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A B S T R A C T

The performance of free-space optical communication (FSOC) is often affected by atmospheric turbulence. The
sensor-less adaptive optics (SLAO) system is an effective method for overcoming the effects of atmospheric
turbulence. The performance of the control algorithm in the SLAO system directly determines whether the
SLAO system can effectively correct wavefront aberrations. In this study, we introduce a residual network
(ResNet) as a control algorithm to replace the traditional control algorithm. By lowering the number of
iterations, this strategy enhances the real-time performance of the FSOC system. The final ResNet model can
achieve an accuracy of 0.98 for training and 0.92 for testing. The simulation results show that stochastic
parallel gradient descent (SPGD) algorithm takes 700 times longer and requires at least 500 iterations to
achieve the same performance as ResNet. And we verify the feasibility of the ResNet model by setting up an
experiment.
. Introduction

Free-space optical communication (FSOC) has been shown to be an
ffective wireless communication method in recent years [1]. Because
ompared with other communication systems, the FSOC system has a
aster transmission speed and a greater bandwidth. In addition, it is less
xpensive and easier to install. However, atmospheric turbulence has a
ignificant impact on the performance of an FSOC system. Turbulence-
nduced wavefront phase aberrations significantly increase the bit error
ate (BER) and reduce the mixing efficiency (ME) of the FSOC [2–4].

Adding an adaptive optics (AO) unit to the FSOC system is an effec-
ive method for overcoming the effects of atmospheric turbulence [5,6].
he three components of a traditional AO system are the wavefront
ensor, wavefront controller, and wavefront corrector. Wavefront aber-
ations produced by air turbulence can be measured using a wavefront
ensor. The wavefront controller regulates the wavefront corrector
ased on wavefront aberrations measured by the wavefront sensor. The
avefront corrector is responsible for wavefront correction [7].

At present, the sensor-less adaptive optics (SLAO) system is more
opular than traditional AO units in optical communication research.
any wavefront-free sensing methods have been widely studied and

pplied. For example, wavefront sensing algorithms based on random
mplitude mask and phase retrieval methods and wavefront sensing
ethods based on a spatial light modulator (SLM) and an incremental

inary random sampling (IBRS) algorithm [8,9]. These methods can
e applied in the fields of digital microscopy, aberration correction

∗ Corresponding author at: College of Communication Engineering, Jilin University, 5372 Nanhu Road, Changchun 130012, PR China.
E-mail address: jingtai1985@163.com (J. Cao).

and surface contouring. In addition, wavefront-free sensing based on
the orbital angular momentum (OAM) multiplexing technique is one of
the hot research topics. For example, the use of the SPGD algorithm
based on Zernike polynomials to generate phase correction maps for
distorted orbital angular momentum beams can effectively improve
OAM beam quality and reduce modal crosstalk; The use of the de-
focus measurement aided adaptive optics technique, and the use of
the random-amplitude mask-based adaptive optics technique is effec-
tive in reducing turbulence effects in OAM-based underwater wireless
optical communication systems and improving communication quality
[10,11]. In addition, wavefront-free sensing techniques based on iter-
ative algorithms and deep learning algorithms are widely studied and
applied in the FSOC field [12]. The SLAO system is mainly composed of
a charge-coupled device (CCD) high-speed capture camera, wavefront
processor, and wavefront corrector. The SLAO system replaces the
traditional wavefront sensor with a CCD camera, significantly reducing
the cost of building a system [13].

The control algorithm is critical for SLAO systems. The perfor-
mance of the control algorithm determines whether the SLAO system
can successfully suppress the effects of atmospheric turbulence [14].
Therefore, control algorithms have become a key research topic in
recent years. The SPGD algorithm, simulated annealing (SA) algorithm,
and hill-climbing algorithm are the most commonly used algorithms
in SLAO systems [6]. Because of its high correction performance, the
SPGD method is the most widely used algorithm in the SLAO system,
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although it also has significant drawbacks. For example, the SPGD
algorithm easily falls into a local optimum when solving problems,
and still needs to iterate many times to reach the goal. Atmospheric
turbulence changes continuously; therefore, the SLAO system requires
a faster correction speed and higher correction quality [15–17].

Convolutional neural networks (CNNs), which are part of machine
learning methods based on learning data representations, have sparked
a revolution in artificial intelligence [18]. Recently, studies have ap-
plied deep learning methods in adaptive optics. In [14], Tian et al.
applied a deep neural network to the AO unit of the FSOC system,
which improved the system’s real-time performance; However, due to
the small capacity of the model with only seven convolutional layers,
the final training loss value was as low as 1.88. It resulted in sub-
optimal system communication performance [14]. In [13], Gu et al.
mixed CNN and SPGD as control algorithms. They rely on the search
algorithm to compensate for the distortion, and the neural network is
used to measure wavefront aberrations and reduce the search scope.
Although the number of iterations is reduced by narrowing the scope
through CNN, the current methods still have certain deficiencies for the
SLAO system with high real-time requirements.

In the previous study, we applied the hybrid algorithm combining
the SA and SPGD algorithm to the SLAO system. We analysed the
influence of the hybrid algorithm on the SLAO system. The simulation
results show that the hybrid algorithm can effectively improve the
wavefront correction capability of the SLAO system. The Ref. [6] is the
article published after we summarized the results. The hybrid algorithm
performs well in wavefront correction as the control algorithm of the
SLAO system but has an average performance in real time. Therefore,
in this study, we propose a residual network (ResNet)-based algorithm
as a wavefront correction method for SLAO systems. The ResNet is
the most representative of Convolutional neural networks, which were
proposed by the team of Kaiming He in 2015 [19]. The model shows
excellent performance in deep neural network training. The ResNet was
introduced as the control algorithm to reduce iterations and improve
the real-time performance of the FSOC system in this study. In the
experiment, the training accuracy of the ResNet model was 0.98 with a
training loss of 0.19, while the testing accuracy was 0.92 with a testing
loss of 0.25. Through the experiment and simulation analysis, the real-
time performance of the ResNet-based SLAO system has been greatly
improved under the premise of ensuring the system’s performance.

The remainder of the paper is arranged as follows: Section 2 intro-
duces the principles of the ResNet-based SLAO system; in Section 3,
we introduce the three important evaluation indicators and the ResNet
model; Sections 4.1 and 4.2 introduce the processing of the dataset
and training network in the experiments, Section 4.3 compares the
performance of the far-field speckle image before and after correction
to demonstrate the wavefront correction performance of the ResNet-
based SLAO system; in Section 5, We introduce the composition of the
experimental platform, the process of the experiment and the analysis
of the experimental results; finally, we discuss the results and conclude
the paper in Section 6.

2. ResNet-based SLAO system

Fig. 1 shows the schematic diagram of the FSOC system with its
SLAO system for compensating atmospheric turbulence [20]. The pho-
toelectric converter converts the input electrical signal into an optical
signal for transmission, and then the SLAO system corrects the optical
signal passing through the atmospheric channel. The corrected optical
signal is combined with the local oscillator (LO) laser beam, linked
and transmitted over single-mode fibre. After that, the photoelectric
converter outputs a digital signal from the associated optical signal.

However, during transmission, atmospheric turbulence distorts the
wavefront and the amplitude of the laser beam. Therefore, we in-
troduced the SLAO system for atmospheric compensation. The SLAO

system consists of a deformable mirror (DM), charge-coupled device H

2

(CCD) camera, and wavefront controller. The CCD obtains the distor-
tion information of the laser beam and then transmits the information
to the wavefront controller. According to the distortion information, the
wavefront controllers adjust the DM in real time to correct any wave-
front aberration. The wavefront controller is an essential component
of the SLAO system. The wavefront controller operation is separated
into two steps. First, a CCD picture is utilized as input, and then the
trained ResNet model is used to categorize wavefront aberration by
classifying the picture. Second, based on this categorization, the output
voltage controller generates control signals. Thus, the SLAO system can
effectively improve the quality of the optical signals after correction.

3. Theoretical basis

3.1. Evaluation indicator

In free-space optical communication, the ME, coupling efficiency,
and BER are three important evaluation indicators when evaluating
optical communication quality. In the previous study, we applied the
hybrid algorithm combining the SA and SPGD algorithm to the SLAO
system and analysed the influence of the hybrid algorithm on the
coupling efficiency, ME, and BER of the SLAO system. In this study, we
use its theoretical basis to evaluate the performance of the SLAO model
based on the ResNet algorithm [6,21]. In the following, we will list the
calculation formula of the three evaluation indexes and the meaning of
the parameters in the formula.

In the focal plane, we calculate the coupling efficiency according to
the optical fibre focal plane light field and the incident light focal plane
light field. This can be expressed as [22,23]

𝜂𝑐∞
|

|

|

∬ 𝐴𝑓 (𝑟)𝑀∗
0 (𝑟) 𝑑

2𝑟||
|

2

∬ 𝐴𝑓 (𝑟)𝐴∗
𝑓 (𝑟)𝑑

2𝑟 × ∬ 𝑀0 (𝑟)𝑀∗
0 (𝑟) 𝑑

2𝑟
(1)

where 𝐴𝑓 (𝑟) is the Fourier transform of the optical fibre mode field,
and 𝑀0 (𝑟) is the focal plane light field of the incident light.

We assumed the local oscillation is a plane wave, and the intensity
of the optical signal (OS) is uniform. In homodyne detection, ME can
be defined as [3]

𝜂 =

[

∫𝑆 𝐴𝑆𝐴𝑂 cos (𝛥𝜑) 𝑑𝑠
]2

∫𝑆 𝐴2
𝑆𝑑𝑠 ∫𝑆 𝐴2

𝑜𝑑𝑠
(2)

here 𝐴𝑆 and 𝐴𝑂 are the amplitudes of the OS and LO, respectively,
nd 𝛥𝜑 is the phase difference between the LO and OS.

The BER is one of the most important parameters for evaluating
ransmission efficiency. For the homodyne detection system, BER can
e expressed as [24]

𝐸𝑅 = 1
2
𝑒𝑟𝑓𝑐

(

√

2𝛿𝑁𝑃 𝜂
)

(3)

where 𝑁𝑃 represents the number of photons received in a single bit, 𝛿
enotes the quantum efficiency of the detector, erfc is the complemen-
ary, and 𝜂 is the mixing efficiency of coherent FSOC system.

.2. ResNet model

Compared with other convolutional neural networks, the ResNet can
uccessfully address network deepening-induced gradient expansion
nd gradient disappearance in neural networks. It is mainly composed
f a series of residual blocks, whose basic structural units are shown
n Fig. 2. ResNet mainly consists of two parts: the direct mapping
nd the residual parts. The direct mapping part directly connects the
nput and output of the residual block. The residual part is an identity
apping layer superimposed on a shallow network, with input 𝑥 and

xpected output H(x). In addition, F(x) = H(x) − 𝑥 is the difference
etween the input and output of the learning target of the ResNet, that
s, the residual. The training of F(x) is more straightforward than that of
(x), and it can also amplify the weak changes, avoiding the problem
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Fig. 1. Schematic diagram of the FSOC system.
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Fig. 2. Basic structural unit of the residual block.

f gradient disappearance and gradient explosion [19]. The ResNet is
ble to train deeper network models with greater capacity and more
onvolutional layers than CNN and DNN, and therefore also enables
etter training results with the better fitting of the objective function.

. Numerical simulation and discussion

.1. Data generating and pre-processing

The dataset is critical in training a ResNet model, and the quality
f the dataset directly influences the quality of the trained model.
able 1 shows the expression for the Zernike polynomials involved.
he wavefront aberration information that affects the communication
erformance of FSOC systems is mainly concentrated in the lower-order
art of the Zernike aberration [25]. Among them, defocus aberration is
rucial for communication performance in the FSOC system. Therefore,
e place the fourth aberration in the large-scale dimension. Meanwhile,

oo many categories would increase the number of model parameters,
aking training more difficult and reducing the accuracy of the model.
herefore, we chose categories with the following Zernike coefficients.

4 ∈ [−1.5,−1.0) ∪ [−1.0,−0.5) ∪ [−0.5, 0] ∪ (0, 0.5] ∪ (0.5, 1.0] ∪ (1.0, 1.5]

5, a6 ∈ [−1.0,−0.5) ∪ [−0.5, 0] ∪ (0, 0.5] ∪ (0.5, 1.0]

7, a8, a9 ∈ [−0.5, 0] ∪ (0, 0.5]
 s

3

Wavefront aberrations are classified into 6 × 4 × 4 × 2 × 2 × 2 =
768 types, with each type of wavefront aberration corresponding to a
different subspace. We established a standard for each subspace. The
standard factor was defined as the median of the range of coefficients
for each classification. In this way, every image captured by the CCD
camera can be classified into one of these categories. However, because
of the defocus mode, the point spread functions are similar for both pos-
itive and negative cases with the same absolute value [26]. Therefore,
we divided 768 wavefront aberrations into two major categories in our
experiments: 384 wavefront aberrations for positive out-of-focus modes
and 384 wavefront aberrations for negative out-of-focus modes. This
method can reduce the types of wavefront aberrations and improve the
accuracy of the model. In our experiments, we used a dataset consisting
of 384 classes of wavefront aberrations for the case where the defocus
mode was positive; 422 400 photos were created at random, with 1000
images in each category serving as the training set and 100 images
serving as the test set. In practice, we can train the algorithmic model
for the negative defocus mode using the same technique as that used
for the positive defocus mode. The two models in the wavefront control
unit categorize the input point spread function concurrently and then
choose the best compensated classification.

In this paper, we refer to the far-field spot generation approach
in the literature [27], which is divided into two main steps. Firstly,
the phase matrix is generated from the Zernike coefficients. In the
second step, the phase matrix is transformed into the image matrix
of the far-field spot through a two-dimensional Fourier transform. The
two-dimensional Fourier transform is given by

𝐹 (𝑢, 𝑣) = ∫

∞

−∞ ∫

∞

−∞
𝑓 (𝑥, 𝑦) 𝑒−𝑗2𝜋

(

𝑢𝑥+𝑣𝑦
𝑑𝑙

)

𝑑𝑥𝑑𝑦 (4)

where 𝑓 (𝑥, 𝑦) represents the wavefront phase matrix generated by the
Zernike coefficients, 𝐹 (𝑢, 𝑣) represents the resulting image matrix, 𝑑
s the equivalent interval of the actuator interval projected on the
ntrance pupil of the receiving antenna, 𝑙 is the signal wavelength.

In this study, we performed the training of the ResNet on a high-
erformance personal computer. The CPU model was i7 8700, the main
requency was 3.70 GHz, the system memory size was 64 GB, and the
PU used two GTX1080Ti to train the model to improve efficiency.

.2. Model setting and evaluation

In the experiment, the network model we used was ResNet20, whose
tructure is shown in Fig. 3.
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Fig. 3. Basic structural unit of the ResNet.
Table 1
Expression of 𝑘 = 4 − 9 order of Zernike polynomial.

k (n,m) Polar coordinates Mode

4 (2,0)
√

3
(

2𝜌2 − 1
)

Defocus
5 (2,−2)

√

6𝜌2 sin 2𝜃 Astigmatism
6 (2,2)

√

6𝜌2 cos 2𝜃 Astigmatism
7 (3,−1) 2

√

2
(

3𝜌3 − 2𝜌
)

sin 𝜃 Coma
8 (3,1) 2

√

2
(

3𝜌3 − 2𝜌
)

cos 𝜃 Coma
9 (3,−3) 2

√

2𝜌3 sin 3𝜃 Trefoil

This table shows 𝜃 = polar coordinate angle and 𝜌 = radius (normalized to 1 at the
dge of the aperture). The numbers in columns m and n are the indices for Zernike
olynomials.

In Fig. 3, Batch Normalization (BN) and rectified linear unit (relu)
re often combined with speeding up the convergence of the model
uring training, making the training process more stable and avoiding
radient explosion or gradient disappearance. Finally, the classification
esults were obtained using average pooling (Avg) and a dimensional
ull connection layer (fc). The figure is labelled with the change in
mage size.

In model training, adjusting the hyperparameters is an important
art of the experiment. Among them, the learning rate is an important
yperparameter in deep learning; therefore, its adjustment is vital [28].
n general, an excessive learning rate causes failure of model training
onvergence, and the trained model is not accurate. However, if the
earning rate is too low, the model converges slowly and easily falls into
he local optimal solution. A suitable learning rate can make the model
onverge to the minimum value within a suitable time. Therefore, in the
ctual model training, the learning rate is not a fixed value, and it takes
he way of continuous attenuation to improve the training performance
o the greatest extent. The common decay methods of learning rate
re the exponential descent method, fixed step decay method, multi-
tep decay method, and cosine annealing decay method. Among them,
he exponential decay method is mainly used for network models that
re easy to train and easy to converge; the fixed step decay method
onverges faster, but it is easy to fall into local optimal solutions during
he training process; the cosine annealing decay method avoids falling
nto local optimal solutions by warm restart, but this decay method
s more suitable for the case where there are multiple locally optimal
olutions in the optimization process of the objective function. We have
herefore chosen the multi-step decay method. The advantage of the
ecay method is that the step size and learning rate can be adjusted
ccording to the specific situation in the model training, ensuring fast
onvergence while effectively avoiding falling into a local optimum
olution. The specific values of the learning rate decaying with epoch
re shown in Fig. 4. Epoch defines the number of times the learning
 t

4

Fig. 4. Curve of learning rate attenuation.

algorithm works on the entire training data set. An epoch represents
one complete model training using all the data from the training set.
The final model accuracy rate trained by the experiment is shown in
Fig. 5, and the loss is shown in Fig. 6.

In the training of a model, Accuracy is the ratio of the number
of correctly classified samples to the total number of samples, and a
higher Accuracy value means a better fit. It can be seen from Fig. 5
that the training and validation accuracy curves exhibit an upward
trend with the increase in epochs. The accuracy value of training the
accuracy curve increased steadily from 0.63 and stabilized at 0.98
after 70 epochs. The accuracy value of the validation accuracy curve
increases from 0.71 to 0.90 after 30 epochs of rapid growth with
slight oscillations and reaches 0.92 after 40 epochs of slow growth and
gradually stabilizes.

During the training of a model, we usually define an objective
function and want to optimize it to the lowest point. These functions
are called loss functions. The value of the loss function is the loss value.
As the scenario used in this paper is a multi-classification problem, a
categorical cross-entropy loss function is used, which can be expressed
as follows [29]:

𝐿oss = −
∑

𝑖=1
𝑦𝑖 ⋅ log

∧
𝑦𝑖 (5)

where i denotes the 𝑖th output node of the softmax layer. 𝑦𝑖 denotes the
rue distribution of the sample,

∧
𝑦 denotes the distribution predicted by
𝑖
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Fig. 5. Training accuracy and validation accuracy.

Fig. 6. Training loss and validation loss.

he model. From Fig. 6, we can see that the training and validation loss
urves show a decreasing trend with an increase in the epoch. The loss
alue of the training loss curve starts to decrease rapidly from 1.33 and
inally stabilizes at 0.19 after 70 epochs; the loss value of the validation
oss curve starts to decrease from 0.92 and stabilizes at 0.25 after 60
pochs and slight oscillations.

In our experiment, the training process both works offline. After
esting, the model takes only 54 s to test 76,800 images, with an
verage of 0.0007 s to classify one image. The size of the model is 7.92
B.

.3. Numerical simulation

To test the wavefront correction performance of the ResNet-based
LAO system in the FSOC system. We generated 20 far-field light
pot images using a generated test set. The trained ResNet model
lassified them, and wavefront correction was performed based on the
lassification results. Figs. 7 and 8 show some of the far-field spot
ictures and phase diagrams before and after correction.

A comparison of the before and after correction in Figs. 7 and 8
how that the ResNet-based SLAO system can effectively suppress the
avefront distortion caused by atmospheric turbulence. The horizontal
5

Fig. 7(a). Phase diagram before correction.

Fig. 7(b). Phase diagram after correction.

and vertical coordinates of Fig. 7 represent pixel points, so the image
size is 128 pixels by 128 pixels. We also calculated the ME, coupling
efficiency, and BER for the 20 images before and after correction to
evaluate the correction performance of the SLAO system.

Fig. 9 compares the mixing efficiency of the 20 far-field light spots
before and after rectification. Before the correction, the average mixing
efficiency of far-field light spots was 0.3871, while after adjustment,
the average mixing efficiency of the far-field light spots was 0.9821.
Fig. 10 compares the coupling efficiency of the 20 far-field light spots
before and after correction. The average coupling efficiency of the far-
field light spots before the correction was 0.4517, and the average value
after the correction was 0.8008. It is also worth noting that, after cor-
rection, the system’s coupling efficiency is close to a maximum of 0.81
for single-mode fibre coupling efficiency. Fig. 11 compares bit error
rates for 20 far-field spots before and after rectification. The far-field
spots had an average bit error rate of 4.266E−03 before the correction
and an average value of 1.898E−10 after the correction. Figs. 9–11
show that, before correction, in the 20 far-field spot pictures, Nos. 1
and 5 are considerably influenced by air turbulence, but Nos. 7 and
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Fig. 8(a). Far-field spot before correction.

Fig. 8(b). Far-field spot after correction.

2 are less affected by atmospheric turbulence. However, after the cor-
ection, the mixing efficiency can reach more than 0.95, the coupling
fficiency can reach more than 0.79, and the BER can be reduced to
pproximately 1.0E−10. A comparison of the three evaluation indexes
efore and after the correction shows that the SLAO system based on
he ResNet algorithm has high wavefront correction capabilities in the
SOC system and can effectively reduce wavefront distortion induced
y atmospheric turbulence. The SLAO system with SPGD as the control
lgorithm usually requires approximately 500 iterations to achieve the
ame performance. The ResNet takes just 0.7 ms on average to classify
far-field location, but the SPGD takes approximately 500 ms to iterate
00 times. Compared to the hybrid algorithm in the literature [13], the
E can reach 0.8 after the pre-processing of the CNN and 150 iterations

f the SPGD algorithm [13]. But ResNet can achieve the same result in
much shorter time. In addition, ResNet is also able to perform a single

orrection in less time than SLAO systems that also use convolutional

eural networks as their control algorithm, such as DNN and CNN 3

6

Fig. 9. Comparison of ME before and after far-field spot correction.

Fig. 10. Comparison of coupling efficiency before and after far-field spot correction.

Table 2
Main equipment in the experiment and its key parameters.

Control method Latency (ms)

ResNet 0.7
DNN 2
CNN3 6–7
hybrid algorithm (CNN and SPGD) 100–150
SPGD 300–500

(CNN with 3 convolutional layers) [30]. The time required for a single
correction for different control algorithms is presented in Table 2. As
a result, ResNet as a control method can significantly increase the
real-time performance of the FSOC system.

5. Experiments and results analysis

To further test the performance of the trained ResNet model in
wavefront aberration correction, we conducted experiments on the
home-built system consisting of a two-stage fast-steering-mirror (FSM)
and an AO unit with a 97-element continuous surface deformable mir-
ror (CSDM). The phase-screen used in our experiment was customized
by Lexitek corporation. We can simulate the Greenwood frequency by
rotating the phase screen, and by adjusting the position of the phase
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Fig. 11. Comparison of BER before and after far-field spot correction.
Fig. 12. The schematic diagram of experimental system.
Table 3
Main equipment in the experiment and its key parameters.

Main equipment Key parameters

S-H wavefront sensor Wave length is 550 nm
Laser Wave length is 532 nm
L1 Focal length is 400 nm
L2 Focal length is 3000 nm; aperture is 80 mm
L3 Focal length is 3000 nm
L4 Focal length is 300 nm; aperture is 80 mm
CSDM Focal length is 200 nm; aperture is 7 mm

screen to simulate the 𝑟0. Thus, we can use this phase screen to simulate
ifferent atmospheric turbulence intensities. Fig. 12 shows a schematic
iagram of the experimental system. In Fig. 12, L1 to L4 are a set of
enses, F1 and F2 represent the reflection mirror, SW1 and SW2 are split
ave receivers, and the S-H Wavefront sensor represents the Shack-
artmann wavefront sensor. Table 3 lists the essential parameters of

he experiment’s primary apparatus [21]. The photo of the designed
xperimental system is shown in Fig. 13 [21].

We re-collected a group of experimental data based on the experi-
ental platform. In the experiment, the far-field light spots acquired

y the CCD camera could not correspond to the Zernike coefficient
enerated by the S-H Wavefront sensor one by one because the CCD
amera frequency was lower than that of the S-H Wavefront sensor.
herefore, we reconstructed the excess Zernike coefficients into far-
ield light spots, and then sent them into the trained ResNet model for
7

Fig. 13. The photo of experimental system.

classification. In addition, we added Gaussian noise to the far-field spot
generation to simulate the noise produced by CCD camera imaging. To
evaluate the effectiveness of the ResNet algorithm, we analysed the ME
before and after correction. Measuring the ME of far-field light patches
before and after classification was used to test the model’s ability.
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Fig. 14. Phase diagram before and after correction.
Fig. 15. Far-field spot before and after correction.
Fig. 16. Comparison of ME before and after far-field spot correction in the experiment.
Figs. 14 and 15 show the phase and far-field spot maps before and
fter correction in a set of experiments. ME is 0.498 before correc-
ion and 0.916 after correction, indicating a good correction impact.
ig. 16 shows part of the data from the experiment. Except for the
ata in No. 5, the ME of the remaining 49 groups of data can be
mproved to around 0.8, according to the experimental data. The mean
8

ME before correction was 0.510 and the mean after correction was
0.833 for all 49 groups except for the fifth group of data. The results
show that the ResNet as a control algorithm for the SLAO system
can effectively correct wavefront distortion and improve the FSOC
system performance. Therefore, we focused our analysis on the data
with poor performance. After analysis, we believe when we generated
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the dataset, the interval division of the fourth- and fifth-order Zernike
coefficients were too widely spaced, resulting in unsatisfactory far-field
spot recognition generated for data that were partially at the edge of the
interval. The fourth-order Zernike coefficients were mostly clustered in
[−0.8, +0.8] among the experimentally obtained Zernike coefficients,
and data more than 1 or less than −1 were unusual. The fifth-order
Zernike coefficients likewise cluster around [0.5, 1.0] or [−0.5, −1.0].
Therefore, the generated far-field spots are relatively similar, which
also leads to the reduced classification ability of the model. Therefore,
in future work, we will improve the generation of the dataset with a
more reasonable regionalization of the fourth- and fifth-order Zernike
coefficients.

6. Conclusion

In this study, we applied ResNet as a control algorithm for mea-
suring and correcting the wavefront aberration to the SLAO system
of an FSOC system. By training a well-designed ResNet model, this
method can acquire the control signal of the DM directly from the CCD
images. Compared with our previous studies, this approach can avoid
generating iterations and effectively improve the real-time performance
of the FSOC system. According to the simulation results, SPGD takes
700 times longer and requires at least 500 iterations to obtain the same
performance as ResNet. The control algorithm based on ResNet as the
SLAO system can effectively improve the real-time performance of the
FSOC system, which has a certain reference value for future FSOC sys-
tem design. Moreover, we can create more targeted datasets to train the
ResNet model offline for different scenarios in real engineering applica-
tions to improve the correction performance of the ResNet algorithm.
We used a home-built experimental platform to verify the classification
ability of the model, and we analysed the experimental results and
problems. We believe that dividing the fourth- and fifth-order Zernike
coefficient intervals in the dataset used in the training model needs
to be improved. In addition, we set up the data set to focus more on
the turbulence intensity in weak and medium turbulence. Therefore,
how to use ResNet as a control algorithm for wavefront correction
under strong turbulence is also one of the main problems we face. A
better solution at present is to mix ResNet with traditional algorithms
such as SPGD, using traditional control algorithms to deal with the few
cases caused by inaccurate classification of ResNet algorithm or strong
turbulence interference, and using ResNet to deal with moderate to
weak turbulence and most non-special cases. This approach can ensure
the real-time performance of the FSOC system and further improve the
wavefront correction performance and stability of the system. This is
also the main direction of our future work.
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