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A B S T R A C T   

Image semantic segmentation is a technique that distinguishes different kinds of things in an image by assigning a label to each point in a target category based on its 
"semantics". The Deeplabv3+ image semantic segmentation method currently in use has high computational complexity and large memory consumption, making it 
difficult to deploy on embedded platforms with limited computational power. When extracting image feature information, Deeplabv3+ struggles to fully utilize 
multiscale information. This can result in a loss of detailed information and damage to segmentation accuracy. An improved image semantic segmentation method 
based on the DeepLabv3+ network is proposed, with the lightweight MobileNetv2 serving as the model’s backbone. The ECAnet channel attention mechanism is 
applied to low-level features, reducing computational complexity and improving target boundary clarity. The polarized self-attention mechanism is introduced after 
the ASPP module to improve the spatial feature representation of the feature map. Validated on the VOC2012 dataset, the experimental results indicate that the 
improved model achieved an MloU of 69.29% and a mAP of 80.41%, which can predict finer semantic segmentation results and effectively optimize the model 
complexity and segmentation accuracy.   

1. Introduction 

The emergence of artificial intelligence (AI) has dramatically 
changed every aspect of our lives. The concept of semantic segmentation 
is easy to understand. When people see a picture, it is easy to understand 
the content of the picture. Semantic segmentation allows the machine to 
understand the content of the picture. The application, in reality, is also 
increasingly extensive, for example, scene recognition of automatic 
driving technology, for surgical navigation in the field of medical image 
segmentation, and advertising recommendations. The wide application 
of image semantic segmentation has high practical value (Iftikhar et al., 
2022, 2023). 

To date, many different semantic segmentation algorithms have been 
proposed, including traditional and deep learning semantic segmenta-
tion. From the traditional methods, such as threshold (Otsu, 1979), 
histogram-based bundling, region-grow (Nock and Nielsen, 2004), 
k-means clustering (Dhanachandra et al., 2015), and watersheds (Naj-
man et al., 1994), to more advanced algorithms such as active contours 
(Dhanachandra et al., 2015), graph cut (Najman et al., 1994), condi-
tional and Markov random fields (Kass et al., 2004), and sparsity-based 

methods (Boykov et al., 2001; Plath et al., 2009). To compensate for the 
lack of traditional methods, the semantic segmentation methods of deep 
learning mainly have two types of classification from the model struc-
ture: based on information fusion and based on coder-decoder(Minaee 
et al., 2021). Based on the information fusion method, the model utili-
zation is improved by increasing the number of layers of the network 
(Starck et al., 2005; Minaee et al., 2017). The representative algorithms 
include the full convolutional network (FCN) algorithm and a series of 
improved algorithms (Biao et al., 2018), such as FCN–32S, FCN–16S, 
and FCN–8S. Based on the coder-decoder method (Liu et al., 2018; Fu 
et al., 2022), the accuracy of the network is improved by adopting 
different backbone network forms and pyramid pooling modules. The 
representative algorithms include the pyramid scene parsing network 
(PSPNet)(Sun and Wang, 2018) and DeepLabv series. The current 
method based on Deeplabv3+ has high computational complexity and 
large memory consumption, and it is difficult to deploy on embedded 
platforms with limited computational power. Deeplabv3+ cannot fully 
utilize the multiscale information when extracting the image feature 
information, and it is easy to cause the loss of detail information and 
lead to damage of segmentation accuracy. To further improve the ability 
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of the DeepLabv3 plus network to obtain key category information, 
improvements are mainly made based on DeepLabv3 plus. The main 
contributions of this paper are summarized as follows.  

1. The DeepLabv3+ network is improved to make it suitable to fit the 
needs of realistic scenarios. The original feature extraction network 
parameter amount is too large, and the model adopts the lightweight 
MobileNetV2 as the backbone network, based on which it is further 
optimized to solve the problems of spatial detail loss and insufficient 
feature extraction.  

2. In DeepLabv3+, the polarized self-attention mechanism (PSA-P, 
PSA-S) is added after the ASPP module to increase the ability of the 
feature map to extract detailed information to improve the accuracy 
performance of semantic segmentation. A channel attention mech-
anism (ECA-Net) is added after the MobileNetv2 low-level features to 
recover clearer segmentation boundaries.  

3. Stripe pooling is utilized in the ASPP module instead of the original 
global average pooling to effectively capture long-range de-
pendencies, and hybrid pooling is utilized instead of the original 
global average pooling to effectively capture short-range and long- 
range interdependencies between different locations, thus 
improving the efficiency and reliability of the system. 

2. DeepLabv3 plus network 

The DeepLabv3 plus network (Yang et al., 2020) is shown in Fig. 1. 
The role of the backbone network is to extract feature semantic infor-
mation (Zhao et al., 2017). The function of ASPP is to extract feature 
information from the backbone network again to obtain sufficient 
feature information. DCNN is generally a deep convolutional neural 
network. The ASPP module is mainly composed of 5 parts, 1 × 1 
Convolution and void ratio are 6, 12, and 18 times, respectively 3 × 3 
Convolution and global average pooling. These five parts are in parallel 
and together constitute the ASPP part. Backbone network low-level 
feature postaccess 1× 1. The convolution and ASPP are then con-
nected to the 4 times downsampling part for feature fusion and then 
connected to the 3 × 3 convolution and 4 times downsampling to 
recover the size of the image. 

3. Improved DeepLabv3 plus network 

The DeepLabv3 plus model is taken as the main body for improve-
ment. In image semantic segmentation based on the DeepLabv3 plus 
network, this paper uses lightweight MobileNetV2 as the backbone 
network. Then, ASPP is used to extract multiscale information from the 

Fig. 1. Deeplabv3 plus model.  

Fig. 2. Improved DeepLabv3 plus.  
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Fig. 3. Structure of strip pooling.  

Fig. 4. PSA in parallel.  

Fig. 5. PSA in series.  
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feature maps obtained in the backbone network while using strip 
pooling instead of global pooling to retain more detailed information. 
Introduce the attention mechanism and add a polarization self-attention 
mechanism to weigh the feature maps obtained by the ASPP module. 
ECA-Net was added to fuse shallow features of MobileNetV2 and 

improve image segmentation performance. The improved model is 
shown in Fig. 2. 

3.1. Strip pooling 

The pooling window of global average pooling is square, which has 
certain limitations, and it is difficult to obtain the correlation of graph 
scales in different directions. Strip pooling has more advantages than 
global average pooling. The pooling window of strip pooling is rectan-
gular, and the design of strip pooling can obtain global information from 
horizontal and vertical dimensions, expanding the scope of obtaining 
feature information (Hou et al., 2020). 

Different from the global average pooling calculation method, strip 
pooling is performed simultaneously according to the horizontal and 
vertical spatial dimensions. In addition, when two spatial dimensions 
are pooled, the eigenvalues of a column or row are weighted averages. 
The model structure is shown in Fig. 3 below. 

For the input image, the calculation formula of the row vector output 
is as follows: 

yh
i =

1
W

∑

0≤j<w
Xi,j (1) 

The calculation formula of the column vector output is as follows: 

yv
i =

1
H

∑

0≤i<H
Xi,j (2)  

For an input X ∈ RC×H×W , where C refers to the number of channels, H 
and W represent the height and width, respectively. X enters the hori-
zontal and vertical paths for pooling, and the outputs in the vertical and 
horizontal directions are yh ∈ RC×H and yv ∈ RC×W , respectively. After 
combining the two, the output is calculated as follows: 

yc,i,j = yh
c,j + yv

c,j (3) 

The convolution and sigmoid function will obtain the characteristic 
image, which will be fused with the original image to obtain the output 
z. The output z calculation formula is: 

z= Scale(X, σ(f(y))) (4)  

In the above formula, scale () represents multiplication, σ represents the 
sigmoid function, and f represents 1 × 1 convolution. 

Fig. 6. ECA-Net diagram.  

Table 1 
Comparison results of ASPP improvement experiments.  

Algorithm Backbone MloU mAP 

Deeplabv3 plus MobileNetV2 66.16% 78.75% 
Deeplabv3 plus-SP 67.6% 78.6%  

Table 2 
Comparison of different attention mechanisms.  

Backbone Attention MloU mAP 

MobileNetV2 ECA-Net 66.95% 79.64% 
MobileNetV2 PSA_p 67.3% 80.34% 
MobileNetV2 PSA_s 67.74% 81.3%  

Table 3 
Comparison of network segmentation accuracy by integrating different modules.  

Group SP PSA_p PSA_S ECA-Net MloU MAP 

① × × × × 66.16% 78.75% 
② ✓ ✓ × × 68.67% 80.34% 
③ ✓ × ✓ × 69.05% 79.65% 
④ ✓ ✓ × ✓ 68.74% 79.01% 
⑤ ✓ × ✓ ✓ 69.77% 79.29%  

Fig. 7. Comparison chart of category segmentation accuracy.  
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3.2. Polarized self-attention mechanism 

We are all familiar with the concept of attention (Zeng et al., 2020). 
People cannot pay attention to the whole picture when they watch a 
picture. It must be that the eyes tend to be more interested in the part of 
the painting, and people will ignore the part that they are not interested 
in. Based on such characteristics, the attention mechanism in the neural 
network takes advantage of this, that is, to screen out effective infor-
mation from complex information (Chen et al., 2017a). For image pro-
cessing, the target will be locked in one part of the image while ignoring 
other areas, which can improve the efficiency of image processing and 
save unnecessary trouble. With the rapid development of attention 
mechanisms, an increasing number of neural network models have 
added attention mechanisms (Zhang et al., 2020; Honarbakhsh et al., 
2023) to improve the efficiency of the model, which has shown a good 

effect. This paper mainly adds polarization self-attention and channel 
attention mechanisms to the DeepLabv3 plus network. The two attention 
mechanisms are added at different locations in the network, and both 
show good performance. 

The polarized self-attention mechanism (Hridoy et al., 2021; Liu 
et al., 2021) has two main forms, series and parallel. The serial form 
refers to the serial form of the channel self-attention mechanism and 
spatial self-attention mechanism. The parallel form refers to the parallel 
form of the channel self-attention mechanism and spatial self-attention 
mechanism. The two ways together constitute the polarized 
self-attention mechanism. After inserting the polarization self-attention 
mechanism into the ASPP module (Yang, 2020; Zhu et al., 2019), the 
model can increase the extraction of important information and improve 
the utilization of the model. PSA_p and PSA_s can maintain high reso-
lution in the channel and spatial dimensions, which is why they are 

Fig. 8. Comparison of PASCAL VOC 2012 dataset segmentation results.  
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increasingly widely used in deep learning networks. The model diagram 
is shown in Figs. 4 and 5 below. 

The series and parallel forms of the polarization self-attention 
mechanism are formally divided into two branches: channel branches 
and space branches. 

The channel weight calculation formula is as follows: 

Ach(X)=FSG
[
Wz|θ1

( (
σ1(Wv(X))×FSM

(
σ2
(
Wq(X)

))))]
(5) 

where and σ1σ2 represent the 1 × 1 convolution. FSM represents the 
softmax function part. WZ|θ1 Representing 1 × 1 convolution and LN 
elevates the dimension of C/2 on the channel to C. FSG represents the 
sigmoid function. 

The spatial weight calculation formula is as follows: 

Asp(X)=FSG
[
σ3(FSM(σ1(FGP(Wq(X)

)))
×(X)

))]
(6)  

where σ1σ2 and σ3 represent the 1 × 1 convolution. FSM represents the 
softmax function. FGP represents global pooling. FSG Represents the 
sigmoid function. 

The above formula shows the calculation formula for two branch 
weights. The polarization self-attention mechanism is fused based on the 
branching weight. Parallel and series are just two simple calculations for 
shunt weights, similar to addition and multiplication. 

3.3. ECA attention mechanism 

The advantage of ECA-Net (Liu, 2020) is that it utilizes global 
pooling to transform spatial matrices into one-dimensional vectors .(see 
Fig. 6) Then, the size of the one-dimensional convolutional kernel can be 
obtained based on the number of network channels. Then, an adaptive 
size convolution kernel is used for the convolution operation, and the 
feature map of the input image is obtained through a weighted form. 
Finally, the input image is multiplied by the feature map obtained after 
convolution calculation to extract the information of interest. Due to the 
pretraining method of the backbone network adopted by the network, 
inserting ECA-Net into MobileNetV2 damages the network structure of 
the backbone network. Therefore, inserting ECA-Net into the shallow 
features of MobileNetV2 can improve the segmentation effect without 
damaging the network. 

4. Experiments 

4.1. Datasets 

The PASCAL VOC2012 dataset is widely used and can be effectively 
utilized in the field of image processing. A dataset that can be used for 
image semantic segmentation. There are four main types in this dataset: 
indoor furniture, people, vehicles, and common animals. There are 21 
categories in four categories, and 3200 images are randomly selected 
and divided into 9:1:1. A total of 2616 images are used as the training 
set, 292 images are used as the validation set, and 292 images are used as 
the testing set. 

4.2. Experimental equipment and evaluation indicators 

The operating system is Ubuntu 20.04, using the Python 1.2.0 deep 
learning open source framework and CUDA version 10.0. The pro-
gramming language is Python 3.6, and the hardware configuration is as 
follows: The CPU is i7-9600, and the GPU is NVIDIA 3060-Ti. The 
average intersection to union ratio (MloU) and average pixel accuracy 
(mAP) are used as performance evaluation coefficients for image se-
mantic segmentation. Where k represents k categories, Pij indicates that 
the true value is i and the predicted value is j; Pji indicates that the true 
value is j, the predicted value is i, and Pii indicates that the true and 
predicted values are i. The calculation formulas for MloU and mPA are: 

MIoU =
1

K + 1
∑k

i=0

Pii

∑k

j=0
Pij +

∑k

j=0
Pij − Pii

(7)  

mPA=
1

K + 1
∑K

i=0

pii
∑K

j=0pij
(8)  

4.3. Experimental comparison 

The algorithm proposed in this paper is based on the original 
DeepLabv3 plus model (Sun et al., 2019; Badrinarayanan et al., 2017). 
The ASPP module is redesigned, and an attention mechanism is intro-
duced to make the shallow and deep features of the model pay more 
attention to important semantic information(He et al., 2016; Chen et al., 
2017b, 2018; Sehar and Naseem, 2022)-(He et al., 2016; Chen et al., 
2017b, 2018; Sehar and Naseem, 2022). The fitting effect can be ach-
ieved by training the algorithm for 100 epochs using the Adam network 
model optimizer. The training was divided into two phases: the freezing 
phase and the unfreezing phase. A learning rate of 0.005 is used in the 
freezing phase, and the batch size is set to 8. A learning rate of 0.0005 is 
used in the unfreezing phase, and the batch size is set to 4. To prevent 
overfitting, the weight decay rate is set to 0.005. Epoch refers to the 
process of all the data entering the network to complete the forward 
computation and backpropagation once, and the number of epochs is set 
to 100, with 50 rounds in the freezing phase and 50 rounds in the un-
freezing phase. Phase of 50 rounds and the unfreezing phase of 50 
rounds. Before and after improvement. This article adopts the MloU and 
MAP evaluation index system and conducts ASPP module optimization, 
attention mechanism addition, and mutual fusion experiments on 
PASCAL VOC2012 to verify the performance of the model. 

4.3.1. ASPP improvement experiment 
The stripe pooling module (SP) is introduced in the ASPP module, 

where Deeplabv3 plus-sp represents using stripe pooling instead of 
global pooling in the ASPP module. To demonstrate the applicability of 
stripe pooling, MloU improved the DeepLabv3 plus network by 1.09% 
before and after improvement. As shown in Table 1 below. 

4.3.2. Introduction of different attention experiments 
Based on the MobileneV2 backbone network and ASPP module, 

different attention mechanisms are introduced. The polarization self- 
attention mechanism in series and parallel forms was introduced after 
the ASPP module. ECA-Net is introduced after the shallow layer of 
MobileneV2. MloU increased by 0.79% after joining PSA and ECA-Net. 
PSA_s has a better performance than PSA_p. In particular, MloU 
increased by 1.68% after adding PSA_s. As shown in Table 2 below. 

4.3.3. Comparative experiments of different models 
To demonstrate the effectiveness of the stripe pooling module, po-

larization self-attention mechanism module, and ECA Net module and to 
verify the accuracy of the improved algorithm, five control experiments 
were established. Among them, ① refers to the DeepLabv3 plus network. 
② It refers to changing the global average pooling to stripe pooling in 
the ASPP module of DeepLabv3 plus and adding a polarization self- 
attention mechanism in parallel after the ASPP module. It refers to 
changing global pooling to stripe pooling in the ASPP module. Deep-
Labv3 plus, and adding a polarization self-attention mechanism in a 
concatenated form after the ASPP module. ④ It refers to changing global 
pooling to stripe pooling in the ASPP module of DeepLabv3 plus, adding 
a parallel form of polarization self-attention mechanism after the ASPP 
module, and adding the ECA-Net module after the shallow features of 
MobileneV2. ⑤ It refers to changing global pooling to stripe pooling in 
the ASPP module of DeepLabv3 plus, adding a concatenated form of the 
polarization self-attention mechanism after the ASPP module, and 

Y. Liu et al.                                                                                                                                                                                                                                      
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adding the ECA-Net module after the shallow features of MobileneV2. 
Table 3 compares ① and ② and ① and ③ of table. By using stripe 

pooling instead of global average pooling and introducing a polarization 
self-attention mechanism, Mlou improved by 2.51% and 2.89%, 
respectively. Compare ① and ④, ① and ⑤ of the table. In the ASPP 
module, stripe pooling replaces global average pooling, and the polari-
zation self-attention mechanism and ECA-Net are introduced, resulting 
in increases of 2.58% and 3.61% in MloU, respectively. By analyzing the 
above table, it has been verified that all modules have played a role, and 
all the improvements mentioned above can greatly improve the accu-
racy of the algorithm. 

4.4. Comparison of segmentation results for different categories 

The most important evaluation indicator for accuracy in semantic 
segmentation is the average intersection-to-union ratio, which can be 
seen from the graph among the 21 categories. The modified model only 
has 6 categories that are lower than the original algorithm, and the 
accuracy of the 6 lower categories is not significantly different from the 
original algorithm. The remaining 15 categories are all higher than those 
of the original algorithm. Especially for categories such as houses, dogs, 
cats, trains, sheep, etc., showing better advantages. After adding the 
attention mechanism, the accuracy of key categories is improved, which 
can to some extent improve the accuracy of the original algorithm. The 
category segmentation results are shown in Fig. 7. 

To see the effects before and after the improvement more clearly, the 
segmentation prediction maps of the DeepLabv3 plus network and the 
improved DeepLabv3 plus network were compared. Where (a) repre-
sents the original image, (b) represents the image label, (c) represents 
the DeepLabv3 plus segmentation image, and (d) represents the 
improved DeepLabv3 plus segmentation image. From the results, it can 
be seen that the model segmentation that integrates stripe pooling and 
introduces the attention mechanism is relatively smoother and more 
complete. The original DeepLabv3 plus network has problems with 
misclassification and discontinuous segmentation. The optimized 
network has improved the semantic segmentation effect, better resolu-
tion, refined the segmentation boundary of the target and achieved 
better accuracy. The selected segmentation prediction diagram is shown 
in Fig. 8. 

5. Summary 

This article proposes a DeepLabv3 plus network based on the 
attention mechanism. Changing global pooling to stripe pooling in the 
ASPP module captures global contextual information, while the addition 
of the polarization self-attention mechanism enhances the utilization of 
image spatial features. Finally, by adding ECA-Net after the low-level 
features of MobileNetV2, the acquisition of shallow features improves. 
The experimental results show that embedding the attention module 
into DeepLabv3 plus as a network can improve the accuracy of key 
categories and effectively improve the segmentation accuracy of objects 
in images by the network. The objective indicator MIoU improved by 
approximately 2%. Our work improves the performance of image se-
mantic segmentation, which provides new ideas for autonomous 
driving, medical imaging, and other fields and provides direction for the 
field of computer vision. 

Although the improved algorithm has made good improvements, 
there are still shortcomings. Since the introduction of the attention 
mechanism increases the model complexity to some extent, further 
research is needed in terms of model complexity and parameter quan-
tity. In the future, we will consider using model compression methods to 
optimize the network so that the model can balance high accuracy and 
light weight. 
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