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a b s t r a c t

In order to improve the performance of a permanent magnet synchronous motor (PMSM) speed
controller, an advanced reaching law sliding mode control (ASMC) strategy is proposed in this study.
The advanced sliding mode reaching law (ASMRL) introduces a power term of the system state
and a checkmark function term about the sliding mode function based on the traditional constant-
proportional rate reaching law(TSMRL) , and replaces the sign function with a hyperbolic tangent
function. A detailed theoretical analysis of the characteristics of the ASMRL is then presented. The
theoretical analysis shows that the ASMRL converges to the sliding mode surface more quickly and with
less chattering than the TSMRL. In addition, a sliding mode disturbance observer (SMDO) is designed
to estimate the total disturbance of the system, and the estimated disturbance is compensated to
ASMC. Then the stability of the system with ASMC and the stability of the system with ASMC+SMDO is
proved by Lyapunov’s theorem. Finally, the proposed control strategy is validated on an experimental
platform of PMSM. The experimental results show that the ASMC has a faster convergence speed,
smaller chattering, better disturbance rejection performance than the traditional constant-proportional
rate reaching law sliding mode control(TSMC), and better performance with the addition of SMDO.

© 2023 ISA. Published by Elsevier Ltd. All rights reserved.
1. Introduction

PMSMs are increasingly widely used in many modern alternat-
ng current servo systems such as robotics, electric vehicles, com-
uterized numerical control (CNC) machine tools, and aerospace
ue to their high performance, high power density, simple struc-
ure, and light weight [1]. The most classical control strategy is
roportional–integral (PI) control, which is widely used in linear
onstant systems because of its advantages such as simple struc-
ure and good stability [2]. However, the PMSM is a multivariable
trongly coupled nonlinear system [3]. In practical application,
MSM is affected by various disturbances, such as external load
isturbance and internal parameter mismatch, etc. [4], all these
actors make it difficult to achieve higher control performance
ith the PI control strategy.
To overcome the influence of various disturbances mentioned

bove and to improve the performance of control strategies, more
nd more high-performance and high-precision control strategies
ave been proposed in recent years. Such as fuzzy control [5,
], model predictive control [7,8], active disturbance rejection

∗ Corresponding author.
E-mail address: chuhr@ciomp.ac.cn (H. Chu).
ttps://doi.org/10.1016/j.isatra.2023.04.016
019-0578/© 2023 ISA. Published by Elsevier Ltd. All rights reserved.
control [9,10], neural network control [11–13], sliding mode con-
trol (SMC) [14,15], etc. Among them, SMC has attracted high
attention in the control field because of its simple structure, low
requirements for model accuracy, and insensitivity to perturba-
tions [16]. At present, SMC has been successfully applied to motor
speed control systems [17]. However, sliding modes have inher-
ent chattering problems, and Arie Levant classified sliding mode
chattering and also studied the effect of each type of chattering
on control [18]. In conventional sliding mode control, chattering
caused by the discontinuity of the system and the switching
term in the sliding mode reaching law is very detrimental to the
control process [19]. Therefore, the chattering phenomenon is one
of the important problems to be solved in SMC.

In order to solve the chattering of SMC and to improve the
performance of SMC, scholars have continued to deepen the
research on SMC. Various forms of SMC have been proposed, such
as high-order SMC [20], fast terminal SMC [21], and non-singular
terminal SMC [22]. There are also studies that combine SMC with
other control algorithms to improve the control performance of
SMC. In [23], Sami et al. combined fuzzy control with fractional-
order terminal SMC to solve the inherent chattering problem and
maintain the robustness and stability of the system. Fei et al. pro-
posed an adaptive SMC system using a two-loop recurrent neural
network structure [24]. This method can achieve good tracking

https://doi.org/10.1016/j.isatra.2023.04.016
https://www.elsevier.com/locate/isatrans
http://www.elsevier.com/locate/isatrans
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erformance and can estimate the unknown disturbances quickly
nd accurately. However, in the actual control process, the sys-
em is affected by various internal and external disturbances.
n order to attenuate the effects of these disturbances on the
ystem, the SMDO is proposed. In recent years, the SMDO and
arious composite control strategies combined with the SMDO
ave been intensively studied. Guo et al. proposed an improved
MDO in [25]. The low-pass filter of the conventional SMDO
s replaced with an adaptive complex coefficient filter. Also, a
onlinear saturation function is used instead of the sign function
o reduce the chattering of the SMDO. This method can improve
he speed and position observation accuracy of the SMDO. Wang
t al. proposed a speed adaptive flux SMDO [26]. A transition
ode is introduced between the reaching mode and sliding mode
f this observer, and an algorithm based on the error criterion
unction is designed to adjust the sliding mode gain online. In
ddition, a new speed adaptive law is proposed based on the
odel reference adaptive system and the speed adaptive flux
MDO. Yan et al. proposed a sliding mode observer to estimate
he system state and an adaptive law to estimate the unknown
arameters. Simulations of the bioreactor system showed the
ffectiveness of the method [27].
An overview of the research on SMC reveals that the inher-

nt chattering of SMC is fundamentally due to the switching
erm in the reaching law [28]. Therefore, in addition to the
bove-mentioned methods to improve chattering, a fundamen-
al approach to improve the reaching law is also an effective
ay to solve sliding mode chattering. Mozayan et al. proposed
control scheme for a variable speed direct drive wind en-

rgy conversion system (WECS) based on sliding mode control
SMC) for grid-connected permanent magnet synchronous gen-
rators. This control strategy modifies the reaching law (RL) of
he sliding mode technique to reduce the chattering problem and
mprove the total harmonic distortion performance compared to
he conventional RL SMC [29]. Leśniewski et al. introduced a new
on-switching reaching law for sliding mode control of discrete-
ime systems. These improvements were obtained by applying
modified definition of quasi-sliding mode and introducing a

unable, state-dependent sliding variable descent rate factor was
btained [30]. In [31], Wang et al. proposed an SMC method
ased on a new sliding mode reaching law. This new reaching
aw includes the system state variables and a power term of the
liding surface function that is bounded by the absolute value of
he switching function. In addition, an extended state observer
s introduced to centrally observe the disturbances. Experimental
esults show that the method not only reduces chattering but also
mproves the speed of the system state reaching the sliding mode
urface. Junejo et al. proposed a new adaptive terminal sliding
ode reaching law and continuous fast terminal sliding mode
ontrol [32]. Secondly, an extended SMDO is designed to estimate
he total disturbance of the system to improve the disturbance
ejection of the system. The proposed adaptive terminal sliding
ode reaching law can improve the arrival speed under startup
nd load transients and can effectively suppress the chattering
henomenon.
Consequently, an ASMRL is proposed in this paper. The ASMRL

ntroduces a power term concerning the system state and a
heckmark function term concerning the sliding mode function,
nd replaces the sign function with a hyperbolic tangent function
o further reduce chattering. The ASMRL has a faster convergence
ate and less chattering than the TSMRL. In addition, to further
nhance the robustness of the system, an SMDO is designed to
stimate and compensate for the total disturbance of the system.
egarding the system stability of the ASMC and ASMC+SMDO
ontrol strategies proposed in this paper, it is also proved using
yapunov’s theorem. The main contributions of this paper are as
ollows.
437
(1) An ASMRL is proposed to reduce the arrival time while also
reducing chattering.

(2) An SMDO is designed to observe and compensate for the
total disturbance of the system, which improves the robustness
of the system.

(3) Several sets of experiments are designed to verify that the
proposed sliding mode anti-disturbance controller based on the
ASMRL has better dynamic and steady-state characteristics.

The rest of this paper is organized as follows. Section 2 gives
the mathematical model of PMSM. Section 3 gives the expres-
sions of the ASMRL with its characteristics in detail. Then the
discrete form of the ASMRL is given, and the performance of
several different forms of reaching laws is compared. In Sec-
tion 4, a sliding mode controller based on the ASMRL and an
SMDO are designed. And the system stabilities of ASMC and
ASMC+SMDO control strategies are proved. Section 5 compares
and analyzes the experimental results of PI, TSMC, RSMC, ASMC,
and ASMC+SMDO control strategies on the PMSM experimental
platform. Conclusions are drawn in Section 6.

2. Mathematical model of a PMSM

Assuming symmetrical windings and neglecting core satura-
tion and disregarding eddy current losses and hysteresis losses,
the mathematical model of a PMSM can be obtained according to
the motor control theory in [33].

The stator voltage equations in the d-q synchronous rotating
oordinate system are given as follows:

d = Rid +
dψd

dt
− ωeψq (1)

Uq = Riq +
dψq

dt
+ ωeψd (2)

where Uq, Ud, iq, and id are the stator voltage and current in
the d-q coordinate system, respectively. ωe is the electric angular
velocity, and R is the stator resistance. ψd = Ldid + ψf and
ψq = Lqiq are the stator flux linkages in the d-q coordinate system,
here Ld and Lq are the inductances in the d-q coordinate system
nd ψf is the flux amplitude of the permanent magnet.
The electromagnetic torque equation is expressed as follows:

e =
3
2
np

(
ψdiq − ψqid

)
(3)

where Te is the electromagnetic torque and np is the number of
pole pairs.

The motion equation is as follows:

J
dωm

dt
= Te − TL − Bωm (4)

where J is the moment of inertia, ωm is the mechanical angu-
lar velocity, TL is the load torque, and B is the viscous friction
coefficient.

3. Sliding mode control based on an advanced reaching law

3.1. SMC design with TSMRL

SMC is a special type of variable structure control, which is es-
sentially a nonlinear control. The following second-order system
is used as an example to design the SMC [34].{

x1 = ẋ2
ẋ2 = −f (x) + d(x, t) + bu(t) (5)

where x1, x2 is a system state variable, b is a constant, and
b ̸= 0, f (x) is a continuous function, d(x, t) is the total system
perturbation, and d(x, t) is bounded.
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Fig. 1. Schematic diagram of the sliding mode motion process.

The design of the SMC is divided into two steps, first a sliding
ode function is designed as follows :

= cx1 + x2 (6)

where c is a constant that satisfies the Hurwitz condition.
The second step is to design the sliding mode reaching law.

The TSMRL was first proposed by Gao [35], as shown in (7).

ṡ = −εsgn(s) − ks (7)

where ε and k are parameters to be determined, and ε > 0, k > 0.
According to (5)–(7), the controller is designed as:

u(t) =
1
b
[−cẋ1 + f (x) − d (x, t)− ks − εsgn (s)] (8)

3.2. Characteristic analysis of TSMRL

The control characteristics of SMC can force the system state to
move along a sliding mode, which is designable and independent
of the system parameters and perturbations. Therefore, once the
system state trajectory reaches the sliding mode surface, the
system has strong robustness. The motion of the system state
trajectory is divided into two processes, reaching motion and
sliding mode motion, as shown in Fig. 1. After the system trajec-
tory enters the sliding mode motion process, its motion trajectory
will make small amplitude and high frequency motion along the
sliding mode surface s = 0. Therefore, the design of the reaching
law directly affects the trajectory of the system state.

In the TSMRL (7), −εsgn(s) is the constant rate reaching term
nd −ks is the proportional rate reaching term. The proportional

rate reaching term −ks ensures that the system state can con-
verge to the sliding mode surface with a large velocity when s
is large. However, with only the proportional rate term, the ve-
locity of the moving point approaching the sliding mode surface
becomes smaller and smaller as it approaches the sliding mode
surface, which is an asymptotic process and cannot guarantee a
finite time arrival, so the constant rate reaching term −εsgn(s) is
ntroduced. The constant rate reaching term can guarantee that
he approaching velocity is ε instead of zero when the moving
oint reaches the sliding mode surface, i.e., it can guarantee a
inite time arrival. When ε is small, the approaching velocity is
low, and when ε is large, then the moving point arrives at the
liding mode surface with a large velocity, which will cause a
arge chattering phenomenon. In summary, it can be seen that
he faster the system state reaches the sliding mode surface, the
arger the chattering will be caused, so in order to solve the con-
lict between the sliding mode approaching speed and chattering,
he design of an effective new reaching law is a feasible and

ffective solution.

438
Fig. 2. Images of tanh(λs) and sgn(s).

.3. Design and analysis of the ASMRL

In this paper, based on the TSMRL and reference sliding mode
eaching law (RSMRL) in [31], an adavanced reaching law in the
orm of (9) is proposed.

˙ = −ε|x|a tanh(λs) − ks
(
α1|s|b +

α2

|s|b

)
(9)

where x denotes the system state and lim
t→∞

|x| = 0. ε, k, a, b, α1,
α2 are parameters to be determined, and ε > 0, k > 0, 1 > a > 0,
1 > b > 0, α1 > α2 > 0.

In the constant rate reaching term, an power term about the
system state |x|a is introduced, so that the constant rate reaching
term decreases gradually from a large value in the process of
the system state from far away from the sliding mode surface to
reaching the sliding mode surface, which ensures a reasonable
change of the approaching speed and reduces the chattering. In
addition, the sign function sgn(s) is replaced by the hyperbolic
tangent function tanh(λs) to further reduce the chattering. The
expression of tanh(λs) is shown in (10), and the images of func-
tion tanh(λs) and sgn(s) are shown in Fig. 2. It can be seen that the
smaller the parameter λ is, the smoother the isokinetic reaching
term is in the process of convergence to zero, and the smaller the
chattering is.

tanh(λs) =
eλs − e−λs

eλs + e−λs (10)

In the proportional rate reaching term, a checkmark function
1|s|b +

α2
|s|b

is introduced and its image is shown in Fig. 3. In the
figure, y = α1|s|b and y =

α2
|s|b

are the two asymptotes of the
checkmark function, respectively. The two extreme points of the
checkmark function are

(
− 2b

√
α2
α1
, 2

√
α1α2

)
,

(
2b
√
α2
α1
, 2

√
α1α2

)
,

espectively. The proportional rate reaching term with the check-
ark function has the following characteristics. Taking the ex-

reme point as the dividing point, when the system state is far
way from the sliding mode surface, i.e., |s| > 2b

√
α2
α1

, the coeffi-
cient of the proportional rate term increases with the increase of
s. In other words, the farther the system state is from the sliding
mode surface, the faster the approaching speed can be. When
the system state gradually approaches the sliding mode surface
to |s| < 2b

√
α2
α1
< 1, and then reaches the sliding mode surface

s = 0, the traditional constant rate term −ks will gradually
converge to 0 in this process. And the closer to the sliding mode
surface, the smaller the approaching speed. While in the case
of |s| < 2b

√
α2
α1
< 1, the checkmark function is increasing as |s|

decreases, so the checkmark function improves the approaching
speed of this process, making the approaching speed of this phase
faster than TSMRL.



Y. Qu, B. Zhang, H. Chu et al. ISA Transactions 139 (2023) 436–447

c
α
r

3

c

w

s

|

t
T
c

s

s
s
u
b

s

t

∆

s

T

∆

o
c
s
c
i
s
F

3

A
[

θ

Fig. 3. Checkmark function and its asymptotes.

Fig. 4. Influence of different parameter variation on the reaching law when
the system sliding mode is approached from far to near. (a) Three-dimensional
diagram of the effect of parameter α1 . (b) Three-dimensional diagram of the
effect of parameter α2 . (c) Three-dimensional diagram of the effect of parameter
a. (d) Three-dimensional diagram of the effect of parameter b.

In order to analyze more intuitively the influence of each
parameter on the newly proposed advanced reaching law, the
three-dimensional diagrams shown in Fig. 4 are given. Fig. 4
shows that α1 mainly affects the reaching law when the system
state is far from the sliding mode surface. The larger α1 is and
the farther the system state is from the sliding mode surface,
the larger the reaching law is. In addition, the increase of α1
hardly affects the reaching law when the system state reaches
the sliding mode surface, i.e., the increase of α1 does not increase
the chattering. α2 also increases the reaching law, but unlike α1,
with the increase of α2, the reaching law when the system state
reaches the sliding mode surface also increases, i.e., the larger
α2 is, the larger the chattering will be. a has a weaker effect on
the reaching law. With the increase of a, the reaching law of the
system state at the same position increases weakly. The increase
of b will increase the reaching law when the system state is far
away from the sliding mode surface and arrives at the sliding
mode surface, i.e., the increase of b will speed up the reaching
speed, but it also tends to cause chattering. In summary, a and α1
an be taken as larger values in their respective ranges, but b and
2 are preferred to be taken as smaller values in their respective
anges to avoid aggravating chattering.

.4. Discrete form of the ASMRL

In practical engineering applications, the implementation of
ontrol algorithms is in discrete form. So in this section, the
439
Fig. 5. Comparison of system state trajectories. (a) TSMRL (b) ASMRL.

discrete form of the ASMRL is analyzed. If the sliding mode
function s converges to 0, Eq. (9) can be approximated as Eq. (11).

ṡ ≈ −ε|x|a tanh(λs) (11)

Its discrete form can be expressed as

s (n + 1)− s (n) = −εTs|x|a tanh(λs(n)) (12)

here Ts is the sampling time.
Assume that the system trajectory can reach the sliding mode

urface from s > 0 in finite step, which indicates that s(n) = 0+.
Also combining with Eq. (10) and Fig. 2, we have | tanh(λs)| <
sgn(s)|, that is, sgn(s) can be regarded as the boundary of
anh(λs). It can be derived that tanh(λs) < sgn(s) when s > 0.
hen, using the inequality scaling method, the following equation
an be obtained in the next period.

(n + 1) > −εTs|x|a (13)

Similarly, assume that the system trajectory can reach the
liding mode surface from s < 0 in finite step, which shows that
(n) = 0−. At s < 0 it can be derived that tanh(λs) > sgn(s). Then,
sing the inequality scaling method, the following equation can
e obtained in the next period.

(n + 1) < εTs|x|a (14)

Combining (13) and (14), it can be deduced that the width of
he discrete sliding mode band ∆ satisfies

< 2εTs|x|a (15)

The discrete form of the TSMRL (7) is

0(n + 1) − s0(n) = −ε0Tssgn (s0(n)) (16)

he width of its discrete sliding mode band ∆0 is

0 = 2εTs (17)

Comparing (14) and (17), it can be seen that the bandwidth
f the sliding mode band of the TSMRL is a constant, which
auses the system to fail to reach the equilibrium state, and the
ystem state will generate chattering between −εTs and εTs. In
ontrast, the bandwidth of the sliding mode band of the ASMRL
s a variable quantity that varies with the system state, and the
ystem state will converge to an equilibrium point, as shown in
ig. 5.

.5. Performance comparison of several reaching laws

To compare the performance of the TSMRL, RSMRL, and
SMRL, the classical motor model shown in (18) is established
34].

¨(t) = −f (θ, t) + b u(t) + d(t) (18)
0
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here f (θ, t) = 25θ̇ is the position signal, u(t) is the control
input, b0 = 133 is a constant, and d(t) is the lumped disturbance.
The sliding mode surface is chosen in the following form.

s (t) = ce (t)+ ė (t) (19)

where c is a positive constant that satisfies the Hurwitz condition.
The error e(t) = θd(t) − θ (t), and θd(t) is the reference position
signal.

Combining (9), (18), and (19), the control input can be derived
as follows.

u(t) =
1
b0

[
c
(
θ̇d − θ̇

)
+ θ̈d + f (θ, t) − d(t)

+ε|x|a tanh(λs) + ks
(
α1|s|b +

α2

|s|b

)] (20)

he parameters are set as follows, c = 5, k = 25, ε = 5,
= 1, a = 0.5, b = 0.3, α1 = 10, α2 = 0.1, the reference

osition signal is set as θd(t) = sin(t), the lumped disturbance
s set as d(t) = 10 sin(π t), and the initial system state is set
s [x1, x2] = [−2,−2], x1 and x2 are the state variables of the
ystem.
Fig. 6 compares the performance of TSMRL, RSMRL, and

SMRL. Fig. 6(a) shows the phase trajectory of the system state
rom the initial position to the sliding mode surface with the
hree reaching laws. It can be seen that ASMRL has a faster
onvergence rate than TSMRL and RSMRL. Fig. 6(b) illustrates the
ontrol inputs with the three reaching laws, which shows that
SMRL has smoother control inputs with minimum chattering
han TSMRL and RSMRL. Fig. 6(c) shows the position tracking
urves with the three reaching laws, showing that ASMRL is the
astest to keep up with the reference position signal. Fig. 6(d) and
ig. 6(e) present the convergence process of the system state with
he three reaching laws, as seen that ASMRL has a smaller steady
tate error compared to TSMRL and RSMRL. In summary, ASMRL
as superior performance in terms of convergence speed, steady
tate error, and chattering suppression.

. Design of speed controller based on the ASMRL

.1. Design of the advanced reaching law sliding mode speed con-
roller

According to the mathematical model of PMSM (1)–(4), the
peed control object of the motor can be deduced as a first-order
ystem of the following form.

˙m =
3npψf

2J
iq −

1
J
TL −

B
J
ωm

= αiq − βTL − γωm

(21)

Where, α =
3npψf

2J , β =
1
J , γ =

B
J . When considering the case of

parameter mismatch, (21) is rewritten as

ω̇m =
3np

(
ψf +∆ψf

)
2(J +∆J)

iq −
1

(J +∆J)
TL −

(B +∆B)
(J +∆J)

ωm

= (α +∆α)iq − (β +∆β)TL − (γ +∆γ )ωm

(22)

where ∆α =
3np(∆ψf J−ψf∆J)

2J(J+∆J) , ∆β =
−∆J

J(J+∆J) , and ∆γ =
J∆B−B∆J
J(J+∆J) are

he corresponding parameter mismatch terms.
The total system perturbation is defined as d(t), which consists

f the internal parameter perturbation and the external load
erturbation of the system. Its expression is as follows.

(t) = ∆αiq − (β +∆β) TL −∆γωm (23)

nd assume that the total system perturbation satisfies

|d t | ≤ d (24)
( ) 0

440
Fig. 6. Performance comparison between TSMRL, RSMRL, and ASMRL. (a) Phase
trajectory (b) Control input (c) Position tracking (d) System state convergence
process (e) Sliding mode convergence process.

where d0 is the upper bound of the system perturbation. So
Eq. (22) can be rewritten as

ω̇ = αi − γω + d t (25)
m q m ( )
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The speed error is defined as

e = ωref − ωm (26)

here ωref is the speed reference value and ωm is the actual speed
eedback value. In this paper, the integral type sliding surface is
hosen in the following form.

= e + c
∫ t

0
edt (27)

The derivative of the sliding mode surface is

ṡ = ė + ce (28)

Using the advanced reaching law (9) proposed in this paper,
ombined with (25)–(28), the current reference value iqref , i.e., the
peed control input, can be deduced as

(t) =
1
b

[
ω̇ref + cωm − d(t) + ce

+ε|x|a tanh(λs) + ks
(
α1|s|b +

α2

|s|b

)] (29)

From (29), it can be seen that the total disturbance of the
ystem is feedback to the control law as a known variable, which
ffects the control performance. However, in practical applica-
ions, the total disturbance of the system is not measurable.
herefore, it is necessary to design an anti-disturbance observer
o observe the variation of the disturbance d(t) to obtain a good
nti-disturbance performance with high accuracy.

.2. Stability proof of the system with sliding mode speed controller
ased on ASMRL

heorem 1. For a continuous time system, if it is possible to
onstruct a scalar function V (x) with a continuous first-order partial
erivative function for x, and V (0) = 0, and the following condition
s satisfied for all non-zero states x in the state space:

1. V (x) is positive definite.
2. V̇ (x) ∆= dV (x)/dt is negative definite.
3. When ∥t∥ → ∞, there is V (t) → ∞.
Then the equilibrium state of the system origin x = 0 is large

range of uniformly asymptotic stability [36].

Proof. To prove the stability of the system with a sliding mode
controller based on the ASMRL, the Lyapunov stability theorem,
i.e., Theorem 1, is chosen to expand the proof.

The Lyapunov function of the following form is constructed.

V =
1
2
s2 (30)

he derivative of V is

V̇ = sṡ

= −s
[
ε|x|a tanh(λs) + ks

(
α1|s|b +

α2

|s|b

)]
(31)

here ε, k are all positive constants, the checkmark function
1|s|b +

α2
|s|b

is also positive, and the hyperbolic tangent function
anh(λs) and the sign function sgn(s) are the same positive or
negative, so that (31) satisfies

V̇ ≤ 0 (32)

The reaching condition of the sliding mode control and the Lya-
punov stability condition are guaranteed.
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4.3. Design of the SMDO

In the control object model (25), the total perturbation d(t) of
the system cannot be measured in practical applications. In order
to further improve the robustness of the sliding mode control,
an SMDO is designed in this study. This observer can observe
the motor speed and disturbance, and compensate the observed
disturbance to the control input, thus improving the robustness
of the system. Extending d(t) as a system state variable, (25) is
then extended to a system of the following form.[
ω̇m

ḋ(t)

]
=

[
−

B
J −

1
J

0 0

][
ωm
d(t)

]
+

[ 1
J
0

]
Te (33)

or the system (33) an SMDO of the following form is designed.[
˙̂ωm
˙̂d(t)

]
=

[
−

B
J −

1
J

0 0

][
ω̂m

d̂(t)

]
+

[ 1
J
0

]
Te +

[
1
l

]
y (eω)

(34)

where y(eω) is the sliding mode rate of the sliding mode observer
error, eω = ωm − ω̂m, and l is the observer gain.{

ėω = −
B
J eω −

1
J ed − y (eω)

ėd = −ly (eω)
(35)

where eω and ed are the speed observation error and the distur-
bance observation error, respectively.

In the SMDO, the integral type sliding mode surface is chosen
as follows.

sω = eω + cω

∫
eωdt (36)

where the derivative of the sliding mode surface (36) is

ṡω = ėω + cωeω (37)

Next, the reaching law is selected as follows.

ṡω = −εωsgn (sω) (38)

where εω is the switching gain of the reaching law.
Considering −

1
J ed as the disturbance term, the control law of

the SMDO can be obtained according to Eqs. (35)–(38) as

y (eω) =

(
cω −

B
J

)
eω + εωsgn (sω) (39)

With the above designed SMDO, the total disturbance d(t)
f the system can be estimated, and then the estimated total
isturbance is compensated into the speed control input u(t), and
he compensated control input is rewritten as

(t) =
1
b

[
ω̇ref + cωm − d̂(t) + ce

+ ε|x|a tanh(λs) + ks
(
α1|s|b +

α2

|s|b

) (40)

.4. Convergence proof for SMDO

heorem 2. For the observation error function e(t) between the
bserver (34) and the observed system (33), if there exist undeter-
ined parameters that make the error function satisfy when t → 0,
(t) → 0, then the observer is convergent [19].

roof. The convergence of the SMDO proposed in the previous
ubsection is in the first place proved. It can be deduced that the
eaching law (38) and the sliding mode surface (37) can satisfy
he Lyapunov stability condition V̇ = sω ṡω ≤ 0, i.e., under the
effect of the sliding mode control law (38), the system trajectory
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ill eventually reach the sliding mode surface, and then the
ollowing equation is satisfied.{

sω = ṡω = 0
eω = ėω = 0 (41)

ubstituting (41) into (35), the error function of SMDO can be
ritten as:{
ed = −Jy (eω)
ėd = −ly (eω)

(42)

olving the first-order derivative function (42) gives

d = cde
l
J t (43)

here cd is a constant. From Eq. (43), it is clear that for the error
of the disturbance observer to converge to zero, the observer gain
needs to satisfy l < 0, and l directly affects the convergence rate
of the observer.

4.5. Stability proof of the system with the ASMC combined with
SMDO

To verify the stability of the system under the ASMC combined
with the SMDO, the Lyapunov stability theorem, i.e., Theorem 1,
is chosen to expand the proof.

Proof. The following Lyapunov function is constructed.

V =
1
2
s2 (44)

ombining (25)–(28) and (40), it can be deduced that

˙ = −ε|x|a tanh(λs) − ks
(
α1|s|b+

α2

|s|b

)
+

(
d(t) − d̂(t)

)
(45)

urther, the derivative of V is given by

˙ = sṡ

= −s
[
ε|x|a tanh(λs) + ks

(
α1|s|b +

α2

|s|b

)
+ (d(t) − d̂(t))

]
(46)

According to the proof of convergence of SMDO, we can get
d → 0, and ed = d(t) − d̂(t), so d(t) − d̂(t) → 0. Therefore, (46)
satisfies

V̇ ≤ 0 (47)

The Lyapunov stability condition is satisfied.

5. Experimental results and discussion

In order to verify the effectiveness of the ASMC proposed in
this study, the speed and current waveforms of PI, TSMC, refer-
ence reaching law sliding mode control (RSMC) in [31], ASMC and
ASMC combined with the SMDO (ASMC+SMDO) control strategies
are compared in this section under several operating conditions,
such as motor startup, motor forward and reverse rotation, sud-
den load and parameter mismatch. The structure diagram of the
PMSM servo system based on ASMC+SMDO is given in Fig. 7.
The flow chart of the ASMC+SMDO control strategy is given
in Fig. 9. The PMSM is controlled by the field-oriented control
(FOC) method, and ASMC+SMDO is used as the speed controller,
where SMDO observes the estimated total disturbance d(t) of the
system, and then compensates the estimated total disturbance to
ASMC, and finally the reference current iqref of the current loop is
output by ASMC.

The 707 W PMSM driver platform is given in Fig. 8, where
the corresponding technical parameters of the PMSM are shown
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Table 1
PMSM parameters.
Symbol Description Value and unit

P Rate power 707 W
R Armature resistance 0.12 �
Ld Inductance of d axis 0.2 mH
Lq Inductance of q axis 0.2 mH
Kt Torque coefficient 0.46 Nm/A
np Number of pole pairs 10
J Moment of inertia 221 × 10−5 Kg · m2

Table 2
Parameter values of the five control strategies.
Control strategy Parameter value

PI kp = 0.12, ki = 0.6
TSMC ε = 0.5, c = 8, k = 20
RSMC ε = 0.5, c = 8, k = 20, a = 0.5,

b = 0.3
ASMC ε = 0.5, λ = 1, c = 8, k = 20,

a = 0.5, b = 0.3, α1 = 2,
α2 = 0.1

ASMC+SMDO ε = 0.5, λ = 1, c = 8, k = 20,
a = 0.5, b = 0.3, α1 = 2,
α2 = 0.1, εω = 0.5, cω = 30,
l = −0.005

in Table 1. The control algorithms involved in this study are
implemented in digital signal processing (DSP) using a C program
and the core component of the controller is DSP-TMS320F280049.
The core components of the driver are a DRV8350 three-phase
smart gate driver and a power MOSFET. Load torque is generated
by a hysteresis brake. An absolute encoder is installed at the end
of the motor shaft to measure the digital position to obtain the
speed of the PMSM.

To ensure the validity of the comparison experiments, PI con-
trol with the same parameters was used for the current loop
controller for all experiments. The relevant parameters of the five
control strategies for the speed loop are listed in Table 2.

5.1. Motor startup experiment

The first experiment compares the motor starting effects un-
der five control strategies: PI, TSMC, RSMC, ASMC, and
ASMC+SMDO. Fig. 10 shows the speed waveforms of the motor
startup experiment under the five control strategies. Fig. 13
shows the local zoom of the motor startup speed waveforms
under the five control strategies, and the speed overshoot δ and
response time ts are marked in Fig. 13. The motor starts at 1 s
with a reference speed of 120 r/min. From Fig. 13, it can be seen
that the overshoot of PI and TSMC is 9.9 r/min and 8.4 r/min,
espectively. However, RSMC, ASMC, and ASMC+SMDO almost
ave no overshoot. The response times of PI, TSMC, RSMC, ASMC,
nd ASMC+SMDO are 0.85 s, 0.77 s, 0.095 s, 0.069 s, and 0.043 s,
espectively.

Fig. 11 shows the q-axis current waveforms for the motor
tartup experiments under the five control strategies. The local
oom in Fig. 11 shows that the q-axis currents under ASMC and
SMC+SMDO control strategies are able to converge to a steady
tate more quickly.
Fig. 12 gives the histograms of the experimental performance

omparison of the motor startup, and the speed overshoot and
esponse time are selected as the comparison terms. As shown
n Fig. 12, PI overshoot is larger than TSMC, while RSMC, ASMC,
nd ASMC+SMDO have almost no overshoot. The response time
rom slow to fast is PI, TSMC, RSMC, ASMC, ASMC+SMDO. In the
verall comparison, ASMC+SMDO has the best performance with
he fastest response time and no overshoot.
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Fig. 7. Structure diagram of PMSM servo system based on ASMC+SMDO.
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Fig. 8. Photograph of the experimental platform.

Fig. 9. Flow chart of ASMC+SMDO control strategy.

Fig. 10. Speed waveforms of motor startup.
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Fig. 11. q-axis current waveforms of motor start.

5.2. Motor forward and reverse rotation experiment

The second experiment compares the experimental effect of
motor forward and reverse rotation under the PI, TSMC, RSMC,
ASMC, and ASMC+SMDO control strategies. Fig. 14 shows the
speed waveforms of the motor forward and reverse rotation
under the five control strategies. The two local zooms of Fig. 14
show that PI and TSMC have obvious speed overshoot and long
response time. The speed waveforms of RSMC, ASMC, and
ASMC+SMDO control strategies can keep up with the reference
speed well. The performance of ASMC+SMDO is better than ASMC,
and ASMC is better than RSMC.

Fig. 15 shows the q-axis current waveforms of the motor in
forward and reverse rotation for the five control strategies. From
the two local zooms of Fig. 15, it can be seen that ASMC and
ASMC+SMDO can make the q-axis current converge to a steady
tate more quickly than the other three control strategies.
In summary, among the five control strategies, PI and TSMC

ave poor effects, and RSMC, ASMC, ASMC+SMDO have better
erformance in the motor forward and reverse experiments. And
ith reference to the speed and current waveforms, ASMC+SMDO
as better performance than ASMC and ASMC has better perfor-
ance than RSMC.

.3. Load torque experiment

The third experiment is the comparison of experimental ef-
ects of sudden load torque under the PI, TSMC, RSMC, ASMC, and
SMC+SMDO control strategies. The speed waveforms and the q-

axis current waveforms of the five control strategies are shown
in Fig. 16 and Fig. 17, respectively, for a sudden load of 0.8 N · m
at a speed of 120 r/min. Fig. 18 gives a performance comparison

histogram of the load torque experiment for the five control
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Fig. 12. Performance comparison of motor startup experiments.

trategies. As shown in Fig. 18, the maximum speed drop of PI,
SMC, RSMC, ASMC, and ASMC+SMDO are 97.6 r/min, 83.2 r/min,
4.0 r/min, 8.6 r/min, 7.4 r/min, respectively. The adjustment
imes are 1.08 s, 1.07 s, 0.69 s, 0.62 s, 0.37 s, respectively.

Comprehensive analysis shows that the maximum speed drop
alue of PI, TSMC, RSMC, ASMC, ASMC+SMDO decreases succes-
ively and the adjustment time also decreases successively. In
ther words, the proposed ASMRL has better anti-disturbance
erformance, and ASMC+SMDO has the best anti-disturbance per-
ormance.

.4. Parameter mismatch experiment

The fourth experiment is the parameter mismatch experi-
ent under the PI, TSMC, RSMC, ASMC, and ASMC+SMDO control
trategies. The experiments were done with the inertia J mis-
atching to half of the calibration value and double the cali-
ration value, respectively. Fig. 19 and Fig. 20 show the speed
aveforms and q-axis current waveforms when the inertia J is
uddenly mismatched to half of the calibration value (0.5J) at
2 s, respectively. Among them, the speed maximum ωmax, speed
inimum ωmin, maximum speed fluctuation∆ω and the standard

deviation σ at 4 s–5 s steady state are given in Table 3. Consider-
ing Fig. 19 and Table 3 together, it can be seen that the maximum
speed fluctuation values of TSMC, RSMC, ASMC, and ASMC+SMDO
are 36.3 r/min, 11.1 r/min, 7.7 r/min, and 4.2 r/min with the
arameter J mismatch to 0.5J . Among them, TSMC, RSMC, and
SMC all have obvious speed drop phenomenon. It is worth
oting that under the ASMC+SMDO strategy, the speed almost did
ot drop suddenly. After the speed drop, all four control strategies
onverge the speed to the reference speed. After speed stability,
he standard deviations of TSMC, RSMC, ASMC, and ASMC+SMDO
t 4 s–5 s are 0.9479 r/min, 0.5067 r/min, 0.4624 r/min, and
.8042 r/min, respectively. Compared to TSMC, the steady state
erformance of RSMC, ASMC, and ASMC+SMDO after parameter
ismatch has been improved in different degrees.
The local zoom in Fig. 20 shows that the q-axis currents

nder the control of TSMC, RSMC, and ASMC have different de-
rees of decrease in the case of sudden parameter mismatch.
mong them, TSMC decreases more than RSMC, RSMC decreases
ore than ASMC, and the larger the current decrease, the longer

he time to recover the steady state. And under the control of
SMC+SMDO, the q-axis current has no significant mutation.
Figs. 21 and 22 show the speed waveforms and q-axis current

aveforms when the inertia J is suddenly mismatched to dou-
le calibration value (2J) at 2 s, respectively. Among them, the
peed maximum ωmax, speed minimum ωmin, maximum speed
luctuation ∆ω and the standard deviation σ at 4 s–5 s steady
tate are given in Table 4 . Considering Fig. 21 and Table 4
ogether, it can be seen that the maximum speed fluctuation
 d
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Table 3
Performance comparison of parameter mismatch experiment (0.5J).
Control ωmax ωmin ∆ω σ

strategy (r/min) (r/min) (r/min) (r/min)

TSMC 125.7 89.4 36.3 0.9479
RSMC 121.0 109.9 11.1 0.5067
ASMC 120.8 113.1 7.7 0.4624
ASMC+SMDO 121.8 117.6 4.2 0.8042

Table 4
Performance comparison of parameter mismatch experiment (2J).
Control ωmax ωmin ∆ω σ

strategy (r/min) (r/min) (r/min) (r/min)

TSMC 142.0 117.6 24.4 0.5861
RSMC 126.7 118.2 8.5 0.4301
ASMC 124.6 118.1 6.5 0.4383
ASMC+SMDO 121.1 118.2 2.9 0.4483

values of TSMC, RSMC, and ASMC are 24.4 r/min, 8.5 r/min,
.5 r/min and 2.9 r/min, respectively. Among them, TSMC, RSMC,

and ASMC all showed significant speed rise. Similarly, there is
almost no sudden speed rise under the ASMC+SMDO strategy.
After the speed drop, all four control strategies converge the
speed to the reference speed. After speed stability, the standard
deviations of TSMC, RSMC, ASMC, and ASMC+SMDO at 4 s–5 s are
0.5861 r/min, 0.4301 r/min, 0.4383 r/min, and 0.4483 r/min,
espectively. Compared to TSMC, the steady-state performance
f RSMC, ASMC, and ASMC+SMDO after parameter mismatch has
een improved in different degrees.
It can be observed from the local zoom of the currents in

ig. 22 that the q-axis currents under the control strategy of
SMC, RSMC, and ASMC have different degrees of rising in the
ase of sudden parameter mismatch. Among them, the rising
alue of TSMC is larger than RSMC, and RSMC is larger than
SMC, and the larger the rising value of current, the longer it
akes to recover the steady state. However, under the control
f ASMC+SMDO, there is no significant mutation of the q-axis
urrent.
In summary, the speed fluctuations and current fluctuations

f the two groups of parameter mismatch experiments show that
he control strategies affected by parameter mismatch are TSMC,
SMC, ASMC, and ASMC+SMDO in descending order. However,
fter returning to the steady state, the steady state performance
nder RSMC, ASMC, and ASMC+SMDO control strategies are im-
roved in different degrees compared to TSMC. In other words,
he ASMC control strategy has better dynamic characteristics
nder the same parameter mismatch. And the ability to resist
arameter mismatch is better by adding SMDO based on ASMC.

. Conclusion

In this paper, an ASMRL is proposed based on the TSMRL, a
liding mode controller is designed based on the ASMRL. Then
MDO is designed to observe the total disturbance of the system,
nd the estimated total disturbance is compensated to ASMC to
mprove the anti-disturbance performance of the system. The
tabilities of the system applying ASMC, ASMC+SMDO control
trategies are proved by Lyapunov’s stability theorem. The ASMRL
as a faster convergence speed and smaller chattering. The per-
ormance of several control strategies, including PI, TSMC, RSMC,
SMC, and ASMC+SMDO, are compared on the PMSM experi-
ental platform. The experimental results show that ASMC has
etter performance than PI, TSMC, RSMC under the conditions
f motor startup, motor forward and reverse rotation, sudden
oad disturbance, and parameter mismatch, and the performance
f ASMC combined with SMDO is better after compensating the
isturbance.
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Fig. 13. Local zoom of motor startup speed waveforms. (a) PI (b) TSMC (c) RSMC (d) ASMC (e) ASMC+SMDO.
Fig. 14. Speed waveforms of motor forward and reverse rotation experiment.

Fig. 15. q-axis current waveforms of motor forward and reverse experiment.
445
Fig. 16. Speed waveforms of load torque experiment.

Fig. 17. q-axis current waveforms of load torque experiment.

Fig. 18. Performance comparison of five control strategies under 0.8 N·m sudden
load.
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Fig. 19. Speed waveforms under parameter mismatch of 0.5J .

Fig. 20. Current waveforms of q-axis under parameter mismatch of 0.5J .

Fig. 21. Speed waveforms under parameter mismatch of 2J .
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