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Disturbance observer–based neural
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vehicles with multiple model
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Abstract
One of the critical problems for flexible vehicles is how to simultaneously address the multiple uncertainty compensation and flexible vibration suppres-

sion. This paper focuses on the smooth adaptive fault-tolerant control design problem of a two-layer framework for flexible air-breathing hypersonic

vehicles subject to contingent actuator failures and multiple model uncertainties. The first layer provides a disturbance observer–based neural adaptive

fault-tolerant controller overcoming actuator failures and multiple model uncertainties. The second layer relies on the tracking differentiator and filter

combined with the controller seamlessly, generating smooth reference information, which is highly desirable for flexible vibration suppression. Then,

the analysis by the Lyapunov theory strictly proves the uniform ultimately boundedness of all the control and filter state variables. Finally, the simulation

results demonstrate the dominant tracking control performance of the proposed control method.
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Introduction

In the past several decades, air-breathing hypersonic vehicles

have been one of the major topics to be investigated in the

aerospace field for the dramatic advantages of the fastest

reached and large flight envelopes (Guo et al., 2020; Xu et al.,

2004). The capability of air-breathing hypersonic vehicles

(AHVs) plays an important role in completing rapid near-

earth orbit transportation, space exploration emergency, and

global attack Guo et al. (2019a, 2019b). However, AHVs con-

front external disturbances and aerodynamic uncertainties

due to the harsh flight environment. What’s worse, the distin-

guishing flexible characteristic and strong coupling caused by

the slender geometry is inevitable, degrading the performance

of the flight control system An et al. (2021) and Ding et al.

(2019a). Therefore, it is evident that the control system design

of flexible air-breathing hypersonic vehicles (FAHVs) with

multiple model uncertainties is not easily tackled.
The high-fidelity longitudinal model of FAHVs for the

control system design has been proposed in Parker et al.

(2007), where the complex dynamics functions are superseded

by precise curve-fitted. Based on this model, many significant

results focusing on the controller design of FAHVs have been

achieved. To compensate for the vibration induced by the

elastic dynamics, Wang et al. (2014) developed a coupling dis-

turbance observer–based composite control method for

FAHVs, where the generalized elastic mode coordinates are

estimated accurately. In An et al. (2016), a linear disturbance

observer–based control method has been developed by utiliz-

ing the feedback linearization methodology to effectively sup-

press the influence of multiple uncertainties and elastic

dynamics. Nevertheless, the feedback linearization model is

established depending on the model parameters of actuators,

which may not be available in practice. Recently, the non-

linear backstepping framework has been employed to design

the tracking controller by constructing a strict-feedback

model of FAHVs (Sachan and Padhi, 2020). In Shao et al.

(2021a), a neural network-based controller has been proposed

to handle the total disturbances summarized by the influence

of elastic dynamics, multiple uncertainties, and actuator fail-

ures. A similar method has been presented in Shao et al.

(2021b), where the influence of elastic dynamics is regarded

as a part of the lumped disturbances addressed by a conveni-

ent parameter tuning tangent function. In Ding et al. (2019b),
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the sliding mode control method has been used for designing

the controller of FAHVs to deal with the multiple uncertain-

ties, including the elastic dynamics and external disturbances.

From the short review above, the flexible vibration problem

caused by elastic dynamics is addressed acquiescently as a

part of the lumped disturbances. It should be noted that, in

addition to treating the elastic dynamics as a part of the

lumped disturbances for compensation, many studies have

shown that the smooth control process is highly desirable for

the suppression of flexible vibration (Hu et al., 2019; Shi

et al., 2020). As stated above, it is more efficient to suppress

flexible vibration using active compensation combined with a

smooth control process.
However, the actuator failure is considered as the primary

factor for practical control system performance degrading,

which even leads to instability Wang et al. (2018b) and Wang

and Yuan (2019). In order to achieve reliable flight control, it

is necessary to design a fault-tolerant controller for FAHVs to

ensure excellent stability and control performance in the pres-

ence of contingent actuator failures. In general, the effective

fault-tolerant control (FTC) method can be roughly categor-

ized into the passive and the active control method (Argha

et al., 2019; Wang et al., 2022). Different from the passive

FTC method adopting the immutable control structure, the

active FTC method ensures the excellent performance and sta-

bility of the considered system using the adaptive reconfigur-

able controller Wang et al. (2018a) and Zhang et al. (2022),

which can actively compensate for actuator failures. In He

et al. (2015), an output feedback adaptive control method has

been proposed to compensate for the influence of actuator

failures by updating the associated parameters. In Zhang

et al. (2020), a second-order sliding mode observer has been

constructed to estimate the lumped disturbances composed of

external disturbances and actuator failures, and the higher

accuracy tracking control is achieved by the observer-based

nonlinear control strategy. In He et al. (2022), an adaptive

feedback control method has been investigated for flight state

stabilizing and vibration elimination by adaptive fault estima-

tion. The active adaptive FTC has shown superior perfor-

mance in handling actuator faults. Therefore, the adaptive

FTC methodology will be inherited and carried forward for

the flight control system design of FAHVs.
In this paper, a disturbance observer–based neural adaptive

fault-tolerant control method is developed for FAHVs subject

to contingent actuator failures and multiple model uncertain-

ties. The neural networks are seamlessly combined with the

adaptive control to compensate for actuator failures and mul-

tiple model uncertainties. The mismatched disturbances are

effectively handled by introducing the nonlinear disturbance

observer in this scenario. Moreover, the tracking differentiator

and filter provide smooth reference information for flexible

vibration suppression while reducing the complexity of the

recursive control framework. To be more specific, the pro-

posed method in this paper possesses the following features:

� A two-layer framework-based smooth neural adaptive

control method is proposed to handle the complex

control problem of actuator failures, multiple model

uncertainties, and elastic dynamics. The analysis by

the Lyapunov theory strictly proves the uniform ulti-

mately boundedness of all the state variables of the

controller and filter.
� Unlike existing adaptive methods in He et al. (2015,

2022), this paper develops a novel neural adaptive con-

trol method to estimate the upper bounds of unknown

uncertainties. Thus, strong robustness and excellent

transient tracking performance are guaranteed despite

time-varying actuator failures and multiple model

uncertainties.
� Different from previous studies Ding et al. (2019b)

and Shao et al. (2021a, 2021b) that regard the influ-

ence of elastic dynamics as a part of the lumped distur-

bances to compensate, this paper adopts a composite

strategy to address the flexible vibration problem. The

proposed design features a smooth control action that

can effectively avoid exciting the major elastic

dynamics by the smooth reference combined with the

tangent control function. On this basis, the residual

flexible vibration will be compensated by the adaptive

controller.

The structure of this paper is organized as follows. The

dynamic model of FAHVs subject to actuator failures and

multiple model uncertainties is formulated in ‘‘Problem state-

ment and preliminaries.’’ The control method and its stability

analysis are given in ‘‘Main results.’’ The numerical analysis is

given in ‘‘Simulations’’ to verify the dominant tracking con-

trol performance of the proposed control method. Finally,

the conclusion is summarized.

Problem statement and preliminaries

Dynamic model of FAHVs

The basic structure of FAHVs is shown in Figure 1, depicting

the components and variables used for attitude control. The

dynamic model of generic FAHVs considered in this study is

given by Parker et al. (2007), the specific form can be

described as

_V =
T cosa� D

m
� g sing

_h=V sin g

_g =
L+T sina

mV
� g cosg

V

_a= q� _g

_q=
M

I
+

~c1€h1

I
+

~c2€h2

I

€hi =� 2jivi _hi � v2
i hi +Ni + ~ci _q, i= 1, 2

ð1Þ

where the definition of related nomenclatures can be found in

Appendix A. The thrust, drag, lift-force, pitching torque, and

elastic force have the following expressions
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T =T0(a)+TF(a)F+DT + dTe

D=D0 +Da(a)+DD+ dDe

L=L0 +Laa+DL+ dLe

M =MT +M0 +Ma(a)+Mde
de +DM + dMe

N1 =Ca2

N1
a2 +Ca

N1
a+C0

N1

N2 =Ca2

N2
a2 +Ca

N2
a+C0

N2
+C

de

N2
de

ð2Þ

The related variables can be further obtained according to

the following equations formulated as

T0(a)= b2a3 +b4a2 +b6a+b8ð Þ
TF(a)= b1a3 +b3a2 +b5a+b7ð Þ
D0 = �qSC0

D,Da(a)= �qSðCa2

D a2 +Ca
DaÞ

L0 = �qSC0
L, La = �qSCa

L

MT = zT T ,Mde
= �qS�cC

de

M ,M0 = �qS�cC0
M

Ma(a)= �qS�cðCa2

M a2 +Ca
M aÞ

ð3Þ

Problem statement

In practical engineering, contingent actuator failures are an

unavoidable problem for the flight control system, which can

be decomposed into the loss of effectiveness and deviation

faults Wang et al. (2018a). Thus, the time-varying actuator

failures in this paper are formulated by

F= rF(t)uF + dF(t)
de = rd(t)ud + dd(t)

ð4Þ

where uF(t), ud(t) denote the real elevator deflection and fuel

equivalence ratio of FAHVs; rF(t), rd(t) 2 (0, 1� denote the

coefficient of the remanent control effectiveness, which are

changing with time; and dF(t), dd(t) denote the time-varying

deviation faults.
Moreover, the mass and inertia of FAHVs are changing

with fuel consumption, which may lead to degradation of the

control performance. The time-varying mass and inertia can

be described as

m= rm(t)m0

I = rI (t)I0
ð5Þ

where rm(t) denotes the ratio of the real mass m to the initial

mass m0; rI (t) denotes the ratio of the real inertia I to the ini-
tial inertia I0.

Combine the velocity dynamic model of FAHVs in equa-
tion (1) with the actuator fault of the fuel equivalence ratio in

equation (4) and the varying mass in equation (5), the velocity
subsystem of FAHVs is derived as

_V = gV lFuF + fV + dV ð6Þ

where lF = rF=rm; the known input function gV , the
unknown model function fV , and the lumped disturbances dV

have the following expressions

gV =TF cosa=m0

fV =(T0 cosa� D0 � Da(a))=m� g sing

dV =((TFdF +DT + dTe
) cosa� DD� dDe

)=m

Define the state variables x1 = h, x2 =g, x3 = u, x4 = q,

and combine the altitude dynamic model of FAHVs in equa-
tion (1) with the actuator fault of the elevator deflection in

equation (4) and the varying inertia in equation (5), the alti-
tude subsystem of FAHVs is derived as

_x1 = g1x2 + d1

_x2 = g2x3 + f2 + d2

_x3 = x4

_x4 = g4ldud + f4 + d4

ð7Þ

where ld = rd=rI ; u=a+g denotes pitch angle; the known
functions g1, g2, g4, f2; the unknown model function f4; and

the lumped disturbances d1, d2, d4 have the following
expressions

g1 =V , d1 =V ( sin g � g)
g2 =La=(m0V ), f2 =� g cos g=V

d2 =(L+T sina)=(mV )� Lauð Þ= m0Vð Þ
g4 =Mde

=I0, f4 =(M0 +Ma(a))=I

d4 = MT +Mde
dd +DM + dMe

+ ~c1€h1 + ~c2 €h1

� �
=I

For the integration influence of the effectiveness loss faults
and model uncertainties lF, ld, the deviation faults dd, dF,

and the lumped disturbances dV , d1, d2, d4, the following
assumptions are made.

Assumption 1. Define Gi = 1=li , i= d,F . It is assumed that

Gi is bounded. 9�Gi 2 R+, Gij jł �Gi.

Assumption 2. For i=1, 2, 4,V , d,F , it is assumed that di and

their derivatives _di are bounded. 9�di, _di2R+, dij jł �di, _di

�� ��ł _di.

Remark 1. Gi, i= d,F denotes the combined effect of the

actuator failures, varying mass and inertia. Assumption 1 is

reasonable as long as the system is not completely ineffective,

which is the research premise of this paper. Moreover,

Assumption 2 conforms to the fundamental laws of physics.

Preliminaries

For achieving a smooth transition process, the digital track-

ing differentiator in Han (2009) is used for the flight control

Figure 1. Geometry of FAHVs.
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system of FAHVs to provide sufficient reference instruction

information. The specific form is

vk + 1
1 = vk

1 + Svk
2

vk + 1
2 = vk

2 + Sak
ð8Þ

where v1 and v2 denote the design desired and its derivative,

respectively; k represents the step index of the tracking differ-

entiator; and S denotes the calculation step length. ak is calcu-

lated as

ak =
�rsign(a) jaj. rS

�a=S jajł rS

�

a=
vk

2 + nsign(y) jyj. rS2

vk
2 + y=S jyjł rS2

(

y= vk
1 � v

� �
+ Svk

2

n= 0:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2S2 + 8rjyj

p
� rS

� �
ð9Þ

where v denotes the desired step command; r denotes the con-

vergence rate to v.
According to Lavretsky and Wise (2013) and Wang et al.

(2020), the radial basis function neural networks (RBFNNs)

YT FNN (x) on a compact set x 2 R
l can be utilized to approxi-

mate any unknown continuous function f (x). The approxima-

tion results satisfy inequality as

k f (x)�YT FNN (x)k2 ł eNN ð10Þ

where eNN . 0 denotes the approximation error; Y 2 R
l is an

unknown constant vector denoting weights; l denotes the

number of neurons, which are related to the accuracy of the

approximation; and FNN (x)= ½u1(x),u2(x), . . . ,ul(x)�T
denotes the radial basis function (RBF), which is a Gaussian

process in the form as

ui(x)= e
� x�cik k2

2s2
i , i= 1, 2, . . . , l ð11Þ

where ci and si denote the center and the standard deviation
of the isotropic Gaussian RBF components, respectively.

Lemma 1. The unknown models caused by the mass and inertia

uncertainties fV and f4 can be approximated by the following

RBFNNs

fV =YT
V FV + eV

f4 =YT
h Fh + eh

ð12Þ

Lemma 2. An et al. (2020)For any z . 0 and m 2 R , the fol-

lowing inequality

0 ł jmj � m tanh
m

z

	 

ł kz ð13Þ

holds, where k’0:2785.

Main results

In this section, the structure diagram of the proposed method

is shown in Figure 2, where the control scheme can be
described in three parts. The first part uses the tracking differ-

entiator and first-order filter (FOF) to provide smooth refer-
ence information for controller design while reducing the

complexity of the recursive control framework. Hence, the
smoothness and stability of tracking control are guaranteed.

The second part is the disturbance observer–based recursive
control, ensuring the stability of the altitude, flight path angle

(FPA), and pitch angle loop by compensating for the mis-
matched uncertainties. The third part is the neural adaptive
fault-tolerant control, achieving the stable control of the pitch

angular velocity (PAV) and velocity loop subject to actuator

Figure 2. Structure diagram of the proposed method.
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failures and matched uncertainties. Finally, the dominant

tracking control performance is guaranteed.

Controller design for altitude subsystem

The altitude subsystem contains matched and unmatched

uncertainties. To deal with the altitude control problem while

avoiding the high complexity, we design the recursive neural
adaptive fault-tolerant controller combined with a distur-

bance observer in the framework of the dynamic surface

method with four steps.

Step 1. Define the altitude tracking error as z1 = x1 � hr, the
derivative of z1 can be calculated as

_z1 = g1x2 + d1 � _hr ð14Þ

The control is designed to make Step 1 stable as

x2c =� k1z1 � g�1
1 d̂1 + g�1

1
_hr ð15Þ

where k1 . 0 denotes the control gain; d̂1 denotes the estima-

tion of d1, obtained by the disturbance observer with the gain

l1 as follows

d̂1 = p1 + l1z1

_p1 =� l1d̂1 � l1 g1x2 � _hr

� � ð16Þ

Moreover, the desired for the next step x2d is obtained by
the first-order filter with the positive filter parameter t2

t2 _x2d + x2d = x2c � t2z1, x2d(0)= x2c(0) ð17Þ

Define ~d1 = d̂1 � d1, y2 = x2d � x2c, and z2 = x2 � x2d .
Combining equations (14)–(17), we can get the error dynamics

of z1,~d1, and y2 as

_z1 =� g1k1z1 � ~d1 + g1 z2 + y2ð Þ
_~d1 =� l1

~d1 � _d1

_y2 =�
y2

t2

� z1 � _x2c

ð18Þ

Consider the following Lyapunov function candidate of Step 1

L1 =
1

2g1

z2
1 +

1

2
~d2

1 +
1

2
y2

2 ð19Þ

According to equation (18), the derivative of L1 can be cal-

culated as

_L1 ł � k1 �
1

4g2
1

� 1

	 

z2

1 +
1

4
z2

2 � l1 �
5

4

	 

~d2

1 +
_d

2

1

� y2
2

2t2

+
t2 _x2cj j2

2

ð20Þ

Step 2. Following the similar procedure of Step 1, take the
derivative of z2 as

_z2 = g2x3 + f2 + d2 � _x2d ð21Þ

The stable control and disturbance observer of Step 2 are

designed as

x3c =� k2z2 � g�1
2 ðf2 + d̂2Þ+ g�1

2 _x2d

d̂2 = p2 + l2z2

_p2 =� l2d̂2 � l2 g2x3 + f2 � _x2dð Þ
ð22Þ

where k2 . 0 denotes the control gain; d̂2 denotes the estima-

tion of d2; and l2 is the disturbance observer gain. The desired

for the next step x3d is obtained by the first-order filter with

the positive filter parameter t3

t3 _x3d + x3d = x3c � t3z2, x3d(0)= x3c(0) ð23Þ

Define ~d2 = d̂2 � d2, y3 = x3d � x3c, and z3 = x3 � x3d .

Combining equations (21)–(23), we can get the error dynamics

of z2,~d2, and y3 as

_z2 =� k2g2z2 � ~d2 + g2 z3 + y3ð Þ
_~d2 =� l2

~d2 � _d2

_y3 =� y3

t3
� z2 � _x3c

ð24Þ

Consider the following Lyapunov function candidate of

Step 2

L2 =
1

2g2

z2
2 +

1

2
~d2

2 +
1

2
y2

3 ð25Þ

According to equation (24), the derivative of L2 can be cal-

culated as

_L2 ł � k2 �
1

4g2
2

� 1

	 

z2

2 +
1

4
z2

3 � l2 �
5

4

	 

~d2

2 +
_d

2

2

� y2
3

2t3

+
t3 _x3cj j2

2

ð26Þ

Step 3. Following the similar procedure of Step 1, take the

derivative of z3 as

_z3 = x4 � _x3d ð27Þ

The control is designed to make Step 3 stable as

x4c =� k3z3 + _x3d ð28Þ

where k3 . 0 denotes the control gain. The desired for the next

step x4d is obtained by the first-order filter with the positive

filter parameter t4

t4 _x4d + x4d = x4c � t4z3, x4d(0)= x4c(0) ð29Þ

Define y4 = x4d � x4c and z4 = x4 � x4d . Combining equa-

tions (27)–(29), we can get the error dynamics of z3 and y4 as

_z3 =� k3z3 +(z4 + y4)

_y4 =�
y4

t4

� z3 � _x4c

ð30Þ
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Consider the following Lyapunov function candidate of

Step 3

L3 =
1

2
z2

3 +
1

2
y2

4 ð31Þ

According to equation (30), the derivative of L3 can be cal-

culated as

_L3 ł � k3 � 1ð Þz2
3 +

1

4
z2

4 �
y2

4

2t4

+
t4 _x4cj j2

2
ð32Þ

Step 4. Take the derivative of z4 as

_z4 = g4ldud + f4 + d4 � _x4d ð33Þ

According to Lemma 1, the unknown model f4 caused by

the inertia uncertainty can be approximated by the RBFNNs

f4 =YT
h Fh + eh. Thus, the control is designed to make Step 4

stable as

uh =� k4z4 � D̂h tanh
z4

eDh

	 

� ŶT

h Fh + _x4d ð34Þ

where Dh = �dh, dh = d4 + eh, and D̂h, Ŷh denote the estima-

tion of Dh,Yh, and ~Dh = D̂h � Dh and ~Yh = Ŷh �Yh denote

the estimation errors, respectively.
Substituting equation (34) into equation (33), the _z4 can be

written as

_z4 = �k4z4 � D̂h tanh
z4

eDh

� �
+ dh + g4ldud � uh � ~YT

h Fh

ð35Þ

Finally, the actual control action of the altitude subsystem

is designed as

ud =�
�̂Gduh

g4

tanh
z4

�̂Gduh

e�Gd

 !
ð36Þ

with the adaptive laws are designed as

_̂
Dh =KDh

z4 tanh
z4

eDh

� �
� sDh

D̂h

_̂�Gd =� K�Gd
z4uh � s�Gd

�̂Gd

_̂Yh =KYh
z4Fh � sYh

Ŷh

ð37Þ

where �̂Gd denotes the estimation of �Gd, and ~�Gd = �̂Gd � �Gd

denotes the estimation error; eDh
and e�Gd

are the design posi-

tive constants; sDh
, s�Gd

, and sYh
are the positive modifying

constants of the adaptive laws; and KDh
, K�Gd

and KYh
are the

gain of the adaptive laws.
Consider the following Lyapunov function candidate of

Step 4

L4 =
1

2
z2

4 +
1

2KDh

~D2
h +

1

2K�Gd

�Gd

~�G
2

d +
1

2KYh

~YT
h

~Yh ð38Þ

According to equation (35), the derivative of L4 can be cal-

culated as

_L4 = � k4z2
4 � z4D̂h tanh

z4

eDh

	 

+ z4dh + z4g4ldud

� z4uh � z4
~YT

h Fh +
~Dh

_̂
Dh

KDh

+
~�Gd

_̂�Gd

K�Gd

�Gd

+
~YT

h

_̂Yh

KYh

ð39Þ

Using Lemma 2, it is easy to obtain that

z4dh ł Dhz4 tanh
z4

eDh

� �
+kDheDh

z4g4ldud ł
�̂Gd
�Gd

z4uh +
ke�Gd
�Gd

ð40Þ

Furthermore, we can get

z4dh � z4D̂h tanh
z4

eDh

	 

ł � z4

~Dh tanh
z4

eDh

	 

+kDheDh

z4g4ldud � z4uh ł
~�Gd

�Gd

z4uh +
ke�Gd

�Gd

ð41Þ

Substituting equation (41) into equation (39), we can
obtain that

_L4 ł � k4z2
4 +

~Dh

_̂
Dh

KDh

� z4 tanh
z4

eDh

	 
 !
+

~�Gd

�Gd

_̂�Gd

K�Gd

+ z4uh

0
@

1
A

+ ~YT
h

_̂Yh

KYh

� z4Fh

 !
+kDheDh

+
ke�Gd

�Gd

ð42Þ

According to the adaptive laws in equation (37), equation
(42) can be formulated into

_L4 ł � k4z2
4 �

sDh
~DhD̂h

KDh

�
s�Gd

~�Gd
�̂Gd

K�Gd

�Gd

�sYh
~YT

h Ŷh

KYh

+kDheDh
+

ke�Gd

�Gd

ð43Þ

Using Young’s inequality Young (1912) we can get

�sDh
~DhD̂h

KDh

ł � sDh
~D2

h

2KDh

+
sDh

D2
h

2KDh

�
s�Gd

~�Gd
�̂Gd

K�Gd

�Gd

ł �
s�Gd

~�G
2

d

2K�Gd

�Gd

+
s�Gd

�G2
d

2K�Gd

�Gd

�sYh
~YT

h Ŷh

KYh

ł � sYh
~YT

h
~Yh

2KYh

+
sYh

YT
hYh

2KYh

ð44Þ

Substituting equation (44) into equation (43), we can

obtain that

_L4 ł � k4z2
4 �

sDh
~D2

h

2KDh

�
s�Gd

~�G
2

d

2K�Gd

�Gd

� sYh
~YT

h
~Yh

2KYh

+
sDh

D2
h

2KDh

+
s�Gd

�G2
d

2K�Gd

�Gd

+
sYh

YT
hYh

2KYh

+kDheDh
+

ke�Gd

�Gd

ð45Þ
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Theorem 1. For the altitude subsystem in equation (7), let the

recursive controller in equations (15), (22), (28) and (36),

and the adaptive laws in equation (37) be applied. Then the uni-

form ultimate boundedness of the altitude subsystem is

guaranteed.

Proof. Consider the following Lyapunov function of the alti-

tude subsystem

Lh =
X4

i= 1

Li ð46Þ

where Li is defined in equations (19), (25), (31), and (38).

According to the derivative calculation results of the

Lyapunov candidate functions in equations (20), (26), (32),

and (45), the derivative of Lh can be calculated as

_Lh ł � k1 �
1

4g2
1

� 1

	 

z2

1 � k2 �
1

4g2
2

� 5

4

	 

z2

2 � k3 �
5

4

	 

z2

3

� k4 �
1

4

	 

z2

4 � l1 �
5

4

	 

~d2

1

� l2 �
5

4

	 

~d2

2 �
y2

2

2t2

� y2
3

2t3

� y2
4

2t4

� sDh
~D2

h

2KDh

�
s�Gd

~�G
2

d

2K�Gd

�Gd

� sYh
~YT

h
~Yh

2KYh

+ eLh

ð47Þ

where

eLh
= _d

2

1 +
_d

2

2 +
t2 _x2cj j2

2
+

t3 _x3cj j2

2
+

t4 _x4cj j2

2
+

sDh
D2

h

2KDh

+
s�Gd

�G2
d

2K�Gd

�Gd

+
sYh

YT
hYh

2KYh

+kDheDh
+

ke�Gd

�Gd

ð48Þ

Furthermore, we have the following conclusion

_Lh ł � mhLh + �eLh
ð49Þ

where

mh = min
2g1 k1 � 1

4g2
1

� 1
� �

, 2g2 k2 � 1
4g2

2

� 5
4

� �
, 2 k3 � 5

4

� �
, 2 k4 � 1

4

� �
2 l1 � 5

4

� �
, 2 l2 � 5

4

� �
, 1

t2
, 1

t3
, 1

t4
,sDh

,s�Gd
,sYh

 !

ð50Þ

It is clear that 8t ø 0, 0 ł Lh(t)ł max
�eLh

2mh
,Lh(0)

n o
.

Therefore, the uniform ultimate boundedness of the altitude

subsystem can be guaranteed.

Controller design for velocity subsystem

Define the velocity tracking error as zV =V � Vr, the deriva-

tive of zV can be calculated as

_zV = gV lFuF + fV + dV � _Vr ð51Þ

According to Lemma 1, the unknown model fV caused by

the mass uncertainty can be approximated by the RBFNNs
fV =YT

V FV + eV . Thus, the virtual control of the velocity

subsystem is designed as

uV =� kV zV � D̂V tanh
zV

eDV

	 

� ŶT

V FV + _Vr ð52Þ

where DV = �dVl
, dVl

= dV + eV , D̂V , ŶV denote the estimation

of DV ,YV , and ~DV = D̂V � DV , ~YV = ŶV �YV denote the
estimation errors, respectively.

Substituting equation (52) into equation (51), the _zV can be

written as

_zV =� kV zV � D̂V tanh zV

eDV

� �
+ dVl

+ gV lFuF � uV � ~YT
V FV

ð53Þ

Finally, the actual control action of the altitude subsystem

is designed as

uF =�
�̂GFuV

gV

tanh
zV

�̂GFuV

e
GF

 !
ð54Þ

with the adaptive laws are designed as

_̂
DV =KDV

zV tanh zV

eDV

� �
� sDV

D̂V

_̂�GF =� K�GF
zV uV � s�GF

�̂GF

_̂YV =KYV
zV FV � sYV

ŶV

ð55Þ

where �̂GF denotes the estimation of �GF, and
~�GF = �̂GF � �GF

denotes the estimation error; eDV
and e�GF

are the design posi-

tive constants; sDV
, s�GF

, and sYV
are the positive modifying

constants of the adaptive laws; KDV
, K�GF

, and KYV
are the gain

of the adaptive laws.

Theorem 2. For the velocity subsystem in equation (6), let the

controller in equation (54) and the adaptive laws in equation

(55) be applied. Then the uniform ultimate boundedness of the

velocity subsystem is guaranteed.

Proof. Consider the following Lyapunov function of the velo-
city subsystem

LV =
1

2
z2

V +
1

2KDV

~D2
V +

1

2K�GF

�GF

~�G
2

F +
1

2KYV

~YT
V

~YV ð56Þ

According to equation (53), we can obtain the derivative

of LV as

_LV =� kV z2
V � zV D̂V tanh

zV

eDV

	 

+ zV dVl

+ zV gV lFuF

� zV uV � zV
~YT

V FV

+
~DV

_̂
DV

KDV

+
~�GF

_̂�GF

K�GF

�GF

+
~YT

V

_̂YV

KYV

ð57Þ

Using Lemma 2, it is easy to obtain that
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zV dVl
ł DV zV tanh

zV

eDV

	 

+kDV eDV

zV gV lFuF ł
�̂GF

�GF

zV uV +
ke�GF

�GF

ð58Þ

Furthermore, we can get

zV dVl
� zV D̂V tanh

zV

eDV

	 

ł � zV

~DV tanh
zV

eDV

	 

+kDV eDV

zV gV lFuF � zV uV ł
~�GF

�GF

zV uV +
ke�GF

�GF

ð59Þ

Substituting equation (59) into equation (57), we can
obtain

_LV =� kV z2
V + ~DV

_̂
DV

KDV

� zV tanh
zV

eDV

	 
 !

+
~�GF

�GF

_̂�GF

K�GF

+ zV uV

0
@

1
A+ ~YT

V

_̂YV

KYV

� zV FV

 !

+kDV eDV
+

ke�GF

�GF

ð60Þ

According to the adaptive laws in equation (55), equation
(60) can be formulated into

_LV ł � kV z2
V �

sDV
~DV D̂V

KDV

�
s�GF

~�GF
�̂GF

K�GF

�GF

� sYV
~YT

V ŶV

KYV

+kDV eDV
+

ke�GF

�GF

ð61Þ

Using Young’s inequality we can get

� sDV
~DV D̂V

KDV

ł � sDV
~D2

V

2KDV

+
sDV

D2
V

2KDV

�
s�GF

~�GF
�̂GF

K�GF

�GF

ł �
s�GF

~�G
2

F

2K�GF

�GF

+
s�GF

�G2
F

2K�GF

�GF

� sYV
~YT

V ŶV

KYV

ł � sYV
~YT

V
~YV

2KYV

+
sYV

YT
VYV

2KYV

ð62Þ

Substituting equation (62) into equation (61), we can get
the following inequality

_LV ł � kV z2
V �

sDV
~D2

V

2KDV

�
s�GF

~�G
2

F

2K�GF

�GF

� sYV
~YT

V
~YV

2KYV

+ eLV
ð63Þ

where

eLV
=

sDV
D2

V

2KDV

+
s�GF

�G2
F

2K�GF

�GF

+
sYV

YT
VYV

2KYV

+kDV eDV
+

ke�GF

�GF

ð64Þ

Furthermore, we have the following conclusion

_LV ł � mV LV + �eLV
ð65Þ

where

mV = min 2kV ,sDV
,s�GF

,sYV

� �
ð66Þ

It is clear that 8t ø 0, 0 ł LV (t)ł max
�eLV

2mV
,LV (0)

n o
.

Therefore, the uniform ultimate boundedness of the velocity

subsystem can be guaranteed.

Simulations

This section presents several simulations to demonstrate the
effectiveness and robustness of the proposed neural adaptive

fault-tolerant controller(NAFTC). To be more persuasive,

the feedback linearization-based linear quadratic regulator
(FLLQR) and the disturbance observer–based controller

(DOBC) in An et al. (2016) and Shao et al. (2021a) are

applied in simulations for comparison. The LQR controller is
among the most used controller of vehicles for its simplicity

and applicability. The DOBC method and so on mentioned
above repeatedly is widely used to deal with actuator faults

and multiple uncertainties of FAHVs. Both methods rely on

the linearized model as

_x=Ax+Bu+ d̂l ð67Þ

where the state variable x, state matrix A, and control matrix
B are defined in An et al. (2016).

The specific form of the LQR is

ulqr =� Klqrx ð68Þ

with the optimal feedback gain Klqr calculated to minimize the

following energy function

L=
1

2

ðt

0

xTQx+ uTRu
 �

dt ð69Þ

where Q and R are the diagonal positive definite weight

matrices. The larger the weight matrices, the smaller the
desired error of x and control energy u, respectively.

The specific form of the DOBC is

udobc =� Kxx� Kd d̂l

d̂l = p+Ldx
_p=� Ld p+Ldxð Þ � Ld(Ax+Bu)

ð70Þ

where Kx, Kd , and Ld are the control gain matrix, the distur-
bance compensation gain matrix, and the disturbance obser-

ver gain matrix, which are both calculated by pole
assignment, respectively; and d̂l is the estimation of the

lumped disturbance dl.

Control parameters setting

The vehicle parameters and the aerodynamic coefficients of

simulations can be found in Parker et al. (2007). The initial

and desired conditions of the system states are given in
Table 1. The initial values of angle of attack (AOA) and

FAV are set as random values to verify the robustness of
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the proposed method. The references of Vr, _Vr and hr, _hr are

derived from filtering step commands by the tracking differ-

entiator, with the parameter rV for the velocity subsystem,

and rh for the altitude subsystem. The number of neurons

for two subsystems is five, with the RBFNNs parameters cV

and sV for the velocity subsystem, and ch and sh for the

altitude subsystem. All parameters of the proposed control

method are given in Table 2. In addition, the control

parameters of LQR are Q= diag(10, 1, 1, 1, 1, 1, 1) and

R= diag(1, 0:1); the control parameters of DOBC are

Kx =
0:68 3:42 7:75 0 0 0 0

0 0 0 0:034 1:62 1:53 9:43

� �
,

Kd =
3:42 7:75 1 0 0 0 0

0 0 0 1:62 1:53 9:43 1

� �
, and

Ld =
diag(10, 10, 10) 03 3 4

04 3 3 diag(6, 2, 2, 2)

� �
.

Simulation results

In order to analyze the control performance of the proposed

method and the comparison methods, the simulations are

implemented in two cases. In Case 1, the simulation results of

FAHVs with fixed actuator failures and multiple uncertain-

ties are given to illustrate the excellent tracking performance

of the proposed method. In Case 2, the simulation results of

FAHVs with more complex time-varying actuator failures,

multiple uncertainties and measurement noises are given to

illustrate the superior robustness of the proposed method.

Case 1: The fixed actuator failures occur at t = 100s with

parameters rd = 0:79, rF = 0:75, dd = 0:09, dF = 0:08, and

change at t = 300s with parameters rd = 0:74, rF = 0:71,

dd = 0:15, dF = 0:11. The multiple model uncertainties

include �30% deviations of aerodynamic parameters and

�10% deviations of mass and inertia. The external distur-

bances and measurement noise are not considered.
The simulation results of Case 1 are presented in Figures

3–8. The velocity and altitude tracking performance are

depicted in Figures 3 and 4. It is clear that the velocity and

altitude of NAFTC rapidly convergence to the reference

when the climbing flight is beginning. In contrast, the conver-

gence rate of the two other comparison methods is relatively

slow. In other words, NAFTC has the best transient control

characteristics. Moreover, whether before or after actuator

failures, the velocity and altitude errors of NAFTC are less

than 0:3ft=s and 3:5ft, respectively. When it comes to the

velocity and altitude errors of FLLQR are 18:1ft=s and 89ft,

and DOBC are 9:7ft=s and 25:8ft. The attitude states are

depicted in Figure 5. When actuator failures occur, the atti-

tude states of FLLQR and DOBC fluctuate violently, and

NAFTC remains stable. The elastic mode coordinates are

depicted in Figure 6. Due to the impact of the first actuator

failure, it is obvious that the elastic mode coordinates of

FLLQR and DOBC oscillate for the excited flexible vibra-

tion. In contrast, owing to the smooth control, the oscillation

amplitude of NAFTC is less than the treble of the two other

comparison methods. The control actions are depicted in

Figure 7, the estimation results of the disturbance observers

Table 1. Initial and desired conditions of the system states.

Velocity, V (ft=s) Altitude, h (ft) FPA, g (deg) AOA, a (deg) PAV, q (deg=s)

Initial value 7700 80,000 0 1 4

Desired value 8500 90,000 – – –

FPA: flight path angle; AOA: angle of attack; PAV: pitch angular velocity.

Table 2. Parameters of the proposed control method.

Altitude subsystem Velocity subsystem

Parameter Value Parameter Value Parameter Value

k1 0:4=g1 KDh
1 kV 0:4

k2 0:7=g2 K�Gd
1 KDV

1

k3 1:1 KYh
10 K�GF

0:5

k4 100 sDh
,s�Gd

0:2 KYV
10

l1 0:1 sYh
0:5 sDV

,s�GF
0:1

l2 0:2 e�Gd
0:005 sYV

0:5

eDh
0:01 t2 0:5 eDV

, e�GF
0:1

t3 0:1 t4 0:03 rV 0:1

rh 1:5 sh 0:2 sV 1

ch ½�0:2, � 0:1, 0, 0:1, 0:2� cV ½�2, � 1, 0, 1, 2�
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and adaptive laws are depicted in Figure 8. From Figures 7

and 8, it is interesting to note that the quick control action
and the accurate estimation of the unknown terms are impor-

tant for the excellent control performance of the proposed
control method.

In general, in terms of the control accuracy, the response

agility for contingent actuator failures, and the flexible vibra-

tion suppression, NAFTC ensures the highest degree, DOBC
followed and FLLQR worst.

Case 2: The time-varying actuator failures occur at t= 100s
with parameters rd = 0:79+ 0:05sin(0:1t), rF = 0:75+

0:03cos(0:2t), dd = 0:09+ 0:06sin(0:1t), dF = 0:08+ 0:02cos

(0:2t). The multiple model uncertainties include �30% devia-
tions of aerodynamic parameters, the time-varying mass and

inertia with parameters m=m0(0:8+ 0:2e�0:03t), I = I0

(0:8+ 0:2e�0:03t), and the external disturbances with para-

meters dTe
= 30+ 6 sin (0:03t), dDe

=26 sin (0:05t)e�0:05t,

dLe
=30+ 15 cos (0:045t), and dMe

= 300+ 65 cos (0:045t).
The measurement noises are injected into the measurement

signals.

The simulation results of Case 2 are presented in Figures 9–14.

The velocity and altitude tracking performance are depicted in

Figures 9 and 10. It is clear that the velocity and altitude of

NAFTC accurately converge to the reference despite the time-

varying actuator failures and multiple model uncertainties, while

the two other comparison methods continue to fluctuate due to

Figure 5. Attitude state in Case 1.

Figure 6. Elastic mode coordinate in Case 1.

Figure 7. Control action in Case 1.

Figure 4. Altitude tracking performance in Case 1.

Figure 3. Velocity tracking performance in Case 1.
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these adverse effects. Moreover, the velocity and altitude errors of

NAFTC are less than those of the two other comparison methods.

Specifically, the errors of NAFTC are less than 0:9ft=s and 2:8ft,

respectively, when it comes to FLLQR are 13:8ft=s and 64:9ft,

and DOBC are 8:9ft=s and 10:2ft. The attitude states are depicted
in Figure 11. When time-varying actuator failures occur, there are

fluctuations in the attitude states of FLLQR and DOBC, espe-

cially the fluctuation of FLLQR is violent, but NAFTC remains

stable. In addition, from the third part in Figure 11, it can be

observed that the measurement noises have a certain effect on the

pitch angular velocity of NAFTC and DOBC, while FLLQR has

almost no effect. But these negative effects can be ignored by con-

sidering the overall control performance. The elastic mode coordi-

nates are depicted in Figure 12. The control actions are depicted

in Figure 13, the control actions of all three methods are time-

varying to compensate for time-varying actuator failures and mul-

tiple uncertainties. Nevertheless, according to the overall control

effects, we can infer that the control actions of NAFTC are more

effective and accurate. The estimation results of the disturbance

observers and adaptive laws are depicted in Figure 14.

In general, the simulation results verify that the NAFTC is

capable of dealing with time-varying actuator failures and

Figure 11. Attitude state in Case 2.

Figure 8. Estimation of disturbance observer and adaptive law in Case 1.

Figure 9. Velocity tracking performance in Case 2.

Figure 10. Altitude tracking performance in Case 2.

Figure 12. Elastic mode coordinate in Case 2.
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multiple model uncertainties. Moreover, the proposed method

ensures uniform ultimate boundedness despite the actuator

failures and multiple model uncertainties, which is consistent

with the theoretical analysis.

Conclusion

In this paper, a disturbance observer–based neural adaptive

fault-tolerant control method is proposed for FAHVs subject

to contingent actuator failures and multiple model uncertain-

ties. Based on the tracking differentiator and first-order filter,

the smooth reference information for controller design is gen-

erated and the complexity of the recursive control framework

is reduced. Then, the smooth reference information is com-

bined with the smooth adaptive compensation control action

using the tangent control function, ensuring that the flexible

vibration is suppressed more effectively. Moreover, the time-

varying actuator failures, aerodynamic deviations, and exter-

nal disturbances are addressed utilizing the capable adaptive

laws. Meanwhile, the neural networks are seamlessly com-

bined with the adaptive control to handle the unknown mod-

els caused by the mass and inertia deviations. Finally, the

simulations assess the tracking performance and robustness

of the proposed method. The analysis indicates that NAFTC

has more advantages than other control methods in terms of

control accuracy, response agility for contingent actuator fail-

ures, and flexible vibration suppression ability.
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Appendix A

Notation

C
(�)
(�) ,bi aerodynamic coefficients by curve fitting

dTe
, dDe

, dLe
, dMe

external disturbance force and torque
h altitude (ft)
m, I mass and inertia
M pitching torque
q pitch angular velocity, PAV (rad=s)
�q, g dynamics pressure and gravitational

acceleration
S,�c reference area and mean aerodynamic

chord
T ,D, L,N1,N2 thrust, drag, lift-force and elastic force
V velocity (ft=s)
jxj absolute value of x

�x upper bound of jxj
k x k22 norm of vector x
zT coupling between T and M (ft)

a angle of attack, AOA (rad)
g flight path angle, FPA (rad)
de elevator deflection (rad)
D( � ) unmodeled and uncertainties of the aero-

dynamic force and torque
h1,h2 generalized elastic mode coordinate
j1, j2 damping coefficient of elastic dynamics
F fuel equivalence ratio
~c1, ~c2 rotational coupling coefficient of elastic

mode
v1,v2 frequency coefficient of elastic dynamics
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