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ABSTRACT
Block adjustment is a common way for achieving large-scale mapping 
from several ortho-rectified satellite images derived from wide-parallax 
pushbroom (WPP) imaging. However, block adjustment’s accuracy can 
be affected by the amount of ground control points (GCPs), resolution 
of digital evaluation model (DEM) and unexpected and unpredictable 
imaging drift. In addition, block adjustment requires sensor model, 
which is hard to obtain and needs adjustment in real time. In view of 
these problems, this paper proposes a WPP blocks concatenation 
method for simplified regional mapping. First, considering distortions 
along different blocks, an adaptive-RPC model is proposed to ortho- 
rectified images. Then, a novel algorithm for stitching the ortho- 
rectified images is proposed, which consists of line-point consistency 
for matching neighbourhoods between two images, and a new energy 
function for suppressing artefact and distortions. Stitching experi
ments carried out on images from Orbita Satellite show that the 
stitching accuracy reaches 0.87 pixels, better than state-of-the-art 
methods, and absolute cumulative accuracy after stitching 10 orthoi
mages is only 3.99% higher than original one. Further simulation 
experiments with variable in satellite swing angles verify its robustness 
under complex scenes, while the estimation of cumulative error reiter
ates the necessity of performing orthorectification in prior. All results 
demonstrate that the proposed method can obtain accurate large 
regional mapping with distortions and artefact effectively suppressed.
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1. Introduction

Earth observation by remote sensing (RS) is an important way to obtain geospatial informa
tion, as is the fundamental to target recognition, comparisons and comprehensive analyses. 
However, due to the limited size of images, the above studies require more than one image 
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with partial overlap to cover the full study region. Block adjustment based on sensor model is 
a common method for achieving accurate regional mapping, mainly taking satellite attitude, 
camera installation matrix and trajectory parameters into account. This method has high 
accuracy, but the adjustment is complex and the generality is poor (Toutin 2003).

Nowadays, mainstream methods for block adjustment are mainly based on calculating 
rational polynomial coefficients (RPCs) (Fraser and Hanley 2005; Grodecki and Dial 2003; 
Wang et al. 2018; Zhang et al. 2015, 2016), which is a series of polynomial ratio defining 
the relationship between the image space and object space. It is easier to obtain the 
accurate image once it is downloaded from satellites and ortho-rectified, since RPCs are 
generated together with imagery on payloads (Tao and Hu 2001). Although the men
tioned block adjustment methods are computationally practical and evolutionally effi
cient, there still exists two problems. First, block adjustment relies on the regular 
operation of sensor, which means a slight change in imaging model can probably lead 
to failure. Second, the accuracy of the mentioned block adjustment methods is usually 
affected by the number of GCPs and precision of DEM (Mayaux et al. 2002; Miyoshi et al. 
2018). In view of this, a simplified yet effective stitching method is in need for performing 
wide-parallax image stitching to achieve larger regional mapping.

While block adjustment is still a widely deployed approach within photogrammetry 
community (Wang et al. 2018; Zhang et al. 2022; Zhou and Liu 2022), image stitching can 
provide an alternative solution for some scenarios (Zhu et al. 2023). It refers to the process of 
concatenating multiple images with overlapping areas into a composite one (Megha and 
Rajkumar 2021). However, it’s challenging to stitch RS images due to the wide-parallax 
structures. Traditional single-feature–based matching methods often fail to generate high- 
accurate image, since the geometric projection cannot assure full alignment within the 
overlapping areas (Meng et al. 2013; Adel, Elmogy, and Elbakry 2015). An improvement is to 
introduce global homography (Gao et al. 2011), which is considered as a key to eliminating 
artefact, ghosting and distortions in overlapping areas (Brown and Lowe 2007). For example, 
divide RS image scenes into far-plane and ground-plane based on global homography (Xu 
et al. 2020). Since most point-based methods are not enough for calculating exact homo
graphy (Lowe 2004; Rublee et al. 2011), it is advisable to introduce line-pairs and line-point 
constraints (Jia et al. 2016, 2021). Regarding this, Zhang et al. constructed a line-band- 
descriptor (LBD) based on line-pairs’ local characteristics, which has a good performance on 
high-texture differences images (Zhang and Koch 2013). Li et al. proposed a semi-automatic 
guidance strategy for generating seamlines on aerial photography using human-computer 
interaction constraints (Li et al. 2016). Improved studies focus on suppressing artefact and 
distortions in overlapping areas and deformation in non-overlapping ones. For example, As- 
Projective-As-Possible (APAP) proposed by Zaragoza et al. succeeded in controlling artefact 
in overlapping regions with local constraints to control warping but failed to control that in 
non-overlapping ones (Zaragoza et al. 2013). Liao and Li put forward an image-splicing 
method called Single-Perspective-Warps (SPW), assuming that wide-parallax stitching 
image is drawn from a main perspective (Liao and Nan 2020). It proved generally effective 
but sometimes invalid when images are warped due to unfixed viewpoints. More recent 
studies (Fan et al. 2022; Ye et al. 2022; Zhu et al. 2023) focus on proposing new feature 
descriptor, namely MABPC, SFOC, MALG, and CFOG (Ye et al. 2019), for more effective 
matching because traditional feature descriptors (e.g. SIFT, ASIFT, SURF) do not simulta
neously consider the robustness of the nonlinear intensity and geometry variations 
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between different multi-modal RS images (Huang et al. 2014). However, most RS stitching 
models take narrow-swath RS (less than 2 km) images as example (Cui et al. 2021; Hui and 
Chen 2020; Xie et al. 2019; Xu et al. 2020), which means they may lead to high cumulative 
stitching errors within wide-parallax pushbroom (WPP) images. These existing models lack 
generality and accuracy. Except for the mentioned feature-based methods, the object-space 
oriented ones usually own high-precision but lack generality and portability (Jiang et al. 
2017; Liu et al. 2022; Yeh and Tsai 2011). They are most likely to fail when the sensor model is 
unknown or time-variant, so they are beyond this study’s interest. In summary, the men
tioned methods above are not strictly applicable for stitching WPP blocks.

Main challenges of stitching WPP blocks include unknown sensor parameters (camera 
pose and trajectory), the severe geometric deformation along track and uncertain accu
mulative stitching errors. To cope with that, an orthorectification-based stitching method 
to achieve large regional mapping from a few WPP blocks via utilizing line-point con
sistency is proposed. Our method is inspired by several state-of-the-art algorithms (Jia 
et al. 2016, 2021; Liao and Nan 2020; Lin et al. 2015). It mainly consists of three parts. First, 
an adaptive-RPC model with GCPs and DEM is established to restore its original geometric 
feature. Without such step, there would be significant geometric distortion within each 
region, which would affect ground sampling distance (GSD) and cumulative stitching 
accuracy severely. Second, a novel principle, line-point consistency, is adopted to build 
neighbourhoods within each image where more line-pairs and point-pairs can be aligned. 
This process proves effective since more aligned feature pairs between RS images can 
lead to better stitching result than method with less aligned feature pairs (Fan et al. 2010). 
Third, a new energy function is designed to control serious distortion during warping, in 
which the weight function across the whole image is re-established and the connection 
between the projection of different regions is reinforced. Such improvements prove 
necessary since there are large overlaps between two WPP images, while the linear energy 
function in mentioned algorithms leads to grey value discontinuity near the edges. 
Compared with other RS stitching methods, our method can better utilize spatial infor
mation. For example, prior overlap based RS stitching model (Cui et al. 2021) only focuses 
on calculating the similarity (homography in our manuscript) of overlaps between two 
images, ignoring the extended deformation near edges. In contrast, a new energy func
tion is designed to reinforce the homography in our method. Another example, UAV RS 
stitching model (Hui and Chen 2020) only focuses on point-alignment during stitching. It 
can be regarded as an update from the traditional common algorithm SIFT and ASIFT 
(Lowe 2004). Such single-point alignment proves not sufficient in RS images matching, 
thus highlighting the necessity of incorporating both point and line alignment. In sum
mary, compared to state-of-the-art algorithms, ours introduces more conditional con
straints, provides more evaluation metrics and proves more applicable for stitching WPP 
blocks. Main contributions of the proposed method can be summarized as follows:

(1) Compared with other RS stitching methods, our method can better utilize spatial 
information. Single-feature (e.g. point, line, local similarity) detection and align
ment proves not enough for RS stitching, thus highlighting the proposed method 
of utilizing both point and line alignment.

(2) To the best of our knowledge, it is one of the first to leverage dual feature 
constraints of lines and points into stitching wide-parallax orthoimages for regional 
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mapping (not common RS images). Differences between our approach and existing 
RS stitching algorithms are discussed. The results demonstrated its potential appli
cation prospects within remote sensing community.

(3) Simulation experiments verify its superior and robust application prospects in 
complex scenes, such as different viewpoints caused by changes in swing angles. 
And the accumulative experiments further verify its capacity to produce accurate 
results due to stable GSD.

The rest of this paper is organized as follows. Section 2 introduces the proposed method 
in detail. Section 3 presents the study area and experiments, describes experimental 
results and proposes further discussions. Section 4 presents the conclusions.

2. Methodology

Method proposed in this paper consists of two main parts. First, adapt the RPC file with 
DEM and GCPs to restore the ortho-rectified image and improve accuracy. Second, apply 
the proposed model into stitching mentioned ortho-rectified images, which mainly 
consists of two steps, matching neighbourhoods across image based on line-point con
sistency and constructing a three-part energy function to preserve the global naturalness 
across image. Figure 1 illustrates the process outlined in this article.

Given input RS images Iiði ¼ 1; 2; . . . ; nÞ, ortho-rectify Ii to obtain orthoimages 
Iot
i ði ¼ 1; 2; . . . ; nÞ via orthorectification module denoted as f. Improve the accuracy of Iot

i 
by adopting DEM of corresponding region and setting up virtual GCPs according to section 
2.1, and obtain the final orthoimages Io

i ði ¼ 1; 2; . . . ; nÞ via stitching module denoted as F. 

Adopt line-point consistency to divide neighbourhoods Ωi
jðj ¼ 1; 2; . . . ; sÞ within each 

orthoimage Io
i according to section 2.2.1. Within each neighbourhood, build projection 

invariant based on detected lines lj
x and points Pj

y (within Ωi
j in Io

i ) to match specific regions 
from two image blocks Io

i and Io
iþ1. 

While such match only offers an approximate match within global area, further 
constraints are in need to control serious line-warping, as in section 2.2.2. To solve 
this problem, an energy function E composed of three components Ec, Eh, and En, is 
proposed, each described in section 2.2.2. Mesh grid bV within the warped image Îw

i 
according to optimized E proves more visually natural and more accurate in terms of 
precision. 
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2.1. RPC-based orthorectification model

Orthorectification is a process that geo-corrects an image onto its upright map while 
restoring geometric structures. It is based on RPCs, which are generated together with 
payloads imaging. A WPP block without orthorectification has huge deformation across 
the whole image.

RPCs of High-Resolution Satellite Image (HRSI) is an important parameter for construct
ing rational function model (RFM), which sets up a connection between image coordi
nates and corresponding geographic ones without requiring sensor information. To 
ensure the calculation stability, RPCs regularize the image coordinates ðl; sÞ, latitude 
and longitude coordinates ðB; LÞ and ellipsoid height H, so that the coordinates range 
between [−1,1]. Image regularized coordinates ðln; snÞ corresponding to ðl; sÞ and object 
regularized coordinates ðU; V;WÞ corresponding to ðB; L;HÞ are expressed as follows. 

where LineOff, SampleOff are the offset values of image coordinates. LineScale, 
SampleScale indicates the scale value for image coordinates. (LonOff, LatOff, HeiOff) and 

Figure 1. Flowchart of the proposed method. Specifically, planar block stitching module is illustrated 
in detail.
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(LonScale, LatScale, HeiScale) represent the offset and scale values for object coordinates, 
respectively.

As shown in Figure 2, RPCs represent the coordinates of image points P l; sð Þ as 
polynomial ratios with corresponding ground point’s spatial coordinate 

Pj
ðl;sÞ Bj

l; Lj
s;Hj

� �
(where j denotes different elevation heights). RPCs do not require 

internal and external orientation elements. In order to enhance the stability of 
solution parameters, ground coordinates and image coordinates are normalized 
to [−1,1].

For each image, the relationship between the above two coordinates can be expressed 
as a polynomial ratio: 

Figure 2. Construction of RFM. (a) Establishing RFM between satellite and Earth. (b) Hierarchical 
correspondence between object and image coordinates based on RPCs. (c) Flowchart showing the 
process of calculating RPCs.
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2.2. Planar block stitching model

After orthorectification, each image is restored as planar block with upright alti
tude and longitude coordinates. WPP images are wide in parallax, with large 
overlapping areas between two adjacent imaging. Among these areas, ensuring 
a high matching rate of feature pairs is the key to suppressing artefact and 
distortions therein. Therefore, this section introduces a new method of stitching. 
First, construct a more stable neighbourhood based on more detected line-pairs 
and point-pairs. Second, match them based on line-point consistency. Finally, 
establish an energy function to solve the distortion problems and finally apply 
that into image warping.

2.2.1. Preliminary processing based on line-point consistency
Since lines are the intersections of planes, assume areas divided by line segments are co- 
planar neighbourhoods of the image. Use line detection method LSD (Wang et al. 2008) to 
extract original lines, and then divide the neighbourhoods of the line segment into left 
one and right one according to gradient direction. This is because the points near the line 
segment suffering from the sharpest gradient change tend to be within the same planar 
while others do not. Gradient of a line-segment is defined as the average gradient of all 
points on it. Within the neighbourhoods constructed by the line-segment l, distance from 
any pixel to this line is less than αlen lð Þ, while that to the vertical bisector is less than 
βlen lð Þ. To be noted that α and β are constants set based on image size, aiming at 
calculating a neighbourhood (size of 2αl � 2βl) balancing effectiveness and efficiency.

Once constructing neighbourhoods, matching them is the pressing aim. The 
following operation constructed a line-point invariant to describe each neighbour
hood. Calculated from cross ratio (Li and Tan 2010) among projective invariants, 
Characteristic Number CNð Þ is constructed as follows: let PnðAÞ be n-dimension 
projective space over field A . fPigi¼1;2;...;R are interest points in PnðAÞ, all of which 

construct a closed loop ðPRþ1 ¼ P1Þ. Distinctive points fQ jð Þ
i gj¼1;2;...;S are distributed 

on line-segments fPiPiþ1gi¼1;2;� 1, which can be linearly described by endpoints Pi 

andPiþ1 as Q jð Þ ¼ a jð Þ
i Pi þ b jð Þ

i Piþ1, as shown in Figure 3. Assuming that 

P ¼ fPigi¼1;2;...;R and Q ¼ fQðjÞi g
j¼1;...;...S
i¼1;2;...;R , CN between these points can be defined as

Obviously, CN can be described as CNðlj; P1; P2; P3Þ. The same calculation applies 
equally for the image from another viewpoint, as CN lj

0; P1
0; P2

0; P3
0

� �
. For matching 

neighbourhood with corresponding matching line-segments lj and interest points Pi, 
it’s easy to get 
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For a pair of regions in target and reference image, the similarity of neighbourhoods (part 
of the region) can be calculated by a series of CN values. Within the matching neighbour
hoods (neighbourhoods with highest matching similarity), more interested points can be 
obtained by intersection of original extracted points, as shown in Figure 3. Assume that 
black dots Q1 are the intersection of line K1lj; P1 and K2lj; P3, similarly for Qjðj ¼ 2; . . . ; 6Þ. It 
is necessary for an image with large parallax and rich features to conduct the step of 
extracting more interested points. In this way, more candidate points

are available for image warping.
Since the above invariant predicts the high possibility of interest points located in 

matching neighbourhoods, the homography ðHÞ between two neighbourhoods can be 
calculated by matching points through Random Sample Consensus (RANSAC) (Fischler 
and Bolles 1981). For each line lj1∈ neighbourhood M in image 1 ðI1Þ and lj2∈ matching 
neighbourhood M’ in image 2 ðI2Þ, projection can be described as lj

0 ¼ H � lj, and 
lj ¼ H� 1 � lj

0. If both lj1 and mapped point lj2
0 (both in I1) and mapped point lj1

0 and lj2 

(both in I2) can satisfy double-distance constraints proposed in (Fischler and Bolles 1981), 
then lj1 and lj2 are considered as matching line-pairs. In this way, more matching line-pairs 
can be detected. The whole process of extracting more matching lines can be summarized 
as Algorithm 1.

2.2.2. Precise processing based on energy function
The above homography only offers an approximate match within global area, while 
longer prominent line segment tends to lead to more serious line-warping. Therefore, it 
requires further constraints. To solve this problem, energy function is a reliable solution 
(Hao, Zhou, and Cai 2021; Jia et al. 2021; Li et al. 2016; Yuan et al. 2021). In the proposed 
method, a new energy function model is established considering the weight of both local 
(overlapping) areas and global areas. The proposed energy function E in (9) consists of 
three aspects, Ec,, Eh,, and En, aiming at preserving collinearity, improving line-point 
alignment and controlling mesh grid warping distortion, respectively. 

Figure 3. Neighbourhood match and homography of line-pairs and point-pairs within neighbour
hoods (highlighted by blue lines). Lj, consisting of Klj

1 and Klj
2, and Ljʹ, consisting of Kljʹ

1 and Kljʹ
2, are 

matching line-pairs. Red dots Pi and Piʹ (i=1,2,3) represent interest points, while black dots Qi 

(i=1,2,3,4,5) are the intersection points obtained by connection between Klj
1, Klj

2 and Pi. Obviously, 
Qi is linearly related to Pi. Regions highlighted by the above elements are defined as neighbourhoods.
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where V ¼ ½x1y1 . . . xnyn�
T and bV ¼ ½bx1 by1 . . . bxn byn�

T represent the coordinates vertex of 

mesh grid before and after warping. In V&bV 2 R 2n, index for mesh grid (n) is set manually. 
Figure 5 presents the mesh grid warping by GSP, SPW and ours with same n.

Energy for preserving collinearity. As the first item, Ec in (10) consists of two parts, 
local linearity and global collinearity. Weight of either part, λlo and λgl, is set naturally. 

The region shown in Figure 4 is selected from overlapping areas within two orthoimages. 
Red plotted lines denote the local linear feature, while the blue denote the sum of local 
ones (in other word, global). Our goal is to preserve the linearity and collinearity of lines 
during warping. Linearity is used to describe the linear state within lines, while collinearity 
is to describe linear state between two or multiple line-pairs.

To achieve collinearity as shown in Figure 4(a), two rules are essential. First, distance 
between endpoints pm

li 
(on li) to another line-segment lj and pn

li 
(on li) to lj should be 

minimized (slope of li and lj should be close to each other). Second, distance between two 
adjacent endpoints pn

li 
and pm

liþ1 
of corresponding lines li and liþ1 should be minimized too. 

Given the above two rules, Elo in (10) can be represented as the sum of proportional 
mentioned products as 

Figure 4. Collinearity in global areas and linearity in local areas according to Ec constraints. Result (a) 
with collinearity constraint; (b) without collinearity constraint.

Algorithm 1: Extraction of Line Pairs

Input: Two ortho-rectified images Io
1 and Io

2

1: Use SIFT to detect points and LSD to detect lines
2: Divide coplanar neighbourhoods based on matching points and lines
3: Match neighbourhoods based on Characteristic Number (CN)

4: Use homography H to match lines within neighbourhoods
5: If (any matching neighbourhoods not used) then
6: Calculate more line-pair candidates within Neighbourhoods
7: Else Select matching lines from above

8: End if
Output: matching lines li
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where nls
�! is the normal vector of corresponding line ls. The Euclidean distance dis P; Lh i

denotes the discrepancy between endpoint P and the adjacent line segment L. τðbPÞ
denotes the vector from original point to desired point P. As a matter of fact, the 

Euclidean norm of τðcpn
lsÞ � nls

�! serves as a measure of the difference reflecting the disparity 

between the normal vector nls
�! and the corresponding line segment ls. Likewise, for the 

mentioned local lines fllsgðls ¼ 1; 2; . . . ;NlÞ, global constraints of Egl in (10) can be 
obtained by incorporating desired point with Euclidean distance on adjacent line: 

Figure 5. Comparison of mesh grid warping between GSP, SPW and the proposed method with same 
number of grid lines. Images are taken at a bay in Iwakuni, Japan. The base image (from the left) is 
selected from orthoimage, while the other is imaged with certain swing angle. Mesh grid warping by 
(a) GSP; (b) SPW; (c) ours.
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For the lines liði ¼ 1; 2; . . . ; 5Þ within the given region during image warping, there is no 
collinearity constraint applied as shown in Figure 4(b), while there is collinearity applied as 
shown in Figure 4(a). Red plotted lines are destroyed during warping without collinearity 
constraints. It proves necessary and effective to apply the proposed collinearity rules.

Energy for improving line-point alignment. Eh in (13) is designed to control point 
alignment and line alignment after warping, which means they should be coincident with 
themselves after warping. 

where point alignment element EP, which is correspondences between miðxi; yiÞ 2 I and 
mi
0 xi
0; yi
0ð Þ 2 I0, and line alignment element El are multiplied by corresponding weight λP and 

λl . Assume that matching point sets pi; pi
0f g

S
i¼1 and line sets lj; lj

0
� �T

j¼1 are the correspon

dences point sets and line sets from I and I0. Quality of point alignment EP can be measured as 

where M0 is a series of coordinates of mi
0 represented in R 2NðN�nÞ. Wp 2 R 2N�2n is 

coefficient vector of coordinates of the bilinear interpolation of mesh point bpi. As for line 
alignment El, line lj0 can be expressed as two endpoints mstart

j0 
and mend

j0 
which 

is lj0 : aj0 x þ bj0 y þ cj0 ¼ 0.
In this way, the quality of line alignment El can be measured as 

where Wl 2 R2M�2n is the coefficient vector of inner results of bilinear interpolation of 

mstart;end
j and aj; bj

� �T , similarly. Compared with alignment proposed in (Chen and Chuang 
2016), functions in (14) and (15) prove more robust in controlling alignment.

Energy for controlling warping distortion. En in (16) defines the slope and size of 
grid lines to control distortion during image warping. The grid lines are regarded as 
intrinsic structures of the to-be-warped image. Distortion in this item is composed of two 
parts, rough projection Enr and precise projection Enp. It is noteworthy that the grid lines 
generated by projection describe the intensity of image warping over the to-be-warped 
image, as shown in Figure 5.

where rough projection element Enr and precise projection Enp are multiplied by corre
sponding weight λnr and λnp. In (16), rough projection Enr is inspired by (Igarashi and 
Igarashi 2009), which can ensure a rough similarity transformation by 
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where v and bv denote the vertex of each point on edge lines ðLiÞ from image Ii of mesh 
grid before and after warping, respectively. Di

uv represents the similarity transformation 
for edge ðu; vÞ consisting of transform function c and s, which is 

where rotation matrix Di
uv , given as a transformation that maps edge points to new 

positions, is calculated by cðei
uvÞ and sðei

uvÞ optimized in (Igarashi and Igarashi 2009).
After the rough projection Enr , precise projection Enp is carried out. Different from (Chen 

and Chuang 2016; Jia et al. 2021; Liao and Nan 2020), ours reinforces the progressive 
connection between projection Enr and Enp because overlapping areas within RS images 
are different from those in natural images in terms of overlap size and overall image size. 

where weight function Wðei
jÞ is conducted on image edge transformation. Given desired 

scale si and rotation angle θi for image Ii, the transformation is carried out for each edgeei
j. 

Different from previous works, which establish Wðei
jÞ as linearly related to distance from 

desired point to edge, our study re-establishes the weight function Wðei
jÞ as cubic weight 

function. It makes the first item’s weight decrease with distances further from the
overlapping areas. In comparison, the linear weight function adopted in (Liao and Nan 

2020) results in uneven and discontinuous grey value at the edges, since there are large 
overlaps between WPP blocks. For overlapping areas, an anti-repeat factor λi is proposed 
to eliminate the impact of repeated warping from Enr , while in areas far from overlapping 
areas, redesign the weight function and decrease λi. In this way, more weight is set for 
edge areas of the whole image, as these areas are lack of alignment from Eh.

Figure 5 presents the warping results between two RS images, in which the base 
image is selected from orthoimage over a bay in Iwakuni, while the other is 
imaged with certain swing. It aims at verifying the quality of mesh grid warping 
according to different energy functions adopted by GSP (Chen and Chuang 2016), 
SPW (Liao and Nan 2020) and ours, respectively, by estimating visual quality within 
the stitched image. Specifically, for the given same number of grid lines, three 
methods exhibit different performance in preserving linear structures and suppres
sing distortion. Two representative RS structures from overlapping region and 
global region, roof and oil tank are selected for presentation and highlighted 
with yellow bounding boxes. In GSP, linear structure (roof) within overlapping 
region is disrupted, while SPW and ours succeed in preserving linear structures. 
On the other hand, within the oil tank from global region, GSP and SPW both fail 
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to recover the circular shape of the oil tank, while our result is closer to the 
ground truth. It proves the effectiveness of the proposed En constraints.

Final warping. All mentioned constraints are quadratic. A reasonable reformation 
function can be solved by a sparse linear solver. Specifically, iteration methods are 
adopted in our sparse linear system to solve the energy minimization. The optimal 
mesh grid warping can be determined by 

After the whole function is carried out, the warp between two images can merge 
towards a more precise way, with artefact and distortions effectively suppressed. 
The whole process of optimizing mesh grid warping can be summarized as  
Algorithm 2.

Algorithm 2: Optimization of mesh warping according to energy function

Input: Original mesh grid V linearly generated by RANSAC

1: Calculate rotation angle θ based on H ⊆ [3×3] by RANSAC, and obtain rotation matrix R ⊆ [2×2]
2: Construct energy function in terms of collinearity, segment alignment and distortion:
3: Construct collinearity based on rotated vertical lines v and horizontal lines u

4: For i = 1 → num(u) and j = 1 → num(v) do
5: For x = lo and gl (local linearity and global linearity) do
6: Calculate Ex ⊆ (s_ul+s_vl, N0) (x = lo or gl) based on u and v

7: Construct line and point alignment based on matching lines ⊆ [m, 4] and matching points ⊆ [2, n]

8: For i = 1 → m and j = 1 → n do
9: Calculate energy for controlling line alignment El ⊆ [s_l, N0]
10: Calculate energy for controlling point alignment Ep ⊆ [s_p, N0]

11: Construct controlling-distortion based on homography H by RANSAC
12: Calculate rough transformation D by desired scale factor s and rotation angle θ

13: Project edge points v into bv within to-be-warped image I1
14: Calculate energy by rough projection Enr ⊆ [s_nr, N0] based on v, bv, and D
15: Re-establish weight function cubic-correlated to distance to edge W ∝ (1 − (x/d)3)3

16: Calculate energy by precise projection Enp ⊆ [s_np, N0]
17: For all mentioned energy Ex and corresponding weight λx, total matrix A can be constructed as do
18: A = [∑Ex∙λx] = [s_u+s_v+s_l+s_p+s_nr+s_np, N0] ⊆ [M0, N0]
19: Construct ideal target X=[dir_p, λl.×dir_l, 0, . . . , 0]⊆[M0, 1], where

20: dir_p and dir_l store the location of a total of mp matching points and ml matching lines, as
21: Location of matching points is dir_p = [x1, y1, x2, y2, . . . , xmp, ymp] ⊆ [2mp, 1]

22: Location of matching lines is dir_l = � c1
d1
; � c1

d1
; � c2

d2
; � c2

d2
; :::; � cml

dml
; � cml

dml
;

h i
� 2ml; 1½ �

23: where lines are represented as  
li : aix þ biy þ ci ¼ 0ðdi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ai

2 þ bi
2

p
Þ

24: Put linear equation system A∙bV= X into sparse linear solver

25: Obtain the optimized control vertex vector bV within I1

Output: Optimized mesh grid

INTERNATIONAL JOURNAL OF REMOTE SENSING 4869



3. Experiments and discussion

3.1. Study area

Two study areas are used for verification in this paper, as shown in Figure 6. One is located 
at suburban Beijing, China (39°27ʹN-41°41ʹN, 114°58ʹE-117°47ʹE), as shown in Figure 6(a). 
Its ground resolution is 16 m, covered with panchromatic spectral bands by pushbroom 
GF-1 Satellite. The above area equivalent image solved by rigorous sensor model (RSM) is 
presented as Figure 6(b), while the corresponding 30 m-resolution DEM is exhibited as 
Figure 6(c). The RSM image in Figure 6(b) is solved as a reference ground truth of 
corresponding area by Landsat-8. Main geographical types in this area cover mountains, 
hills, plains, rivers, lakes, etc.

The other study area is imaged by Orbita hyperspectral satellite (OHS, denoted as Orbita), 
which is the first commercial hyperspectral satellite in China that completed launching and 
networking, with a ground resolution of 1 m. Imaging region of study area 2 is located at 
urban Sydney, Australia (33°45ʹS-33°54ʹS, 151°2ʹE-151°13ʹE), as shown in Figure 6(d). Given 

Figure 6. Study area and presentation of image data: (a) experimental image of study area 1 by GF-1; 
(b) imaging of study area 1 by Landsat-8, solved by RSM; (c) 30m-DEM of study area 1; (d) images from 
1 to 10 of study area 2 by Orbita, all of which directly stacked together by ENVI software. The n-th red- 
and-green interlaced solid lines represent the start position of the n-th image, while the n-th dotted 
ones indicate the corresponding end position. Among it, the detail marked by the yellow box shows 
that the directly stacked theatre has obvious misalignment compared to the real theatre.
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image plane by Orbita is 4096 × 3072, each imaging swath is about 4 km × 3 km. Main 
structures in this area cover theatres, harbours, lakes, civil buildings, featured with complex 
linear geometric details. Within Figure 6(d), image with red-and-green interlaced lines 
represents that it is formed by consecutively stacking 10 WPP images (mainly based on 
unrectified longitude and latitude coordinates). Due to the lack of geometric correction and 
accurate stitching, huge distortions and misalignments exist between the adjacent images, 
as shown in the yellow box. Accurate geometric details are hard to be extracted out on such 
images. Experiments are conducted on above areas.

3.2. Orthorectification of image

Conduct orthorectification following the flowchart is illustrated in Figure 2(c). In addition, to 
improve orthorectification accuracy, GCP distribution and global 30 m-DEM are adopted. 
The results are compared with the image by RSM shown in Figure 8(b). Specifically, virtual 
GCPs are distributed by crossroads at intersection of prescribed latitude and longitude lines.

For the evaluation of orthorectification, three metrics are adopted, root mean 
square error (RMSE), structural similarity index (SSIM) and peak signal-to-noise ratio 
(PSNR), respectively. First, RMSE for each GCP is calculated before and after orthor
ectification. Certain GCPs among 29 GCPs for comparative analysis are selected, in 
which the notable trend in RMSE variations is observable from 13th to 26th point. The 
corresponding residual ðResiÞ, which denotes the difference between the coordinate 
of GCPi, before and after orthorectification, is exhibited in Table 1. RMSE in Table 1 
denotes the RMSE of cumulative residuals as in (21). It indicates that RMSE tends to 
decrease with the increase in GCPs. Lower RMSE denotes better orthorectification 
result. Aside from 

Table 1. Relationship between number of GCPs and RMSE (study area 1).

Number of GCPs

Residual of corresponding GCP 
(unit in pixel)

Control Point Cumulative Error: 
RMSE (unit in pixel)

Resx Resy RMSEx RMSEy RMSE

13 −1.1126 0.5553 0.4574 0.2879 0.5400
14 0.3337 −0.2447 0.4516 0.2858 0.5342
15 0.2332 −0.3826 0.4416 0.2953 0.5311
16 0.2005 −0.5053 0.4321 0.3168 0.5358
17 0.1911 0.0847 0.4232 0.3079 0.5237
18 −0.0037 −0.4690 0.4116 0.3295 0.5274
19 0.0116 −0.2716 0.4005 0.3284 0.5179
20 0.0432 −0.1337 0.3905 0.3216 0.5058
21 0.0437 −0.0105 0.3816 0.3142 0.4942
22 0.0368 0.0958 0.3726 0.3074 0.4832
23 0.0495 −0.5042 0.3647 0.3211 0.4863
24 −0.1974 0.1168 0.3595 0.3153 0.4779
25 −0.2111 −0.0105 0.3542 0.3089 0.4700
26 −0.2616 −0.1200 0.3511 0.3042 0.4642
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RMSE, which describes the cumulative deviation, SSIM and PSNR are also adopted to 
evaluate the accuracy of orthorectification. Select a subregion of 250 × 250 pixels of 
certain centre coordinates in the area shown in Figure 8(c) and compare it with the 
corresponding subregion imaged by RSM in Figure 8(b) in terms of SSIM and PSNR. 
According to (Tuna, Unal, and Sertel 2018), higher SSIM and PSNR indicate higher 
similarity between images. With variable in number of GCPs, comparison result shown 
in Figure 7(c) implies as the number of given control points increases, the similarity 
indicators between

orthoimage and RSM image increases, which indicates the specified region approaches 
the RSM imaging more closely. Figure 8(d)(j) display the differences between two pairs of 
orthoimages and non-orthoimages over study area 2. It is observable that the roof shape 
is different before and after orthorectification in Figure 8(f)(g), which confirms the neces
sity of orthorectification for recovering geometric structures.

3.3. Planar block stitching

In this section, both qualitive and quantitative experiments are carried out among stitch
ing of RS images by Orbita and four groups of image sets covering four imaging modes, 
including swing angle at 0°, 10°, 20° and 27°. Set each grid size during warping as 40 × 40 
for more refined merging. In the collinearity constraint function from energy function (10),

keep the λlo and λgl to 80 and 120, respectively. As parameters aiming at preserving the 
alignment and homography between lines and points in (13), λp and λl are kept as 2 and 8. 
Besides, parameters that construct mesh grid warping in (16), λnr and λnp are set 80 and 
120. Keeping all the mentioned parameters constant is conducive for proving the effec
tiveness of the proposed method. Visual results of the proposed stitching method 
between two input RS images by Orbita are shown as Figure 9, while the result of 10 
consecutive images stitching over study area 2 by Orbita is exhibited in Figure 10. Each 
input image from Orbita is the same size as image plane, which is 4096 × 3072 pixels. For 
fair comparison, same orthoimages are used as input for the selected algorithms. Besides, 
all selected algorithms are validated due to their best performance provided by authors. 
As shown in Figure 9, edges of each image are displayed within the selected yellow box. It 
indicates that regional mapping area extends with two orthoimages effectively stitched.

Figure 7. Distribution and residuals of virtual GCPs of study area 1. (a) Distribution of 29 virtual GCPs 
over study area 1; (b) Residuals of corresponding GCPs. (c) SSIM and PSNR according to different 
numbers of GCPs.
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Qualitative evaluation. Due to the sensitivity of reflectance and variations in 
exposure levels, the appearance of certain objects in RS images can vary at 
different times, especially for objects with high reflectance (e.g. roofs, water sur
face). Therefore, two interested regions, building roof and swimming pool, are 
selected within the stitched image over study area 2 by six different methods, as 
shown in Figure 10. The interested regions, which are of same centre geometric 
coordinates and same regional size, vary significantly among stitched image by 
different methods. The building roof by SPW and APAP exhibits noticeable colour 
aberration, whereas AANAP shows pronounced linear misalignment, while by GSP 
and ENVI software displays structural deformation. Likewise, the swimming pool 

Figure 8. Orthorectification of both study areas. The first row is located at study area 1, while 
the second is study area 2. (a) Original image by GF-1; (b) RSM imaging by Landsat-8; (c) orthor
ectification with certain GCPs (variable); (d) original 1 by Orbita; (e) orthoimage 1; (f) original image 2 
by Orbita; (g) ortho image 2 Yellow rectangles of same size and same centre geometric coordinates are 
enlarged to same size for visual comparison.
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indicates similar results, in which ours preserves the original structure and colour 
tones most effectively in the cumulative stitching process. It proves that the 
proposed CN is remarkable for dividing matching regions, while the proposed 
energy function is effective for constraining the linear relationships during the 
matching process.

Quantitative evaluation. More quantitative evaluation is carried out in section 3.4.

3.4. Further discussion on generality and accuracy

To evaluate the robustness of proposed method, a simulation experiment is carried out on 
simulated images from Orbita with different swing angles ðφÞ. Changes in swing angles 

Figure 9. Results of two Orbita WPP orthoimages stitching based on the proposed method. (a) input 
base image ðIo

1Þ. (b) Optimized mesh warping result according to energy function. (c) Image ðIo
2Þ

warped according to mesh warping result ðIo
2 warpedÞ. (d) Stitching result ðIo

1 þ Io
2 warpedÞ.

Figure 10. Results of concatenating ten WPP orthoimages over study area 2. Rectangles marked in red 
boxes exhibit building roof and swimming pool. On the right side displays the comparison of the red 
rectangle area within stitched image by SPW, APAP, AANAP, GSP, ENVI software, and the proposed 
method.
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can result in local scale variations and different viewpoints across RS images. In view of 
this, the simulation experiment is aimed at verifying whether the images Is

j ðj ¼ 1; 2; 3Þ, 
stitched by images Ijðj ¼ 1; 2; 3Þ with swing angles ðφjÞ and image I4 (based on another 
nadir different from Ij), can be restored into a unified viewpoint and preserve geometric 
structures or not. As shown in Figure 12, (a)(b)(c) are imaged based on the same nadir with 
different swing angles, 10°, 20° and 27°, corresponding to φi in Figure 11(a). The reason for 
selecting such swing angles is based on that too small swing angles cannot produce 
significant distortion (Phinn et al. 2002), while too large swing angles (Zhang et al. 2019) 
may result in decreased edge resolution, amplified swing angle caused

by severe atmospheric disturbances and capturing the sides of buildings rather than 
the roofs. Figure 12(d) is the adjacent image (different nadir from abc) without swing 
angle, corresponding to imaging with certain field of view (FOV) φP in Figure 11(a).

Figure 11. Diagram of pushbroom imaging with swing angles. (a) imaging with different swing angle 
φi compared to pushbroom imaging with Field of view (FOV) of φP (denoted by red area); (b) analysis 
along X-axis; (c) analysis along Y-axis.

Figure 12. Simulated images with variable in swing angles and corresponding stitching results. Within 
the first row, (a)(b)(c) are imaged due to different swing angles based on the same nadir, while (d) is 
imaged based on another nadir without swing angle. The second row displays the geometric length of 
interested building within the stitched image. Within each image set, one building from centre 
(overlapping area) and the other from edge (non-overlapping area) are displayed. (a) swing angle 
of 10°; (b) swing angle of 20°; (c) swing angle of 27°; (d) no swing angle from another nadir. (unit in 
pixel).
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Within the first row in Figure 12, area delimited in red rectangle in each image is enlarged 
to the same display size on the bottom right. Blue line and green line with annotated 
number in each enlarged rectangle represent length and width of the displayed building 
(unit in pixel). If the stitched image Is

j can demonstrate visual naturalness and preserve linear 
structures across the whole image, it can verify robustness of the proposed method roughly. 
More quantitative experiments are carried out in section 3.4.1-3.4.3.

Given that the altitude of satellite Orbita ðHÞ is 530 km, the Earth radius ðRÞ is 6371 km, 
image plane ðm� nÞ is the same as above 4096 × 3072 pixels, pixel size ðaÞ is 4 μm and 
focal length ðfÞ is 0.5 m; four experiments with different swing angles including that in 
section 3.3 are conducted.

In the optical imaging diagram in Figure 11, ground optical axis centre O’ varies with H 
and φ. Resolution of nadir is N ¼ aHf � 1. Half angular FOV alongside X and Y direction 
ðθ;ψÞ can be solved as ðarctanðna2f � 1Þ; arctanðma2f � 1ÞÞ. Width of imaging area ðWÞ can 
be calculated as distance from right edge (which is A’ to N, W2 ¼ HN� 1 tan φþ θð Þ þ 1) to 
left edge (which is B’ to N, W1 ¼ HN� 1 tan φ � θð Þ), as shown in Figure 11(b). Likewise, half 
height of imaging area (alongside the vertical paper as shown in Figure 11(b)) near the 

nadir point is M1 ¼ 2 tan ψ1N� 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðW1 � NÞ2 þ H2
q

, while beyond nadir is 

M2 ¼ 2 tan ψ2N� 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðW2 � NÞ2 þ H2
q

þ 1, as shown in Figure 11(c).
Given the above simulation conditions, further experiments are proceeded where the 

non-deformation adjacent image I4 is adopted as base image, and the images with swing 
angle Ijðj ¼ 1; 2; 3Þ are adopted as the target (to-be-warped image). By comparing linear 
structures in the stitched image Is

j ðj ¼ 1; 2; 3Þ, we can distinguish the difference visually 
and evaluate stitching quality. Furthermore, we conduct quantitative evaluation on both 
lines and points by adopting three indicators, line-pairs extraction and matching level, 
point-pairs fusion error (RMSE) and cumulative error, respectively. All input orthoimages 
are the same size as satellite image plane in section 3.3 (4096 × 3072).

3.4.1. Line extraction capability
The first indicator evaluates the matching level between line-pairs. Within the above 
image sets, compare the line-matching method proposed in section 2.2 and LP (Fan et al. 
2010; Fan, Wu, and Hu 2012). Results show that the proposed method is robust in 
extracting line-pairs and matching them in various swing angle imaging.

Results in Table 2 consists of two parts. Within either column of LP or proposed 
method, number in the first column shows line-pairs that are matched correctly, while 
number in the second column denotes all matching line-pairs. The existence of correct- 
matching is attributed to that a line ðlxÞ in image 1 ðI1Þ could possibly be matched to 
different lines fly ngðn ¼ 1; 2; . . .Þ in image 2 ðI2Þ, meanwhile only one line ly cðc 2 nÞ in I2 

Table 2. Comparison of line-pairs matching accuracy between LP 
and ours.

Dataset Proposed Method LP

Swing Angle of 0° (776/793, 97.9%) (189/195, 96.9%)
Swing Angle of 10° (254/270, 94.1%) (244/262, 93.1%)
Swing Angle of 20° (149/158, 94.3%) (136/150, 90.7%)
Swing Angle of 27° (73/81, 90.1%) (53/59, 89.8%)
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is the correct matching one for lx . The last column is the accuracy ratio between the two 
numbers ahead. Within Table 2, the proposed method reaches a matching accuracy 
higher than 90% in all swing angles.

Besides, our line extraction and matching strategy outperforms LP significantly with an 
increase in swing angle. It verifies the effectiveness of extracting more line-pairs by 
constructing neighbourhoods based on CN, and indicates that the proposed method can

obtain higher matching accuracy and more extracted line-pairs with an increase in 
scene complexity.

In stitching two orthoimages from section 3.3 (denoted as swing angle of 0° in Tables 2 
and 3), line-pairs extracted by ours reach 4.07 times of that by LP. The total matching 
number is important, as more matching candidates can bring higher robustness for image 
warping (Fan et al. 2010).

Although the number of matching line-pairs suffers from a sharp decline with an increase 
in swing angle, as shown in Table 2, the results verify that our line matching strategy still 
owns a better performance in both number of extracted line-pairs and matching accuracy.

Within interested building from stitched images Is
j ðj ¼ 1; 2; 3Þ and ground truth IGT

4 
shown in the second row of Figure 12, buildings extracted from Is

j , as shown in the second 

row in Figure 12(a)(b)(c) are geometrically accurate compared to the ground truth IGT
4 , as 

shown in the second row of Figure 12(d). Within the left main building (from the centre of 
overlapping area), maximum error in both length and width is less than 1 pixel, lower than 
0.40%. Within the right long building (from image edge), maximum error in length is 
0.92% (from c), while the maximum error in width is 2.15% (from c). It proves stable and 
capable of preserving structures across the whole image with different swing angles.

3.4.2. Root mean square error (RMSE)
The second indicator describes the alignment level of matched point-pairs. Compare the 
RMSE of APAP (Zaragoza et al. 2013), AANAP (Lin et al. 2015), GSP (Chen and Chuang 
2016), SPW (Liao and Nan 2020) and ours operated on the same dataset, as shown in 
Table 3. The smaller RMSE is the better the fusion that is carried out. In experiment in 
section 3.3, among all methods conducted on RS images, the proposed method gains the 
lowest error with RMSE of 0.87, lower than that by SPW. Besides, variance of our RMSE is 
0.007, 84% lower than SPW. Though RMSE tends to increase with a boost in swing angle, 
ours still elicits the best performance among the selected algorithms.

3.4.3. Cumulative stitching accuracy
It is essential to estimate cumulative accuracy in both absolute and pixel level because the 
single-feature based RS stitching algorithms mentioned in section 1 tend to result in high 
cumulative errors. Absolute accuracy ðRj

aÞ denotes the errors gradually accumulated and 
amplified during stitching of multiple images, unit in m. Itis the product result of 

cumulative stitching accuracy (RMSEj, denoted as Rj
p, unit in pixel) and ground sampling 

Table 3. Comparison of RMSE in different image sets.
Dataset APAP AANAP GSP SPW Ours

Swing Angle of 0° 6.70 1.39 1.97 0.88 0.87
Swing Angle of 10° 4.56 4.91 2.42 1.15 0.89
Swing Angle of 20° 4.72 5.01 2.36 1.27 0.94
Swing Angle of 27° 8.96 4.28 4.30 1.48 1.09
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resolution ðGSDjÞ, where j denotes the stitched image after j-th stitching. To calculate GSDj 

within the j-th stitched image, a common way is to divide the j-th stitched image into 
several sub-areas ðΩi; i ¼ 1; . . . ; nÞ and calculate the ratio of the number of pixels ðmxÞ to 
the actual distance (ℒx, unit in m) (x denotes a total number of ℒx within Ωi) on the ground 
in each sub-area, as 

In this section, denote cumulative accuracy ðRn
pÞ of a region as the average RMSE of each 

sub-region (Dennison and Roberts 2003), which is 

Given original GSD0 of ortho image 1 ðIo
1Þ, also known as nadir resolution, as 1 m. It’s 

calculated according to pixel size ðaÞ, focal length ðfÞ, and orbital altitude ðHÞ. When GSDj 

and Rj
p are derived from (22) and (23), Rj

a can be obtained by incorporating GSDj and Rj
p. 

As a result, Figure 13 presents the cumulative errors during the stitching process, includ
ing three forms of errors, GSD (unit in m), stitching accuracy (unit in pixel), and absolute 
accuracy (unit in m), respectively. X-axis plots the first to ninth stitching,

denoted as 1–9 in X-axis. To verify the necessity of ortho-rectification, a comparison is 
conducted between cumulative errors of orthoimages (indicated in green line) and un- 
orthoimages (indicated in blue line). As shown in Figure 13(a), GSD of un-orthoimages 
accumulates significant errors with an increasing number of stitching, 9.81% higher than 
that of orthoimages. Moreover, variance of GSD within orthoimages is 99% lower than 
that in un-orthoimages, which further verifies the stability of GSD by our stitching 
method. Although cumulative stitching error of un-orthoimages is slightly better than 

Figure 13. Cumulative error among multiple stitching. Green line denotes error of orthoimages, while 
blue line denotes error of un-orthoimages. (a) GSD (unit in m); (b) cumulative stitching error (unit in 
pixel); (c) cumulative absolute error (unit in m).
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that of orthoimages as shown in Figure 13(b), the accuracy of orthoimages still outper
forms un-orthoimages by 9.47% in terms of absolute error as shown in Figure 13(c). This is 
due to the fact that interpolation (pixel resampling) during orthorectification process may 
disrupt some linear structures, resulting in a higher contrast of matching feature-pairs in 
the un-orthoimages compared to orthoimages. As a result, the un-orthoimages may have 
better stitching performance at the pixel level. In summary, Figure 13 reiterates two key 
points, the necessity of orthorectification before stitching and the accuracy of the pro
posed stitching algorithm.

4. Conclusions

This paper proposes an orthorectification-based stitching method to obtain large regional 
mapping by stitching WPP blocks. It mainly consists of two parts, calculation of RPCs 
iteration to ortho-rectify the original images and preservation of linear structures within 
stitching WPP images based on line-point consistency. Compared with existing RS stitch
ing method, our method exhibits higher generality and can prevent high accumulative 
errors. It requires for less sensor information and simplifies the computational complexity. 
Simulation experiments prove it has superior and robust application prospects in complex 
scenes such as different viewpoints caused by changes in swing angles. And the accu
mulative experiments prove it’s applicable to produce accurate results due to stable GSD. 
Hopefully, it can provide a novel and simplified idea for achieving regional mapping 
within the remote sensing community.

Although the proposed method exhibits superior adaption to swing angle differ
ences and robustness during multiple stitching, it is still sensitive to non-linear inten
sity because point-feature detection methods adopted in our method, SIFT and SURF, 
are based on first-order-gradient. Accordingly, our future research will include the 
exploration of this limitation more deeply. For example, it is of great significance to 
establish second-order gradient-based methods for improved point detection, such as 
SFOC and CFOG.
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