+Memory[⌊2𝜃⌋], 𝜃 ∈ [0, 360◦ ),

(12)

where ⌊∗⌋ represents rounding down function.
The ILC Law is

⎧⎪⎨⎪⎩
ek(𝜃) = 𝜔d(𝜃) − 𝜔k(𝜃),

uk(𝜃) = uk−1(𝜃) + Pek(𝜃) + I ∫ ek(𝜃)dt ,
(13)

where 𝜔k is the mechanical angular velocity of the motor in
the process of iteration k, 𝜔d is the speed command, P and
I represent the proportional and integral learning gain of ILC
respectively.

Remark 1. The ILC used in the paper is not directly applied to
the final RADC controller. And ILC, as a well-established appli-
cation in the field of control, has proven its stability in several
papers. I add an analysis of the stability of the ILC in the form
of a remark.

L(s) is the learning law function, and G (s) is the controlled
object.

L(s) =
Ps + I

s
, (14)

G (s) =
1

Js + B
, (15)

that

𝜔(s) =
(Ps + I )𝜔d(s) + suk−1(s)

Js2 + Bs + Ps + I
, (16)

where J > 0, B > 0, P > 0, I > 0, so in the same iteration, the
system is stable according to Routh stability criterion.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

uk(s) = uk−1(s) + L(s)ek(s),

ek−1(s) = 𝜔d(s) − 𝜔k−1(s),

𝜔k−1(s) = G (s)uk−1(s),

𝜔k(s) = G (s)uk(s).

(17)

Combining Equation (17), the transfer function of error
changes with the number of iterations can be expressed as:

ek(s) = 𝜔d(s) − 𝜔k(s) =
1

1 + G (s)L(s)
ek−1(s). (18)

Convergence analysis of ILC from the perspective of the
frequency domain.

‖ ek( j𝜔)
ek−1( j𝜔)

‖∞ = ‖ 1
1 + G ( j𝜔)L( j𝜔)

‖∞ ≤ r ≤ 1. (19)

Equation (19) is the convergence condition of ILC. In the sat-
isfied frequency band, e0( j𝜔) exists at the beginning of the first
iteration. When k→∞, the error approaches 0, that is,

‖ek( j𝜔)‖∞ = ‖ 1
1 + G ( j𝜔)L( j𝜔)

‖k
∞‖e0( j𝜔)‖∞

≤ rk‖e0( j𝜔)‖∞ → 0.

(20)

The more iterations, the better the control accuracy. With
the increase of iterations, when the change of control effect
is not obvious in the K th iteration, according to the principle
of equivalence, the angular position of the motor and the con-
trol quantity uK are sampled by the serial interface at a sampling
frequency f .

When the speed command 𝜔d is constant, the periodic deter-
minable disturbance can be considered as a higher-order angular
position function. The DC component of the control quantity
that is used to keep the motor rotating at a constant speed is
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1610 WANG ET AL.

TABLE 1 Functions and algorithms setting of BPNN.

Functions and algorithms Values

Transfer function of hidden layers Tansig

Transfer function of output layer Purelin

Training algorithm Trainlm (Levenberg–Marquardt)

Performance algorithm MSE (mean squared error)

removed and the AC component is extracted.{
uAC,K (𝜃) = uK (𝜃) − ūK ,

up(𝜃) = −uAC,K (𝜃).
(21)

As shown in Equation (21), ūK represents the mean value of the
data set of uK (𝜃), and up(𝜃) is the value of the periodic deter-
minable disturbance d p equivalent to the control quantity when
the angular position is 𝜃, which is bounded.

As shown in Figure 1. Let up replace d p as the output dataset
of training BPNN. By learning the input and output datasets,
BPNN uses the error backpropagation algorithm to minimize
the mean square error of the network and to identify the func-
tional relationship Dp(𝜃) between the input and output of the
system. And D̂p(𝜃) is the fitting result of BPNN. Table 1 lists
the functions and algorithms used in BPNN training.

The number of nodes in the input layer and output layer of
the network is determined according to the actual problem. The
number of hidden layers and their nodes have a great impact
on the performance of BPNN. Generally, too few hidden layers
and hidden layer nodes will make the network unable to learn.
More hidden layers and nodes may bring better performance
and reduce error to a certain extent. However, it will undoubt-
edly lead to a long calculation time. The network may also be
overfitting. It is worth noting that there is no ideal method
to determine the number of layers and nodes of the hidden
layer [25]. And it is mostly determined by the experience of the
designer and a large number of training results. As shown in
Figure 2, taking the BPNN with three hidden layers, a single
input and a single output as an example, the identification result
can be expressed as:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

o1 = f 1(w1𝜃 + b1),

o2 = f 1(w2o1 + b2),

o3 = f 1(w3o2 + b3),

d̂ p = f 2(w4o3 + b4),

(22)

where w represents the weight parameter, b represents the off-
set parameter, o is the output of each node, f 1(∗) and f 2(∗)
are transfer functions of hidden layer nodes and output layer
nodes, respectively.

When the neural network converges, the periodic deter-
minable disturbance function identified by BPNN is approx-
imate to the actual disturbance function, and the disturbance

compensation value also approximates the real disturbance, i.e.

d̂ p → dp. (23)

3.2 Compensation for residual disturbances

To further improve the control performance of the PMSM low-
speed servo system, ASMADO is designed. The ASMC method
is used to assist DOB to estimate and compensate for the high-
frequency disturbance that cannot be compensated. At the same
time, the adaptive law is used to estimate the switching gain of
the SMC. The block diagram is shown in Figure 3.

⎧⎪⎨⎪⎩
𝜉̇ = −g𝜉 − g(−Bn𝜔m + un + gJn𝜔m),

d̂ DOB = 𝜉 + gJn𝜔m,
(24)

where, d̂ DOB is the observation value of DOB, g is the cut-off
angle frequency of DOB, 𝜉 is the state variable of DOB.

The periodic determinable disturbance d p and its compen-
sation d̂ p are bounded. According to Equation (23), we define
d̃ p as the part of periodic determinable disturbance that is not
compensated by d̂ p, and it is bounded. So

d̃ p = dp −d̂ p. (25)

Next we define dres is the residual disturbance,

dres = dother +d̃ p. (26)

And there is an estimation errord̃ res between dres andd̂ DOB, i.e.:

d̃ res = dres −d̂ DOB. (27)

The nominal dynamic model can be described as follows:

Jn𝜔̇n + Bn𝜔n = un +d̂ DOB +d̂ ASMC. (28)

where, d̂ ASMC is the compensation amount of ASMC for d̃ res.
The observed value of ASMADO is

d̂ res = d̂ DOB +d̂ ASMC, (29)

To design d̂ ASMC, nominal error en is defined as follows:

en = 𝜔m − 𝜔n. (30)

Design sliding mode surface:

s = en + c ∫ endt , (c > 0), (31)

ṡ =
d̃ res −d̂ ASMC − Bnen

Jn
+ cen. (32)

By ṡ = 0 and d̃ res = 0 gets equivalent d̂ ASMC1
:

d̂ ASMC1
= Jncen − Bnen. (33)

 17554543, 2023, 9, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/pel2.12501 by C

as-C
hangchun Institute O

f O
ptics, Fine M

echanics A
nd Physics, W

iley O
nline L

ibrary on [17/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



WANG ET AL. 1611

FIGURE 2 Identification result of BPNN.

The switching term is designed as follows:

d̂ ASMC2
= 𝜆sgn(s) + 𝛽s, (𝛽 > 0), (34)

where sgn(∗) is a symbolic function.

sgn(s) =

⎧⎪⎪⎨⎪⎪⎩
1, s > 0,

0, s = 0,

−1, s < 0.

(35)

To adjust the switching gain ofd̂ ASMC2
to weaken the difference

between the expected and actual dynamics caused by error d̃ res,
the switching gain is designed as follows:

𝜆 =

{
𝜂, |s| < 𝜈,
Λ, |s| ≥ 𝜈, (36)

here, Λ ∈ ℝ+ is a constant, Λ > 𝜂, and parameter 𝜈 ∈ ℝ+ is a
threshold, which determines the thickness of the sliding mode
boundary layer. 𝜂 is the upper bound ofd̃ res, which is unknown.
When |s| < 𝜈, the estimated value 𝜂 of 𝜂 is used as the switching
gain of ASMC. The adaptive algorithm is used to estimate 𝜂, and
the adaptive law is as follows:

̇̂𝜂 =
𝜎1

Jn
|s| − 𝜎2

Jn
𝜂, (𝜎1, 𝜎2 > 0). (37)

According to the design principle of ASMC, the compensation
value is

d̂ ASMC = d̂ ASMC1
+d̂ ASMC2

. (38)

According to the theory of ASMADO, the observation error of
ASMADO can be expressed as:

Δ = d̂ ASMC −d̃ res → 0. (39)

In other words,

d̂ res → dres. (40)

By using the proposal, the overall control block diagram is
illustrated in Figure 3. The internal loop is the proposed RADC
that compensates for both the periodic determinable distur-
bance and indeterminate residual disturbance. The outer loop
uses a normal PI controller to realize a speed servo. The flow of
the RADC implementation is shown in Figure 4.

4 STABILITY PROOF OF THE
PROPOSED REFINED
ANTI-DISTURBANCE CONTROL
METHOD

In order to prove the stability of RADC, an assumption and
three lemmas are given:
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1612 WANG ET AL.

FIGURE 3 PMSM control block diagram based on RADC.

FIGURE 4 Flowchart of the proposed method.

Assumption 1. The time derivative of dres is assumed to be
bounded though it is unknown, which means that there is a
positive constant satisfying the following condition:

|ḋres| ≤ 𝜅. (41)

dres is considered to change slowly compared to the
system state in every sampling period. Thus, it can be
assumed that ḋres is a bounded signal from the perspec-
tive of practical engineering, even though it is unknown
[26].

Lemma 1 [27]. A first order nonlinear differential inequality is given

as:

V̇1(y) ≤ −𝜏1V
𝜒1

1 (y), (42)

where, V1(y) represents a semi positive definite Lyapunov function,

y ∈ ℝ, 𝜏1 > 0, 0 < 𝜒1 < 1. Then, for any given initial condition

V1(y(0)) =V1(0), function V1(y) converges to 0 at the time given

below:

t1 ≤ V
1−𝜒1

1 (0)

𝜏1(1 − 𝜒1)
. (43)

Lemma 2 [28, 29]. For nonlinear systems 𝛼̇ = f (𝛼, 𝛽), among 𝛼
is the state vector, 𝛽 is the input vector, assuming 𝜏2 > 0, 0 < 𝜒2 < 1,

and 0 < 𝜌 < ∞, then, a positive definite continuous function V (𝛼) will

satisfy Equation (44).

V̇2(𝛼) ≤ −𝜏2V
𝜒2

2 (𝛼) + 𝜌. (44)

The trajectory of the system is stable, and the arrival time t2 has the

following restriction:

t2 ≤ V
1−𝜒2

2 (𝛼(0))

𝜏2𝜛(1 − 𝜒2)
. (45)

where, 0 < 𝜛 < 1.
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WANG ET AL. 1613

Lemma 3. For A = [𝛼1, 𝛼2, … , 𝛼n]T ∈ ℝn, the following inequal-

ity holds:

(𝛼2
1 + 𝛼

2
2 +⋯+ 𝛼

2
n )

1

2 ≤ (|𝛼1| + |𝛼2| +⋯+ |𝛼n|). (46)

To prove the stability of RADC, we give the following
theorem.

Theorem 1. Based on the condition given in Assumption 1, the

proposed RADC is stable, and d̃ res, s, and en are ultimately uni-

formly bounded and will also converge to the neighbourhood of zero in

finite-time.

Proof. The process of proving the stability of the RADC is
divided into the following three steps. □

The periodic disturbance d p is bounded. From Equation (22)
it follows that the compensation value d̂ p of periodic distur-
bance is also bounded. Combining Equations (23) and (25) that
the norm of d̃ p is bounded, i.e.

‖d̃ p‖ = 𝛾. (47)

Step 1: It is proved that the error d̃ res converges to a bounded
set in the domain d̃ res = 0. The following Lyapunov
functions are constructed:

V3 =
1
2
d̃

2
res. (48)

Combined Equations (24) and (27), taking the time
derivative of V3.

V̇3 = d̃ res
̇̃dres

= d̃ res(ḋres −
̇̂dDOB)

= d̃ res[ḋres − (𝜉̇ + gJn𝜔̇)]

= d̃ res[ḋres − gd̃ res]

= d̃ resḋres − gd̃
2
res.

(49)

Although the time derivative of dres is unknown,
it is assumed to be bounded, which means that
there is a positive constant 𝜙 meet |ḋres| ≤ 𝜙,
therefore,

V̇3 ≤ 𝜙|d̃ res| − gd̃
2
res = −|d̃ res|(g|d̃ res| − 𝜙). (50)

If |d̃ res| ≥ 𝜙+𝜏3

g
, and 𝜏3 > 0, then,

V̇3 ≤ −𝜏3|d̃ res| = −√2𝜏3V

1

2
3 . (51)

According to Lemma 1, Equation (51) satisfies
the convergence criterion. The error |d̃ res| con-

verges to the neighbourhood of d̃ res = 0 at time t3 =√
2V

1

2
3 (0)∕(𝜏3).

Step 2: After time t3, to prove the stability of the proposed
ASMADO, construct another Lyapunov function as
follows:

V4 =
d̃

2
res

2
+

s2

2
+
𝜂2

2𝜎1
. (52)

Where, 𝜂 = 𝜂 − 𝜂, and 𝜂 ≥ |d̃ res| + m with m > 0. The
time derivative of V4 is

V̇4 = d̃ res
̇̃dres + sṡ −

𝜂 ̇̂𝜂

𝜎1

= d̃ res (ḋres − gd̃ res ) + s(ėn + cen) − 𝜂

(|s|
Jn
−
𝜎2

Jn𝜎1
𝜂

)
= d̃ res (ḋres − gd̃ res ) +

s

Jn
[d̃ res − 𝜂sgn(s) + 𝜂sgn(s)

− 𝜆sgn(s) − 𝛽s] +
𝜎2

Jn𝜎1
𝜂 𝜂

≤ d̃ res (ḋres − gd̃ res ) +
s

Jn

[d̃ res − 𝜂sgn(s) − 𝛽s ] +
𝜎2

Jn𝜎1
𝜂 𝜂

≤ d̃ res (ḋres − gd̃ res ) −
|s|
Jn

[𝜂 − |d̃ res|] − 𝛽s2

Jn
+
𝜎2

Jn𝜎1
𝜂 𝜂.

(53)

The following inequality holds:

𝜂𝜂 = 𝜂(𝜂 − 𝜂) ≤ 𝜂2 − 𝜂2

2
. (54)

When the time reaches t3, according to Equation (54),
Equation (53) can be written as:

V̇4 ≤ −𝜏3|d̃ res| − m

Jn
|s| + 𝜎2

Jn𝜎1
𝜂𝜂

≤ −𝜏3|d̃ res| − m

Jn
|s| − 𝜎2|𝜂|

2Jn𝜎1
+
𝜎2(|𝜂| + 𝜂2 − 𝜂2)

2Jn𝜎1
.

(55)

Where, formula
𝜎2(|𝜂|+𝜂2−𝜂2 )

2Jn𝜎1
has upper bound 𝜚 =

𝜎2(1+4𝜂2 )

8Jn𝜎1
. According to Lemma 3, Equation (55) can

be written as:

V̇4 ≤ min

{√
2𝜏3,

√
2m

J n
,
𝜎2

J n
√

2𝜎1

}(|d̃ res|√
2
+

|s|√
2
+

|𝜂|√
2𝜎1

)
+𝜚

≤ −𝜏4V

1
2

4 + 𝜚. (56)

Where, 𝜏4 = min{
√

2𝜏3,
√

2m∕Jn, 𝜎2∕(Jn

√
2𝜎1)}.

According to Lemma 2, in time t4 = t3 +

2V

1

2
4 (t3)∕(𝜏4𝜇) with 0 < 𝜇 < 1, the sliding mode

surface s and the error 𝜂 can converge to the
neighbourhood of 0.

Step 3: After time t4, we will prove that the error en can reach
the bounded set containing the equilibrium point en =
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1614 WANG ET AL.

FIGURE 5 Experimental platform.

0, and select the following Lyapunov function:

V5 =
1
2

en2. (57)

The time derivative of V5 is

V̇5 = enėn = en(ṡ − cen)

≤ enṡ − cen2 ≤ |en||ṡ| − cen2

= −(c|en| − |ṡ|)|en|.
(58)

If |en| ≥ (|ṡ| + 𝜏5)∕c with 𝜏5 > 0, Equation (58) can be
written as

V̇5 ≤ −𝜏5|en| = −√2𝜏5V

1

2
5 . (59)

According to Lemma 1, Equation (59) satisfies
the convergence criterion. The error en converges
to the neighbourhood of en = 0 at time t5 = t4 +√

2V

1

2
5 (t4)∕(𝜏5).

To sum up, the proof of Theorem 1 is complete.

5 EXPERIMENTS

In this section, an experimental platform is built as shown in
Figure 5. The experimental platform is mainly composed of
the personal computer, control circuit board, PMSM, the mag-

netic encoder (IC-MU MAGNETIC OFF-AXIS POSITION
ENCODER), torque sensor (UTM-0.2Nm), hysteresis brake
(HB-201B), voltage source, and current source (ICS-500).

The voltage source provides 24 V to the control board,
torque sensor, and current source. The current source pro-
vides a stable and adjustable current for the hysteresis brake.
The computer is used for program debugging with the con-
trol board and for collecting useful data via the serial interface.
The control circuit board takes STM32F405RGT6 as the core
chip. In addition, the control circuit board has the follow-
ing main functions: provide a three-phase drive signal for the
PMSM, receive torque sensor signal through analogue-to-digital
converter (ADC), supply 5 V voltage to the magnetic encoder
in the motor, receive the position information output by the
encoder and calculate the control quantity through the con-
trol algorithm. In this experiment, a PMSM with 14 polar pairs
is selected. The encoder is a 20 bit encoder. The measuring
range of the torque sensor is 0 to 0.2 N m, and the resolu-
tion is 0.01 mN m. The rated torque of the hysteresis brake is
0.2 N m.

To verify the superiority of the proposed methods, the
following two comparison experiments are designed:

(i) Firstly, to verify the effectiveness of the function-fitting-
based method of periodic disturbance compensation, the
following four experimental preparations are made:
1. Speed open loop control.
2. Do not apply ASMADO.
3. Use a hysteresis brake to provide constant resistance

torque.
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WANG ET AL. 1615

TABLE 2 Rated parameters of the PMSM.

Parameters Values

Rated voltage [V] 24

Rated current [A] 0.75

Rated torque [N m] 0.8

Rated speed [rpm] 300

Number of pole pairs [-] 14

Weight [g] 247

TABLE 3 Parameters of ILC.

Parameters Symbols Values

Speed command [◦/s] 𝜔d 3

Proportional gain of ILC controller [-] P 75

Integral gain of ILC controller [-] I 1200

Iterations [-] K 3

Sampling frequency[KHz] f 1

TABLE 4 Parameters of BPNN.

Parameters Values

Number of data in the input/output sample set 120 000

Number of layers in the network 5

The nodes number of input layer 1

The nodes number of hidden layers [15,20,15]

The nodes number of output layer 1

4. Make the control quantity u = 1500.
Then, compare the output of the torque sensor

before and after applying for periodic disturbance
compensation d̂ p.

(ii) Next, the RADC method proposed in this paper is com-
pared with the traditional PI+DOB control method in
speed tracking performance.

It is worth noting that to ensure the fairness of the
comparison experiments, the hardware conditions, driver
schemes, and controller parameters of different experi-
ments are consistent.

5.1 Experimental parameters

Tables 2–5 give the complete parameters list of the motor, ILC,
BPNN, PI+DOB, and PI+RADC.

After much BPNN training, the calculation amount and
goodness of fit are comprehensively considered. As shown
in Table 4, it was decided to set three hidden layers, each
layer containing 15, 20, and 15 nodes, respectively. In addi-
tion, the strategy of early termination is adopted to prevent
overfitting.

TABLE 5 Parameters of two control methods (PI+RADC and PI+DOB)
and system.

Parameters Symbols Values

Equivalent nominal moment of inertia [-] J n 0.3

Equivalent nominal damping coefficient [-] Bn 13

Speed command [◦/s] 𝜔d 1→1.3

Proportional gain of PI controller [-] kp 75

Integral gain of PI controller [-] ki 1200

The cutoff Angle frequency of DOB [rad/s] g 100

Sliding mode surface parameter [-] c 50

Adaptation law parameter 1 [-] 𝜎1 0.1

Adaptation law parameter 2 [-] 𝜎2 1

Sliding mode gain [-] 𝛽 0.05

Boundary thickness [-] 𝜈 0.1

Preset switching gain [-] Λ 0.1

5.2 Experimental results

When training BPNN, this experiment randomly selects 80%
of the datasets for training, 10% for verification and 10% for
testing. Figure 6 shows the fitting effect of the disturbance func-
tion based on BPNN on real periodic determinable disturbance.
From the experimental results, it can be seen that d̂ p is equiva-
lent to dp in the complete period of motor periodic disturbance.
And as shown in Figure 7, it is the linear regression graph for
training BPNN. It describes the correlation among the train-
ing set, verification set, test set, and overall results after training.
Where the abscissa represents the target output, the ordinate
represents the fitting function between the predicted output and
the target output, and R is the correlation coefficient. The closer
the R value is to 1, the more intimate the relations between pre-
diction and output data are. And the closer the R value is to 0,
the more random the relationship between prediction and out-
put data is. In this experiment, the correlation coefficient R can
reach 0.983.

Figure 8 depicts the output of the torque sensor before
and after applying for periodic disturbance compensation
when the speed is open loop. When there is no disturbance
compensation, the output of the torque sensor has obvious
sudden changes. After the disturbance compensation based
on BPNN is used to compensate for the periodic distur-
bance, the torque curve is improved, and the fluctuation
is reduced.

Figure 9 depicts the speed tracking curves under the
PI+DOB and PI+RADC methods when the speed command
is a step command of 1 to 1.3◦/s. As can be seen from Figure 9,
the speed fluctuation range under the PI+RADC method is rel-
atively small during steady-state tracking, and the speed error
can be controlled within 5% of the speed command. The
PI+RADC method can achieve fast tracking during dynamic
tracking with insignificant overshoot.

In addition, some statistical analysis was done on the speed
error e during the first 20 s steady state, as shown in Table 6
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1616 WANG ET AL.

FIGURE 6 Fitting effect diagram of disturbance function based on BPNN for real periodic determinable disturbance.

FIGURE 7 Linear regression graph of training BPNN.
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WANG ET AL. 1617

FIGURE 8 When the speed is open loop, the output of torque sensor before and after applying periodic disturbance compensation.

FIGURE 9 Speed tracking curves under different control methods.

and Figure 10. Table 6 lists the maximum (Max), mean and
standard deviation (STD) of the speed error e for both con-
trol algorithms. In this case, all three performance indicators of
PI+RADC are lower than PI+DOB. Moreover, the speed error
can be controlled within 0.0425◦/s. Figure 10 shows the his-

TABLE 6 Max, mean, and STD of speed error e (e = 𝜔d − 𝜔m).

PI+DOB PI+RADC

Max(|e|) [◦/s] 0.1282 0.0425|Mean(e)| [◦/s] 7.2503e−4 8.0355e−5

STD(e) [◦/s] 0.0321 0.0113

togram of the distribution of e. The distribution histograms of
both control methods show good normal distribution charac-
teristics, but the distribution of PI+RADC is dense compared
to PI+DOB.

The above results show that the RADC method is better at
improving the immunity of a particular controlled object and
reducing the speed fluctuations of the motor, reflecting the
superiority of the proposed method.

6 CONCLUSION

This paper focuses on the problem of disturbance suppression
in low-speed PMSM servo systems when using the current-
loop-free control method. A new active hierarchical refined
anti-disturbance controller, the RADC, is proposed.

Complex multi-source disturbances are classified into the
periodic determinable disturbance and the indeterminate resid-
ual disturbance according to their characteristics. BPNN based
on ILC is used to fit the periodic disturbance. ILC aims to pro-
vide more comprehensive input and output datasets for BPNN
training, rather than as the final controller. The RADC con-
troller is used in the inner loop of the control, so that the
BPNN-based offline disturbance compensator and ASMADO
can compensate for the above two kinds of disturbances hier-
archically. The offline disturbance compensator obtained by
fitting the BPNN is a continuous function of the angular
position of the motor and the periodic disturbance, allowing
accurate and fast compensation of periodic disturbance at any
position of the motor. The ASMADO consists of a DOB and an
ASMC. First, the DOB is constructed to observe disturbances
in the low-frequency domain. Then, the ASMC is then not used
as a controller but is designed to assist the DOB in estimating
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1618 WANG ET AL.

FIGURE 10 Speed error e distribution histogram under different control methods.

and compensating for high-frequency disturbances. Besides, the
adaptive switching gain is automatically adjusted with the slid-
ing mode state, which not only allows the system to converge
quickly but also reduces the system jitter at a steady state with
better robustness.

The experimental results demonstrate the effectiveness and
superiority of the RADC. When the current-free-loop control
method is used, the speed fluctuation of PMSM is still effec-
tively suppressed, and the low-speed tracking performance is
superior. Therefore, the proposed method is novel and neces-
sary to improve the anti-disturbance performance of the PMSM
in engineering applications.
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