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Abstract: Infrared dim small target detection has received a lot of attention, because it is a crucial
component of the IR search and track systems (IRST). The robust principal component analysis
(RPCA) is a common detection framework, which works with poor performance with complex
background edges and sparse clutters due to the inappropriate approximation of sparse items. A
nonconvex constraint detection method based on the difference between the L1 and L2 (L1–L2) norm
and total variation (TV) is presented. The L1–L2 norm is a more accurate sparse item approximation
of L0 norm, which can achieve a better description of the sparse item to separate the target from the
complex backgrounds. Then, the total variation norm is conducted on the target image to suppress
the sparse clutters. The new model is solved using the alternating direction method of multipliers
(ADMM) method. Then, the subproblems in the model are tackled by the difference of convex
algorithm (DCA) and the Newton conjugate gradient (Newton-CG) solving L1–L2 norm and TV
norm, respectively. In the experiment, we conducted experiments on multiple and single target
datasets, and the proposed model outperforms the state-of-the-art (SOTA) methods in terms of
background suppression and robustness to accurately detect the target. It can achieve a higher true
position rate (TPR) with a low false position rate (FPR).

Keywords: L1–L2 norm; nonconvex optimization; alternating direction method of multipliers;
infrared small target detection

1. Introduction

The Infrared search and track systems (IRST), which outperform conventional radar
in early-warning, precision guidance, and surveillance applications [1], rely heavily on the
infrared small target detection task. On the one hand, the target, is far from the sensor, so it
takes up few pixels in the IR image. Additionally, due to the same reason, the radiation
attenuation of the target is serious, resulting in a low signal to noise ratio (SNR) of the target.
On the other hand, the target is obscured by the intricate background and noise. As a result,
it is challenging to detect dim and small targets without shape or texture information.

Decades ago, the RPCA framework was proposed for small target detection, and
data optimization-based methods have received a lot of attention because of their excellent
detection performance. The low rank and sparse characteristics are respectively represented
by the nuclear norm and the L0 norm. The L1 norm always replaces the L0 norm as the
sparse measure; however, the loose approximation may cause under punishment of the
sparse item [2]. In addition, the target image will remain at the edge clutters and sparse
clutters, inducing high false detection rates in the complex background.

Therefore, to obtain more accuracy and robust detection, the improvement of the
sparse item was conducted. In [3], the Lp norm was considered a better approximation
to the L0 norm, which can recover the sparse signals better when 0 < p < 1. For the RPCA
framework, the Lp norm is supposed to become a sparser component, and, if the value of p
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is smaller, the solution is sparser. Thus, the nonconvex optimization of the Lp norm can
achieve superior performance for the small target detection tasks. However, the setting
of p makes a decisive role in the robustness of the Lp norm model. The value of p is close
to 1, and the optimization results are similar to L1. When p is close to 0, the solution
is much sparser. The false alarms will be high when the initial value of p is high in
the complicated background, and the low value of p may cause missed detection in the
uniform background. Therefore, the model based on the Lp norm is inadequate to apply in
multifarious circumstances with IR small target detection tasks.

Furthermore, the SOTA methods based on matrix recovery can well achieve detection
with homogenous scenes, while they are still affected by the sparse clutters, such as cloud
edges, sun flash, and sea clutters. The sparse constraint is poor robustness to distinguish
the target from the clutters and a high false alarm due to the heavy residual in the target
image. TV norm [4] has already been applied to the yield of image denoise. Ideally, the
target image is clean, except for the target after the separation, but the sparse constraint
cannot work well with the sparse clutters, and the target image will remain as little sparse
clutters to interfere with the detection task. Accordingly, we can employ the TV norm on
the target image to suppress the sparse clutters in the target image.

Inspired by this, a parameter free sparse constraint model is supposed to be employed
to detect the infrared small target and we propose a difference of L1 and L2 norm add
total variation regularization on the target image for the detection. The method is good at
complex background resistance, high detection precision, and sparse norm parameter free.

The novelties of this paper are as follows:

(1) The difference of L1 and L2 norms is applied in the field of the IR dim and small target
detection, which is parameter free, and the nonconvex optimization of the L1-L2 norm
can achieve sparser target image restoration;

(2) A total variation (TV) regularization is conducted on the sparse target image, which is
to constrain the sparse clutters and decrease the residuals in the target image;

(3) The difference between convex algorithm (DCA) [5] and Newton conjugate gradient
(CG) [6] methods based on the alternating direction method of multipliers (ADMM)
are presented to solve the nonconvex model. DCA is used to solve the difference
between L1 and L2 norms. In addition, the CG is supposed to solve the total variation
regularization, which converges quickly.

The following is the structure of the rest of this paper: Section 2 summarizes the
relevant research of single-frame infrared small target detection and briefly introduces
the current problems of SOTA; Section 3 introduces the proposed model and its solution.
Section 4 introduces the comparison algorithm, test data and experimental results on
multiple real infrared sequences and single frames. Section 5 discusses the improvement
effect of the proposed algorithm compared with SOTA algorithm. The conclusion is
provided in Section 6.

2. Related Work

DBT systems are better in real-time and can reject false alarms caused by single frame
detection results thanks to a tracking algorithm. Therefore, the robustness of the single-
frame detection algorithm is crucial for the performance of the DBT systems [7]. There are
numerous researchers dedicated to single-frame detection approaches, which are roughly
divided into four categories.

2.1. The Background Suppression-Based Method

This kind of method based on the assumption of the infrared image is that the target
is isolated from a relatively continuous background and detection of the target via the sup-
pression of the background. Then max-mean\max-median method [8] and the morphology
opening method [9] are proposed to remove the background. Although these methods
have the advantage of a low complexity calculation, the estimation accuracy will be greatly
affected under the complex background. To solve the above problems, advanced technol-
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ogy based on background suppression is proposed to improve the target and eliminate the
background at the same time. Laplacian of Gaussian (LoG) scale-space [10], the average
absolute gray difference (AAGD) [11], and the facet model [12] were proposed to highlight
of small and weak targets disturbed by background clutter. However, such methods not
only enhance the target but also highlight the edge and texture clutter in the background.

2.2. The Human Visual System-Based Method

The human visual system-based method is used to detect targets by the characteristics
of local saliency of the target. This is motivated by the human visual system, which shows
good robustness when dealing with the target detection task. The local contrast method
(LCM) was introduced by Chen et al. [13]. The feature of local contrast calculates with
a nested structure, which can cause the block effect and the background suppression
to be inferior. Han J et al. [14] improved the local contrast method for high detection
speed based on the subblock division of the IR image, and the relative local contrast
measure (RLCM) [15] was introduced with a difference-ratio form to calculate the local
contrast. Wei Y et al. [16] presented a multiscale patch-based contrast method (MPCM)
that suppresses background clutter by utilizing the difference between the target patches
and the background patches in nine directions and in more than one scale. The weighted
strengthened local contrast measure (WSLCM) [17] can better suppress the background
by designing the weight function, which fully utilizes the characteristics of background,
target, and the dissimilarity between the target and background. Ye S et al. [18] advanced
the high-boost-based local contrast algorithm in multiscale (HB-MLCM) to strengthen the
dim target embedded in the heavy background clutters with the improved high-boost filter.
Guan X et al. [19] proposed enhanced local contrast in Gaussian scale space (GSS-ELCM)
to solve the problem, which was the changing of the target size. LCM and its extended
methods are widely used, as is their low complexity computation. Obviously, these methods
mainly take advantage of the local brightness being higher than the surroundings. The
prior knowledge is only in the spatial space, and the character is too simple and singular to
make the method robust in the complex background.

2.3. The Data Optimization Based-Method

Different from the conventional detection, the optimization-based methods consider
the IR image, which is composed of the background component, target component, and
noise component. Meanwhile, these methods always assume that the background com-
ponent is low rank when the target component is sparse, and the noise component is the
Gaussian distribution with zero mean. Afterward, the dim small target detection task is
converted into a robust principal component analysis (RPCA) [20] optimization problem.
The low rank characteristic of the background image has been improved with the pro-
posal of the infrared patch image (IPI) model by Gao C et al. [21], and the nuclear norm
characterize the low rank of the background when the L1 norm is used to characterize the
sparsity of the target image. Wang X et al. [22] presented an RPCA of joint total variational
regularization on the background image of reducing the false alarm caused by edges in the
background. Dai Y et al. [23] also suppressed the background edges with the local steering
kernel weighted IPI (WIPI) and increased penalties for background edges. At the same
time, a reweighted infrared patch tensor (RIPT) [24] model was introduced, which showed
a new patch model adopting the tensor structure. Guan X et al. [2] proposed a tensor model
to improve the IPT with a nonconvex item, which was the replacement of tensor nuclear
norm (TNN) [25], and the local contrast energy was applied in the model. Furthermore,
the Laplace function was used to approximate the L0 norm. Zhang L et al. [26] introduced
a rank approximation minimization, which is a nonconvex regularization term. Addi-
tionally, the L2,1 norm was introduced to constrained structure noise. Zhang T et al. [27]
presented the Lp norm [28], which is a nonconvex item that can strengthen the sparse item
constraint. This category can achieve a better detection due to the reasonable assumption
and model structures.
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2.4. The Deep Learning-Based Method

This type of algorithm is data driven, and many of the samples are trained to extract
deep features of the target and use a classifier to detect the target. The ability of automatic
learning target features of deep learning makes it develop rapidly in the infrared dim small
target detection field. The convolutional neural network (CNN) [29] was used to train the
filters to classify the background and target [30]. Then, the infrared small target detection
module was designed to add to the CNN to acquire a better detection performance [31].
The image filtering module was also the same. Dai Y et al. [32] presented an attentional
local contrast network (ALCNet), which incorporated a local contrast module and a bottom-
up attention module. Hou Q et al. [33] proposed infrared small target detection, U-Net
(ISTDU-Net), based on a U-shaped structure. By suppressing the background with a fully
connected layer in the jump connection and improving the characterization capability of
small targets, ISTDU-Net achieves excellent detection performance. Even though a deep
learning-based method can perform well in detection with less assumptions, these methods
need many samples containing various scenes to train, and there are few open access and
appropriate datasets of the infrared small target.

Table 1 summaries the various types of infrared small target detection methods and
their typical methods, which are mentioned in the related work.

Table 1. Summary of typical relevant algorithms.

Kind of Methods Typical Algorithms

The background
suppression-based method

max-mean\max-median, morphology opening
method, LoG, AAGD, facet model

The human visual
system-based method

LCM, RLCM, MPCM, WSLCM,
HB-MLCM, GSS-ELCM

The data optimization-
based method IPI, WIPI, RIPT,

The deep learning-
based method ALCNet, ISTDU-Net

3. Methodology

In this section, the difference between L1 and L2 norms is introduced and explain
the advantages of the L1–L2 metric in the application of IR small target detection to
approximate the L0 norm. Then, a novel L1–L2 norm add total variation regularization
method for IR small target detection is presented. Finally, the solution of the nonconvex
model based on ADMM is shown.

As mentioned above, Gao et al. presented the IPI model formulated as Equation (1).
In the equation, the target image T and background image B have the property sparse
and low rank, respectively. The N is the corresponding patch-images of the random
noise. In addition, the original detection model is written as Equation (2), and the sparse
characteristic is formulated with ‖T‖0, where ‖ • ‖0 stands for the L0 norm which is the
number of nonzero elements. The low rank characteristic is formulated as rank(B).

D = B + T + N (1)

min
B,T

rank(B) + λ‖T‖0 s.t. D = B + T, (2)
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In Formulation (3), there is the nuclear norm of the background patch-image, and the
target patch-image is the L1 norm. The nuclear norm is the total of the matrix’s singular
value, and the L1 norm is the total of each matrix element’s absolute values. The L0-norm is
to acquire the sparest solution; however, minimizing the L0 norm optimization problem is
an NP hard problem. The L1 norm is always regarded as the convex approximation of the
L0 norm. ‖ • ‖1 stands for the L1 norm which is the sum of absolute values of all elements.

min
B,T
‖B‖∗ + λ‖T‖1 s.t. D = B + T, (3)

3.1. Enhanced Sparsity of L1–L2 Metric

In [34], a convex relaxation of L1 to L0 has attracted extensive attention in IR small
target detection. The L1 norm could not guarantee that the optimal solution is sparse
since the intersection of affine subspace of the L1 norm and a level set is possibly not the
unique point, which means that all the points on the segment are the optimal solution [35].
Therefore, L1 norm is too loose to constrain the sparse component and leads to the residual
remained in the target image.

The nonconvex measure Lp norm is studied in [35,36] for replacing the L1 norm. Due
to its curved level set, the defect of the L1 norm can be well avoided. The same is true
with L1–L2 norm. However, the Lp norm is a non-Lipschitz continuous metric, and an
additional smoothing operation is supposed to conduct in minimization, avoiding division
by zero and enhancing sparsity [36]. Although the nonconvex function overcomes the
defect of the L1 norm, the solving process of the nonconvex function is more challenging,
and a prior unknown parameter p is extremely important for solving the model.

Figure 1 illustrated the level set of L1, Lp, and L1–L2. In the geometrical aspect,
optimization of sparse functions based on equality constraint is supposed to obtain an
interception of an affine subspace, and the intersection of the level set of the subspace and
the plane is closest to zero [27].
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In this paper, the L1–L2 metric is introduced for sparse target image recovery, which
is nonconvex yet Lipschitz continuous. The L1–L2 metric has been applied in compress
sensing [35] and hyperspectral unmixing [37] to recover the sparse signal. For a matrix X,

the L1–L2 metric is given by ‖X‖1−2 , ‖X‖1 − ‖X‖2 where ‖ X ‖2 =

√
n
∑

i=1
x2

i . Compared

with the Lp norm, the L1–L2 metric is parameter free and has similar convergence rates.

3.2. Total Variation Regularization

It is obvious that the IR image has poor image quality due to the abundant noise with
sparse characteristics. At the same time, the building and cloud edges fluctuate greatly and
will make part of the edges as the sparse components. Unfortunately, the detection of the
target is also affected by these. The sparse clutters in the IR image will remain in the target
image causing the false alarm.

The TV norm is successfully applied in the image denoise yield. The denoise model is
formulated as follows:

X = argmin
X
‖Y− X‖2

2 + λ‖X‖TV (4)

where Y and X represent the observe image and clean image, respectively. λ is an adjustment
coefficient. ‖ • ‖TV represents the TV norm, which can be signified as Formulation (5).

X ∈ Rm×n, ‖X‖TV =
m,n

∑
i,j

√
|xi+1,m − xi,m|2 +

∣∣xn,j+1 − xn,j
∣∣2 =

m,n

∑
i,j

∥∥∥grad(x)i,j

∥∥∥ (5)

In Equation (5), m and n are the row and column numbers of the clean image and xi,j
is the pixel value of an image, which is the i-th row and j-th column pixel. grad(x)i,j is the
gradient of pixel at (i, j) position in the clean image.

Therefore, the TV norm is supposed to constrain the target image, since the enhanced
sparsity constraint will leave little noise in the target image occupied by small pixels.

3.3. Proposed Method

As Equation (1) describes, the infrared image is regarded as a linear model, which is
the sum of the target component, background component, and noise component, when the
noise is approximately regarded as additive. This approach is extensively used in IR small
target detection [38–40]. The target image can be recovered based on the sparse property
of the target image and low rank property of the background image. In [21], the original
image is reconstructed with the patch images, which are obtained by the sliding window
on the original image. The operation transforms the original image into a patch image and
can enhance the low rank of the background.

On this basis, the L1–L2 metric constraint was employed on the target image for more
sparsity solution. The objective function is changed as Equation (6).

min
B,T
‖B‖∗ + λ‖T‖1−2 s.t. D = B + T (6)

For enhancing the robustness of the algorithm to resist the structure noise, a total
variation regularized constraint of target image was applied. Then, we proposed an infrared
small target detection method based on nonconvex constraint based on L1–L2 norm and
total variation. The final objective function is rewritten as Equation (7).

min
B,T
‖B‖∗ + λ1‖T‖1−2 + λ2‖F‖TV

s.t. D = B + T, T = F
(7)

where ‖ • ‖1−2 is denoted as ‖ • ‖1 − ‖ • ‖2.
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3.4. Solution of the Proposed Model
In this section, the objective function is solved with the ADMM method, and the

solution is shown. The equation constraint optimization problem is converted into an
unconstrained optimization problem. Thus, Equation (7) can be rewritten as the augmented
Lagrangian function as Equation (8).

L(D, B, T, F, γ1, γ2, ρ) = ‖B‖∗ + λ1‖T‖1−2 + λ2‖F‖TV + 〈γ1, F− T〉+ 〈γ2, D− B− T〉+ ρ

2

(
‖F− T‖2

F + ‖D− B− T‖2
F

)
(8)

where 〈•〉 denotes the inner product of two matrices, ‖•‖F is the Frobenius norm equaling to the
square root of the square sum of matrix elements, γ1 and γ2 are the Lagrangian multiplier matrixes,
and ρ is a penalty factor.

Based on the ADMM method, an alternative iteration is utilized to minimize the Lagrange
function Then, the optimization problem is divided into three subproblems, and we can solve each
subproblem independently. Moreover, the solution to subproblems is shown separately.

(a) subproblem of B

The iteration function of B in the (k + 1) step is as follows:

Bk+1 = argmin
B

L(B, Tk, γk
2
)

= argmin
B
‖B‖∗ +

〈
γk

2
, D− B− Tk

〉
+

ρ
2

∥∥∥D− B− Tk
∥∥∥2

F

= argmin
B
‖B‖∗ +

ρ
2

∥∥∥∥D− B− Tk +
γk

2
ρ

∥∥∥∥2

F

(9)

The above formulation has a close-form solution obtained by a singular value thresholding
shrinkage operator [41].

Bk+1 = UkS1/ρ(Σ)V
kT

(10)

where U, ∑, V are acquired with the singular value decomposition (SVD) of ∑ and S1/ρ[•] is the soft
thresholding operator, which is written in Equation (11).

Sµ[x] =


x− µ i f x > µ

x + µ i f x > µ

0 others
(11)

(b) subproblem of T

The iteration function of T in the (k + 1) step is as follows:

Tk+1 = argmin
T

L(Bk+1, T, Fk, γk
1, γk

2)

= argmin
T

λ1‖T‖1−2 +
〈

γk
1, Fk − T

〉
+
〈

γk
2, D− Bk+1 − T

〉
+

ρ
2

(∥∥∥Fk − T
∥∥∥2

F
+
∥∥∥D− Bk+1 − T

∥∥∥2

F

) (12)

However, the above formulation is a nonconvex function, due to the ‖T‖1−2 item being non-
convex. As mentioned in the above section, ‖X‖1−2 , ‖X‖1 − ‖X‖2,which can be minimized by the
DCA [42]. DCA can directly linearize the objective function instead of adding constraints.

Formulation (12) is decomposed into the difference between two functions argmin
T

F(T) =

G(T)− H(T), where G(T) = λ1‖T‖1 +
〈

γk
1, Fk − T

〉
+
〈

γk
2, D− Bk+1 − T

〉
+

ρ
2

(∥∥∥Fk − T
∥∥∥2

F
+
∥∥∥D− Bk+1 − T

∥∥∥2

F

)
H(T) = λ1‖T‖2

(13)

For facilitating the linearization of H(T), we take an approximation of the L1–L2 metric, which
is formulated as ‖X‖1−2 , ‖X‖1 − ‖X‖

2
F so that H(T) = λ1‖T‖2

F. The linearization of H(T) is shown
as follows:

H(T) = H(Tk) +
〈

T − Tk, ∂H(Tk)
〉

(14)
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Then, the iteration solution of T can be resolved after the linearization of H(T). The solution is
given as follows:

Tk+1 = argmin
T

G(T)− H(T)

= argmin
T

G(T)− H(Tk)−
〈

T − Tk, ∂H(Tk)
〉

= argmin
T

λ1‖T‖1 − 2λ1tr(TTTk) +
〈

γk
1, Fk − T

〉
+
〈

γk
2, D− Bk+1 − T

〉
+

ρ
2

(∥∥∥Fk − T
∥∥∥2

F
+
∥∥∥D− Bk+1 − T

∥∥∥2

F

)
= argmin

T
λ1‖T‖1 +

ρ
2

∥∥∥ 1
2

(
Fk + D− Bk+1 +

γk
1+γk

2+2λ1Tk

ρ

)
− T

∥∥∥2

F

(15)

The above equitation has a closed-form solution [43], which is shown as

Sλ1/ρ

[
1
2

(
Fk + D− Bk+1 +

γk
1 + γk

2 + 2λ1Tk

ρ

)]
(16)

where Sλ1/ρ[•] is a soft-thresholding operator defined as Equation (11).

(c) subproblem of F

The iteration function of F in the (k + 1) step is as follows:

Fk+1 = argmin
F

L(F, Tk+1, γk
1)

= argmin
F

λ2‖F‖TV +
〈

γk
1, F− Tk+1

〉
+

ρ
2

∥∥∥F− Tk+1
∥∥∥2

F

= argmin
F

λ2‖F‖TV +
ρ
2

∥∥∥F− Tk+1 +
γk

1
ρ

∥∥∥2

F

(17)

The Formulation (17) is a convex function and an unconstrained optimization problem so that
the minimization for (15) can be easily achieved. Then, the optimization problem is corresponding
to acquiring the F, where ∇L(F) = 0. The derivatives of the objective function of F are shown as
Equations (18) and (19):

∇L(F) = λ2∇(‖F‖TV) + ρ

(
F− Tk+1 +

γk
1

ρ

)
(18)

∇(‖F‖TV) = div
(

grad(x)i,j/
∥∥∥grad(x)i,j

∥∥∥) (19)

where div[•] represents the divergence operator. To avoid the gradient of the input image being 0,
the TV norm is supposed to modulate with a parameter δ. Thus, the TV norm is shown as

X ∈ Rm×n, ‖X‖TV =
m,n

∑
i,j

√∣∣xi+1,m − xi,m
∣∣2 + ∣∣∣xn,j+1 − xn,j

∣∣∣2 + δ2 (20)

The Newton method is widely used to solve ∇L(F) = 0, The iteration solution is given
as follows:

xk+1 = xk − d (21)

where k is the number of iterations, xk denotes the k-th iteration result, and d means the descending
direction, which is obtained by solving Hkd = ∇L(Fk) with the Newton method. In addition,Hk is the
Hessian matrix at k-th iteration. However, for large scale optimization problems, the computational
complexity of the inverse Hessian matrix is high. Then, the CG method is employed to solve the
descending direction of the iteration equation. Thus, a solving operatorFρ[•] is defined as follows
to solve (17):

Fλ2/ρ

[
Tk+1 −

γk
1

ρ

]
= argmin

F
λ2‖F‖TV +

∥∥∥∥∥F− Tk+1 +
γk

1
ρ

∥∥∥∥∥ (22)

Thus, the function (22) will be solved by the Newton-CG, which is summarized in Algorithm 1.
The solving process of the nonconvex function (7) combination with the ADMM method and

the solution details are summarized in Algorithm 2.
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Algorithm 1: Newton-CG algorithm for solving TV norm.

Input: Fk, temp = Tk+1 − γk
1/ρ,

Output: Fk+1

Initialize: Fk = temp
While not converged do

Compute ∇L
(

Fk
)

∇L(F) = λ2∇(‖F‖TV) + ρ
(

F− Tk+1 + γk
1/ρ

)
;

Compute ∇2L
(

Fk
)

(approximate Hessian matrix);
Compute d;

Solving ∇2L
(

Fk
)

d = ∇L(Fk) with CG method;

Compute Fk+1

Fk+1 = Fk − d;
Check the convergence conditions∥∥∥Fk+1 − Fk

∥∥∥ < 10−3;
Update k
k = k + 1;
end

Algorithm 2: ADMM solver to the proposed model.

Input: Patch image D, λ1
Output: Target image T, Background image B
Initialize: B0 = D, T0 = F0 = γ0

1 = γ0
2 = 0, ρ0 = 1/(5∗std(A(:))), λ2 = 0.02;

While not converged do
%Update Bk+1

Bk+1 = UkS1/ρ(Σ)VkT
;

%Update Tk+1

Tk+1 = Sλ1/ρ

[
1
2

(
Fk + D− Bk+1 +

γk
1+γk

2+2λ1Tk

ρ

)]
;

%Update Fk+1

Fk+1 = Fλ2/ρ

[
Tk+1 − γk

1
ρ

]
;

%Update γk+1
1 , γk+1

2 and ρk+1

γk+1
1 = γk

1 + ρk
(

D− Bk+1 − Tk+1
)

;

γk+1
2 = γk

2 + ρk
(

Fk+1 − Tk+1
)

;

ρk+1 = 1.5 ∗ ρk;
% Judge the convergence conditions∥∥∥D− Bk+1 − Tk+1

∥∥∥
F

/‖D‖
F
< 10−7;

% Update k
k = k + 1;
end

3.5. The Procedure of the Proposed Method
The flow chart of the complete procedure of the proposed method is shown in Figure 2. Addi-

tionally, the particular algorithmic procedure can be summed up as follows:

1. Convert the original infrared image into a patch image through a sliding window with a length
of len and a step of step The len and step value will be discussed in the next section;

2. Parameters initialize of lambda1. The influence of the parameters on the experiments is discussed
in Section 3;

3. The patch image input Algorithm 1 and target patch image T solves until the iterative conver-
gence. During iteration, the T and F iteration expressions are solved with DCA and Newton-CG
methods, respectively;

4. The target patch image is restored with the inverse process of step 1;
5. The target detection utilizes threshold segmentation, and the segmentation is shown as Equation (23),

and µ and δ denotes the mean and variance value of the separated target competent.
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4. Experiments and Results
The specific experimental content will be discussed in this part. At first, the compared algo-

rithms with their parameter settings and experimental datasets will be presented. Then, several
quantitative indicators are introduced. Subsequently, the best parameters of the proposed model
are selected through experiments. Finally, the datasets are tested by the proposed method and the
baselines methods.

4.1. Experimental Setting
The proposed model is supposed to compare with eight SOTA methods, including local con-

trast measure (LCM), multiscale patch-based contrast measure (MPCM), absolute directional mean
difference (ADMD) [44], infrared patch-image model (IPI), nonconvex optimization with Lp-norm
constraint (NOLC), nonconvex rank approximation minimization joint L2,1 norm (NARM), and
partial sum of the tensor nuclear norm (PSTNN) [45] model. The compared methods’ parameters
choice was set as the authors suggested, which is given in Table 2.

Table 2. Details of seven compared algorithms.

Algorithm Parameter Setting

LCM Slide windows size: 3 × 3
MPCM Slide windows size: 1, 2, 3, 4
ADMD Slide windows size: 3, 5, 7, 9

IPI Patch size: 30 × 30 Slide step: 10 lambda: 1/sqrt (min (m, n))
NOLC Patch size: 30 × 30 Slide step: 10 lambda: 1/sqrt (max (m, n)) p = 0.5
NARM Patch size: 30 × 30 Slide step: 10 lambda: 1/sqrt (min (m, n))
PSTNN Patch size: 40 × 40 Slide step: 40 lambda: 0.7/sqrt (min (m, n))

The proposed model is conducted on eight different scenes, four real sequences, and four single
frame scenes are contained. Each frame image of the sequence datasets and the last two single
frames contain only one target, while the first two single frame images contain more than one target.
The scenes of the test datasets consist with various complex interference, which mainly involve the
background edges with large brightness fluctuations and flickering background clutters, such as
sequence 1,3 and single frame 1,4. The details of the test images are listed in Table 3.

Table 3. Detailed descriptions of the test datasets.

Test Image Frame
Number Size Image Description

sequence1 50 589 × 418 The background contains a lot of broken clouds and banded clouds, and the target
occupies few pixels

sequence2 50 480 × 359 The image contains a highlighted building background, and the target is dim

sequence3 50 256 × 239 The background contains cumulus and edge clutter with high brightness, and there
are few target pixels

sequence4 50 256 × 200 The background mainly contains banded clouds

single frame1 198 × 134 The background of the image is relatively uniform, but there is some convex
interference. The image contains two dim targets, which are close to each other

single frame2 128 × 128 The image is based on the ground and contains three targets, which are vulnerable to
background interference during detection

single frame3 233 × 161 There are buildings in the image background, and the details of buildings are easy to
interfere with the detection of targets occupying a few pixels

single frame4 128 × 128 The target is buried in the ground object background and seriously disturbed by the
weed texture

4.2. Evaluation Metrics
In order to objectively illustrate the effectiveness of the proposed method, quantitative evalua-

tion indicators are introduced. The signal-to-clutter ratio gain (SCRG) and the background suppres-
sion factor (BSF) can quantitatively describe the target enhancement and background suppression
ability of the algorithms, respectively. In addition, the receiver operating characteristic (ROC) curve
shows the relationship between the true positive rate (TPR) and false positive rate (FPR).
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SCRG is defined as:
SCRG =

SCRout
SCRin

(24)

where SCR is an indicator to measure the significance of objectives. The numerator represents the
SCR processed by the algorithm, while the denominator represents the SCR of the original image

SCR is formulated Equation (25):

SCR =
|µt − µb|

σb
(25)

where µt and µb indicate the target area’s and the neighbor region’s average pixel values. σb indicates
the standard deviation of the neighbor area around the target position. The region size of the target
and neighbor is set to 10 × 10 and 40 × 40 in the experiment.

BSF is formulated Equation (26):

BSF =
σin
σout

(26)

where σin and σout indicates the standard deviation of the surrounding background in the input image
and the standard deviation of the surrounding background in the output image. According to the
formula of SCRG and BSF, the target enhancement ability and background noise suppression ability
of the algorithm can be measured quantitatively. The larger SCRG and BSF, the better performance of
the algorithm.

4.3. ROC Curve
ROC curve is another extensively employed evaluation in the single frame detection field,

which can utilize the relationship between the FPR and TPR to illustrate the detection ability of the
algorithm. TPR is supposed to demonstrate the detection proportion of the correct detection. FPR
demonstrates the proportion of false alarm response which is detected as a target. As mentioned
above, the algorithm has better performance when its ROC curve is closer to up and left. The TPR is
formulated Equation (27):

TPR =
counts of true detections

counts of real targets
(27)

FPR is formulated Equation (28):

FPR =
counts of false detections

counts of image pixels
(28)

4.4. Parameter Analysis
The sliding window size len, window sliding step, and lambda1 are important variables in the

proposed model that have a major impact on the low rank, sparse, and iteration. For the purpose of
obtaining the best results of the real dataset, it is essential to conduct sufficient experiments on the
selection of key variables. Figure 3 is the ROC curve of the comparison with the parameters on the
four real IR image sequences.

As depicted in Figure 3, the ROC curves obtained from the experiments from the sequences
1–4 from up to down. The ROC curves from left to right are the comparison among the len, step, and
lambda1. We take the value of len as 20, 30, 40, 50, and 60, and discuss the impact on the optimization
results under the condition of only changing the window size. It is seen that with the increasing of
the value of len, the detection rate is increased, but when the value is 60, the detection performance
begins to degrade. As the window size increases, the content in the patch is more and more abundant,
and the sparse characteristic becomes more obvious. However, when the size is more than 60, the
patch information is redundant, causing the sparse characteristic to degrade. This means that there
is a reasonable value of len, which can make an ideal experimental result. Through the ROC curve
in the first column in Figure 3, we can see that, for the fixed FPR, the TPR is the highest of the len
value at 50.
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For the sliding step, the variable decreases and the larger the overlapping area of the patch.
Therefore, the value of the sliding step mainly affects the rank attribute of the constructed patch
image. Furthermore, the smaller step will increase the dimension of the patch image and the number
of calculations increases. The second column ROC curves in the Figure 3 are the comparison of the
parameter of step. In addition, the value of the step is set 6, 8, 10, 12, and 14. In the experiment, the
other parameters are invariant. As seen in the ROC curve, we can conclude that the value of the
sliding step is 8 and can achieve a better detection performance.

As for lambda1, which is a sensitive parameter for the detection ability, the ROC curves of the
comparison are shown in the third column. The value of lambda1 is set to 0.02, 0.04, 0.06, 0.08, and 0.1.
The ROC curve indicates that there is an appropriate lambda1 in a reasonable range to achieve the
best performance on the test data. When the value of lambda1 is 0.06, the model can detect the targets
with the lowest FPR.
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4.5. Comparison to SOTA
The above section discusses the vital parameters of the model, and, to confirm the robustness of

the proposed model, in this section, we trial the proposed method with the SOTA methods on four
real IR sequences and four single scenes. The comparison methods are listed in Table 1, including local
contrast method (LCM), multiscale patch-based contrast measure (MPCM), absolute directional mean
difference algorithm (ADMD), infrared patch image (IPI), nonconvex optimization with Lp-norm
constraint (NOLC), nonconvex rank approximation minimization (NRAM), and partial sum of tensor
nuclear norm (PSTNN). Figures 4 and 5 show the performance of all algorithms on the sequence
images, and Figures 6 and 7 show the performance of all algorithms on the single frame images.

The outcomes of the proposed method and SOTA algorithms are depicted in Figure 4. The 3D
displays of the results can intuitively learn about all algorithms’ detection abilities. Figure 5 displays
the outcomes of comparison methods and the original IR images in gray. We make the target position
in the images stand out with red rectangles and expand the target area in the images’ corners for
better display.

It is obvious that the SOTA methods can eliminate the background and enhance the target
to a certain extent. Nevertheless, LCM, MPCM, and ADMD have the detection performance and
is relatively worse at the same FPR. Because these methods are proposed on the basis of simple
assumptions, their detection ability is very poor, which is the Gaussian-like target, and the target is
located at a uniform region. By comparison, the other methods are based on the low rank and sparse
recovery assumption, which can obtain better results. Figures 4 and 5 show that the IPI and NARM
has many remaining clutters after processing. The clutters mainly obtain the edges and high bright
part of the architecture. As for IPI, the simple L1 norm is employed to constrain the sparse item,
resulting in a worse result, while the corner and isolate clutters are also sparse in the recovery. For
NRAM, providing the surrogate, the sparse item with a weighted L1 norm for more accuracy limit
the sparse item. However, it still encounters strong edge inference. The PSTNN-based IPT [46] model
introduces a surrogate of the tensor rank item and unfolding of the patch-tensor to capture the low
rank property. Similar to NRAM, it focuses on the low rank constraint and neglects the limit on the
sparse regulation. Thus, the performances of both NRAM and PSTNN are not well suited to resist
the salient clutters. The NOLC method presents the Lp norm to surrogate the L1 norm as an effective
sparse constraint item and can achieve relatively better detection results compared with the methods
analyzed above. However, as shown in Figure 4, there are few residual clutters in the results.

For further analysis of the abilities of all algorithms, the experiments are conducted on four
single frame IR images. Figures 6 and 7 show the 3D display and gray display of the results of
the single frame images, respectively. In Figure 7, we made the target position in the images stand
out with red rectangles and expanded the target area in the images’ corners for better display in
the single target scenarios. As described in Table 2, the first and second frames contain more than
one target, and the targets in the third and fourth frames are tiny and are severely interfered by the
background texture. Generally speaking, the performance of optimization-based algorithms is better
than the HVS-based methods at the same FPR. Then the NOLC method can achieve better background
suppression by benefiting its nonconvex sparse item constraint. However, the proposed method can
obtain a superior result on the test datasets in background elimination and target strengthening than
NOLC. The defect of NOLC of the Lp norm is poor robustness, for it may cause a missed detection or
a little higher FPR.

The ROC comparison for all methods of four real IR image sequences is advanced in Figure 8
to demonstrates the advantages of the advanced method. The horizontal axis and vertical axis are
the FPR, defined as Formulation (28) and the TPR defined as Formulation (27), respectively. As seen
in Figure 8, the LCM always shows the lowest TPR with the highest FPR among the comparison
algorithm due to the simple local contrast feature extraction with the nine cells nest structure. The
MPCM performs a little better than LCM, which can suppress the uniform background but is terrible
at eliminating the complicated background. This illustrates the improved background suppression
ability of MPCM compared with LCM, while LCM mainly enhanced the target with local contrast
features. ADMD can achieve effective detection results on all sequences images compared with the
HVS-based and background suppression-based methods. Then, the PSTNN, IPI, and NRAM have
similar performance. The FPR is controlled at the low level, and the TPR is at a relatively high level.
Furthermore, the NRAM keeps the lowest FPR among the three methods. The performance of NOLC
is that it is the more high-performance optimization-based algorithm, which is polluted with high
bright clutters causing little FPR. In general, the proposed method can obtain a better ROC on all the
test sequence images, which is the lowest FPR and highest TPR among the other SOTA methods.
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For the further quantitative evaluation of the efficiency of the advanced method, we utilized the
SCRG and BSF indexes to measure the abilities of target enhancement and background suppression,
respectively. The definitions of the indexes are introduced in Formulations (24) and (26). As shown
in Table 4, the metrics of the proposed methods outperformed the other methods. Intuitively, the
bold display shows the best two indicators. In addition, it is obvious that the optimization-based
approaches show better abilities than the other methods.

Table 4. SCRG and BSF values of the SOTA methods.

LCM MPCM ADMD IPI PSTNN NRAM NOLC Proposed

Seq 1 SCRG 0.6766 3.3325 2.8766 3.0071 3.7805 1.1525 2.6787 Inf
BSF 1.4943 4.3979 30.5796 4.6997 11.8668 13.5845 24.4370 37.8915

Seq 2 SCRG 2.8994 2.9210 42.4387 46.9946 28.8361 5.2754 Inf Inf
BSF 2.0465 4.3853 4.8713 4.7876 12.1526 16.0935 17.9242 22.7435

Seq 3 SCRG 3.8201 0.6461 73.6852 109.5999 140.9454 14.9330 Inf Inf
BSF 1.5474 1.4455 0.8282 1.7376 1.7940 2.6039 2.4205 2.7145

Seq 4 SCRG 3.5833 4.6747 39.1615 197.6377 14.6742 16.7123 Inf Inf
BSF 1.1544 2.8494 11.1216 3.7819 6.2014 10.3059 11.2824 12.9538

To demonstrate the real-time of the proposed method, we will analyze the computational
complexity of the eight algorithms. Assuming that the size of the patch image is m×n and the
original IR image size is M × N, the LCM adopts 3 × 3 template for computing so that the complexity
is O(MN). Taking the multiscale into consideration and setting k sliding windows of different sizes,
the final complexity is O(k3MN) where k is the number of the scales. The MPCM is the same as LCM,
which calculates pixel by pixel, so the computation is also O(k3MN). For ADMD, the computation
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cost is mainly caused by the nested sliding window. The size of the inner window is 3× 3, and the out
window is multi-scale and is set to k. Thus, the final computation is O(8k3MN). For the IPI model, the
time-consuming part is from the matrix SVD with a complexity of O(mn2). In addition, the NARM
and NOLC have the same computational complexity with the IPI. The PSTNN needs to construct a
tensor with the size n1 × n2 × n3, and the calculation complexity is depended on the tensor SVD
and FFT operation. The FFT only conducts on the frontal slice, which the size is n1 × n2. Finally, the
complexity of PSTNN is O

(
n1n2n3 log(n1n2) + n1n2

2[(n3 + 1)/2]
)
. The computational complexity of

the proposed method relies on the matrix SVD and Newton-CG, and the complexity is O(nm2). It
is obvious that the computational complexity of the proposed method is closely related to the size
of the patch image. Furthermore, the methods based on low-rank recovery have a computational
cost of O(nm2) on average. Therefore, the proposed algorithm can achieve a relatively acceptable
computational complexity. The computational complexity of all methods in the experiments is
summarized in Table 5.

Table 5. Comparison of computational complexity of all methods.

Method LCM MPCM ADMD IPI PSTNN NRAM NOLC Proposed

Complexity O(k3MN) O(k3MN) O(8k3MN) O(nm2) O(n1n2n3 log(n1n2)
+n1n2

2[(n3 + 1)/2])
O(nm2) O(nm2) O(nm2)

5. Discussion
The background and target separation with optimization-based methods are extensively em-

ployed in the aspect of infrared small target detection. More and more researchers improve the
robustness of the model with the surrogate of the nuclear norm for accurately estimating the rank of
the background image or adding the additional regularization for constraining the remaining noise.
The NOLC analysis is the influence of the difference between rank and sparse constraint for the IR
target detection. However, the complex background edges and sparse clutters seriously interfere with
the dim small target detection. In order to improve the IR small target detection model robustness
under the RPCA framework, we utilized the L1–L2 norm as the sparse regularization and the total
variation item to work on the target image. In Section 4, the experiments on the IR image sequences
and single frames revealed that the sparse measure with L1–L2 norm could achieve an approving
result in the detection tasks, though the targets were disturbed with the complex background edges
and sparse clutters.

Comparing with other optimized based-methods, IPI is the beginning of the optimization-
based model, which only employs the nuclear norm to estimate the rank of the background and
the L1 norm as the sparse item. Therefore, the simple regularizations are inadequate to handle the
complicated scenes. Making full use of the nonlocal prior information, the PSTNN extends the
matrix structure to tensor structure. It mainly works at the background recovery accurately with the
improved tensor nuclear norm. However, the component of the background is not strictly low rank,
causing unsatisfactory recovery results facing the complex background. As shown in the experiment
outcomes in Section 3, PSTNN is sensitive to the strong edges, and the tensor model ability will be
limited in these scenes. As an extension of IPI, NRAM introduced the structural noise suppression
regularization, which employed the L21 norm to achieve the row sparsity. However, the patch size
plays an important role in structural noise elimination. If the sliding window size does not match
the noise region, the effect of the regularization may not work well. Then, the NOLC improves the
robustness from the perspective of the target which is different from the above mentioned one. The
sparse item with the Lp norm can obtain sparser results than the L1 norm. However, the Lp norm
causes missed detection and false alarms due to the selection of the value of p. The proposed method
improves the robustness of the sparse item with the L1–L2 norm and adds the total variation norm to
decrease the interference from strong clutters on the target perspective.

The proposed detection method utilizes the parameter free sparse item to surrogate the L0 norm,
and we constrain the clutters in the target image with the total variation. Thus, the model can succeed
against the challenging clutters and achieve a great detection effect.

The performance of the proposed model is illustrated by experiments. At first, we analyzed
the vital parameters in the model and confirmed the optimal parameters. Then experiments were
conducted on four sequences and four single frame images. Compared with the SOTA methods,
the outcomes of the advanced model are the best among all the algorithms and consistent with the
analysis results. The advanced model works well in both target detection accuracy and background
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elimination. As the results were analyzed in the experiment, the computational complexity of our
algorithm did not improve. If the image size of the experiment is larger, the algorithm will take
longer to run compared to the filter-based method.

6. Conclusions
In summary, the proposed approach of incorporating the L1–L2 norm and total variation

regularization on the target image has significantly improved the detection accuracy of the IR small
target detection model. The L1–L2 norm enhances the model’s sparsity constraint, while the TV
norm strengthens its ability to reject sparse clutter interference. The resulting nonconvex model
demonstrates strong performance in detecting targets and eliminating clutter, as evidenced by the
ROC curve with high TPR and low FPR compared to other SOTA methods. Additionally, quantitative
metrics like SCRG and BSF further validate the effectiveness of the proposed technique. Overall,
this study offers a promising approach for enhancing small target detection in infrared imaging
applications.

Although it is true that the proposed method has an average level of computational complexity
compared to other low-rank recovery methods, it may still be more time-consuming compared
to traditional filtering methods. Therefore, it is important to take into consideration the trade-off
between computational efficiency and accuracy when choosing a suitable approach for the task.
Additionally, further research should be conducted to improve and optimize the proposed method in
order to overcome its potential limitations.
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