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A B S T R A C T   

The cooling capacity of a radiator under complex environmental conditions is improved by 
controlling the detector temperature within a range of the thermal control index. An optimal 
design method for the radiation cooler based on the response surface method (RSM) and genetic 
algorithm is proposed, and the area and location of the radiation cooler of the space ultraviolet 
imager detector are optimized. First, the physical model and thermal simulation model of the 
space ultraviolet imager are established. Then, the detector temperature is used as the objective 
function, and the length, height, and inclination angle of the radiator in space are used as the 
design variables. The mathematical model of the objective function is established by the RSM, and 
the rationality of the mathematical model is verified by analysis of variance (ANOVA). Finally, 
the Pareto optimal frontier is obtained using the genetic algorithm. The optimization results 
confirm that the optimal design parameters of the radiator are XW = 165.58 mm, XH = 160.29 
mm, θ1 = 7.28◦, θ2 = 5.87◦. Compared with before optimization, the area of the radiator is 
reduced by 18.18%, and the weight is reduced by 48.78 g. Based on verifying the optimization 
results, the optimized radiation cooler can control the detector within the target temperature of 
− 20 to − 10 ◦C. Therefore, the optimal design of the radiation cooler meets the requirement of 
lightweight while improving the cooling capacity of the radiator.   

1. Introduction 

During the orbital operation of the spacecraft, the temperature of the internal working components fluctuates significantly because 
of the influence of the internal heat source and the heat flow outside space. It is necessary to control the internal components within a 
specific temperature range through thermal design. For cameras with space exploration missions, the thermal noise and dark current 
generated by the high detector temperature will reduce its imaging quality. Therefore, a special heat dissipation channel must be 
designed to dissipate the detector’s heat. The radiation cooler is critical for dissipating the detector’s heat into the 4 K space and must 
be specially designed to control the detector to a reasonable temperature. 

Several researchers have studied radiant space coolers. Shen et al. [1] established the maximum thermal stiffness target of the 
radiator to improve the heat dissipation efficiency. Based on the OMEGA SSPS heat dissipation problem, Fan, G [2] proposed a thermal 
control method for space radiators based on the synchronous optimization of the shape and topology of the butterfly radiator. The 
optimal structural form is obtained by obtaining maximum heat dissipation at minimum mass and uniform boundary temperature. 
Cuco et al. [3] designed a new variable emittance radiator (VESPAR) that can save approximately 50% of heater power consumption. 
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VESPAR is heavier than traditional space radiators and unsuitable for loads with strict lightweight requirements. Sam and Deng [4] 
embedded heat pipes in the heat sink, improving the heat dissipation efficiency of the radiator but increasing the weight by 7.37 kg. 
The length of the heat pipe was then used as the optimization design variable, and the minimum total weight of the heat pipe network 
was optimized as the objective function. 

Kim et al. [5] proposed two optimal design methods for heat sinks based on thermal model node division. These methods solve the 
optimal solution for the combination of heat sink nodes differently. The first method uses integrated optimization analysis, combining 
optimization algorithms with thermal analysis (TA). The second method gradually increases the heat sink node based on temperature 
sensitivity until the temperature limit is met. Bulut and Sözbir [6] determined the emitter area according to the maximum temperature 
of the load (end of life) and optimized it at low temperature (early stage of life). Bulut and Sözbir [7] developed a practical emitter TA 
tool (PLTAT) based on Excel’s VBA user interface. The heat dissipation values of the different panel sizes of the satellite are calculated 
by PLTAT to determine the radiator area. Vilela and Garcia [8] proposed a numerical model to analyze the critical working conditions 
of space radiators and conducted numerical simulations of finned space radiators on the surface of satellites to evaluate the tem-
perature distribution of radiators under extreme working conditions. This model can optimize the number and size of radiator fins. 
Arslanturk [9] used the parameter change method (VPM) to solve the nonlinear and non-homogeneous differential equations and used 
the classical search method to determine the optimal size of the space heat sink. 

This optimized radiation cooler design can improve the heat dissipation efficiency of the radiator. However, there is little or no 
occlusion in the heat dissipation direction of the radiator. When the radiation cooler is seriously blocked, this optimization method 
cannot improve the radiation cooler’s heat dissipation capacity. 

The radiator optimally designed in this study is used to cool the detector of a space ultraviolet imager. It satisfies the thermal 
control index of the detector and lightweight requirements. The space environment where the radiation cooler is located is complex 
and is blocked by other satellite components, making it difficult for the radiator to dissipate heat. Furthermore, it is difficult to 
dissipate the heat inside the detector into the cold and 4 K space. 

In this study, the physical model and thermal simulation model of the space ultraviolet imager are established. According to the 
limited space position, the detector temperature is used as the objective function, and the radiator’s length, height, and inclination 
angle in space are used as design variables. Design of experiments and response surface methods (RSMs) were used to fit the response 
surface-regression model of the detector temperature to the design variables of the radiator. The practicability of the regression model 
was verified by variance analysis. Finally, the objective function is optimized using the multi-objective genetic algorithm (MOGA), the 
optimal design front is obtained by the Pareto optimal solution, and the optimal design parameters of the radiator that can reduce the 
detector temperature to the thermal control index are obtained. 

2. Physical model 

2.1. Description of ultraviolet imager on-orbit operation 

The ultraviolet imager is installed on the connecting frame between the satellite and the solar panel. The attitude adjustment 
mechanism of the solar panel is used to make the light entrance of the imager always point to the Sun, and the sunlight directly enters 
the optical port through the attitude adjustment mechanism of the ultraviolet imager. The satellite runs in the geostationary orbit, and 
the satellite is always facing the Earth. The solar panel and the connecting frame need to rotate at a speed of 0.25◦/min to ensure that 
the imager continues to point to the Sun. The installation location and on-orbit situation of the ultraviolet imager are depicted in Fig. 1. 
The β angle (the angle between the Sun vector and the orbital plane) changes caused by the revolution of the Earth. The change rule is 
depicted in Fig. 2. Therefore, if direct sunlight is guaranteed to enter the optical port, the imager must also be pitched − 23.5◦ to 
+23.5◦/year with the change in the β angle. The schematic of pitching is depicted in Fig. 3. Two extreme working conditions are 
defined according to the on-orbit working conditions of the imager (Table 1). 

Fig. 1. Ultraviolet imager installation location and on-orbit diagram.  
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2.2. Ultraviolet imager radiation cooler working environment 

The detector temperature is controlled within a range of − 20 to − 10 ◦C through the radiation cooler and heater to ensure the 
imaging performance of the imager detector. Given the spatial position of the imager, the radiation cooler can only dissipate heat in the 
-X direction; the position of the radiator is depicted in Fig. 1. With the attitude adjustment of the imager, the radiator has more oc-
clusions in the -X direction, such as the turntable, connecting frame, and satellite. Furthermore, the maximum temperature of the 
connection frame reaches 65 ◦C, which affects the radiator and a particular amount of radiation heat exchange, reducing the cooling 
capacity of the radiation cooler. Therefore, the research purpose of this study is to improve the cooling capacity of the radiation cooler 
by optimizing the area and position of the radiation cooler. 

2.3. Heat transfer model of detector assembly 

Fig. 4 illustrates the structure diagram of each part of the detector assembly. The heat transfer path of the detector assembly can be 
determined according to Figs. 1 and 2. A schematic of the thermal balance of the detector assembly is depicted in Fig. 5. R1–R8 are the 
thermal resistances between the assemblies. According to Fig. 5 and the law of conservation of energy, the heat balance equation of the 
radiation cooler is established as follows: 

Q1 +
∑6

i=2
Qir + Q7 = Q8 + Q9 (1)  

where Q1 is the external heat flow absorbed by the radiant space cooler, Q2r is the heat given to the radiator by the star platform, Q3r is 
the heat from the connection frame to the radiator, Q4r is the heat from the load platform to the radiator, Q5r is the heat supplied by the 
U-shaped frame to the radiator, Q6r is the heat supplied by the solar panel to the radiator, Q7 is the heat transferred from the detector to 
the radiator through thermal conduction, Q8 is the radiation heat exchange between the radiator and the 4 K space, and Q9 is the 
change in the internal energy of the radiator. 

The radiant heat flow of the space environment received by the radiator can be calculated by Equation (2). The heat transferred 
from the remaining surfaces to the radiator by radiation is calculated by Equation (3). The heat conducted by the detector to the 
radiator through heat can be calculated by Equation (4). The radiant heat transfer between the radiator and the 4 K space is calculated 

Fig. 2. Annual variation law of β angle.  

Fig. 3. Ultraviolet Imager pitch angle and Sun vector diagram.  
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by Equation (5). The amount of change in the internal energy of the radiator is calculated by Equation (7). 

Q1 =

(

αsS0φ1 + αsS0φ2R+ ε1
(1 − R)

4
S0φ3

)

A (2)  

Qir =AiFi,r(Ji − Jr) (3)  

Table 1 
Definition of extreme working conditions during on-orbit operation.  

Name High-Temperature Condition Low-Temperature Condition 

Solar constant (W/m2) 1323 1412 
Detector power (W) Consumption 0.5 0.5 
β angle (◦) − 23.5 23.5 
Pitching angle (◦) − 23.5 23.5 
Satellite platform temperature (◦C) 30 − 20 
Satellite platform αs/ε 0.25/0.8 0.1/0.8 
Radiation cooler αs/ε 0.35/0.86 0.17/0.86 
Multilayer thermal Insulation components αs/ε 0.36/0.69 0.37/0.69 
Connection frame αs/ε 0.55/0.86 0.23/0.86 
Solar panel αs/ε 0.93/0.86 0.93/0.86  

Fig. 4. Detector component installation relationship.  

Fig. 5. Schematic of thermal balance of detector components.  
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Q7 =
TD − TZ

∑ 1
kAs

+
∑ dj

λjAj

(4)  

Q8 = σε1A1F1,2
(
T4

1 − T4
2

)
(5)  

F1,2 =

∫

A1

(∫

A2

cos θ1 cos θ2dA2

πr2

)

dA1 (6)  

Q9 =
∑
(

mici
∂T
∂τ

)

(7)  

where αs is the solar absorptivity on the surface of the radiation cooler, the solar constant S0 is 1411 W/m2,φ1 is the angle factor of the 
radiation cooler to the direct solar radiation, φ2 is the angular coefficient of the radiation cooler surface to the Earth’s albedo radiation, 
R is the average reflectivity of the ground, φ3 is the Earth’s infrared angle coefficient, ε1 is the infrared emissivity of the radiator 
surface, Ai is the area of the star platform, the connecting frame, the load platform, the U-frame and the solar panel, respectively, Fi,r is 
the viewing angle coefficient of the star platform, the connecting frame, the load platform, the U-frame and the solar panel to the 
radiator, respectively, Ji is the effective radiation of star platform, connecting frame, load platform, U-frame, and solar panel, Jr is the 
effective radiation of the radiator, TD is the detector temperature, TZ is the radiation cooler temperature, k is the thermal conductivity, 
As is the contact area of the two components, dj is the thickness of a single heat transfer component, λj is the thermal conductivity of a 
single component material, Aj is the cross-sectional area of the component perpendicular to the heat flow transfer direction, σ is the 
Stefan-Boltzmann constant, T1 is the surface temperature of the radiation cooler, T2 is the space ambient temperature, A1 is the surface 
area of the radiation cooler, mi is the radiator mass, ci is the specific heat capacity of the radiation cooler, ∂T/∂τ is the temperature 
change rate of the radiation cooler, dA1 is the micro-element area of the radiation cooler, and dA2 is the micro-element area that blocks 
the radiation cooler. The remaining parameters of Equation (6) are depicted in Fig. 6. 

According to Equations (3), (5) and (6) and Fig. 6, the radiation heat transfer between the two surfaces is related to the relative 
position between the two surfaces and the area of the two surfaces. In the following optimization design process, the width XW of the 
radiator, the height of the radiator XH, and the inclination angle θ of the radiation cooler are used as design variables, and the detector 

1

2

n1

n2

r

dA1

dA2

A1

A2

Fig. 6. Parameters from Equation (6).  
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temperature and the area of the radiation cooler are used as the objective function for optimization. 

3. Optimization process 

In this section, the RSM is used to determine the effect of the radiator area and location on the temperature of the ultraviolet imager 
detector. The response surface numerical model required for optimization was developed based on experimental design and regression 
analysis. 

Fig. 7 illustrates the optimization design flow of RSM and MOGA. First, for the specific optimization design problem, the design and 
target variables are determined according to the actual conditions. Second, the RSM based on the Box–Behnken experimental design is 
used to construct a quadratic mathematical model between the design variable and the target variable; the rationality of the math-
ematical model is verified by analysis of variance (ANOVA). Finally, the MOGA is used to solve the optimization problem. 

3.1. Design variables and objective function 

According to Equations (3), (5) and (6), by changing the relative position and area of the radiator in space, the heat dissipation 
capacity of the radiation cooler can be changed to further reduce the detector temperature within the target range. 

The position of the radiation cooler can be determined by four design parameters: radiator width XW, radiator height XH, radiator 
rotation angle θ1 around the Y axis, and radiator rotation angle θ2 around line L (Fig. 8). The four design parameters that determine the 
location of the radiation cooler are the design variables. The detector temperature and area of the radiation cooler are used as objective 
functions. 

3.2. Experimental design 

The RSM [10–13] is an experimental method to explore the relationship between multiple design variables and one or more 
response variables. It is also one of the most widely used and effective methods for solving optimization problems in engineering 
analysis and optimization design. Based on different methods of selecting experimental points [14], RSM can be divided into a 
full-factorial design, orthogonal array, center combination design, Box–Benken design, Latin hypercube design, optimal Latin hy-
percube design, and other methods. The Box–Benken design consists of multiple orthogonal cubes and contains a center point. Because 
it avoids the appearance of extreme points [15], it can be applied to optimizing mechanical dimensions. There is no situation where a 
particular size is too small such that the test is impossible or the results unstable. Therefore, the Box–Benken design method is used to 
select the test points required by the RSM. 

Each optimization parameter is designed with three levels. A total of 29 groups of tests are required, and the finite element method 
is used to calculate the detector temperature corresponding to different parameters. There are various forms of surrogate models 

Fig. 7. Flow chart of optimal design of DOE, RSM, and MOGA.  
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obtained through RSMs, but the most common models are polynomials based on Taylor expansions, calculated as follows [16]: 

Y = β0 +
∑k

i=1
βixi +

∑k

i=1
βiix

2
i +

∑k− 1

i=1

∑k

j=2
βijxixj + ε (8)  

where β0 is the model constant, βi is the linear coefficient, βii represents the quadratic coefficient, βij is the interaction coefficient, k is 
the number of factors or variables, ε is the model residual, βi. βii and βij are collectively referred to as unknown parameters, and Y is the 
response item. The value of the response variable is obtained using real-world or simulated experiments. Then, the approximation 
function between the responses can also be written in matrix form based on the model terms of the quadratic polynomial model as 
follows: 

Y =Xβ + ε (9)  

where X is a matrix of model terms, including linear terms, square terms, and interaction terms, β is a column vector containing the 
undetermined coefficients, and ε is the residual vector. 

3.3. Model diagnostics 

ANOVA was used to assess the suitability and significance of the proposed model. In this analysis, F- and P-values were used to 
assess the validity of the regression model and the effect of each factor combination on the model. Smaller p-values (or larger F-values) 
indicate a more significant model, and terms with p-values less than 0.05 are considered significant. In terms of model fitness, the 
coefficient of determination, including three crucial indicators R2, R2 adj, and R2 pre in a range of 0–1; the closer the value is to 1, the 
higher the fitness [17]. 

R2 = 1 −
∑n

i=1
(yi − ŷi)

2

/
∑n

i=1
(yi − y)2 (10)  

R2
adj = 1 −

(
∑n

i=1
(yi − ŷi)

2

/

(n − p)

)/(
∑n

i=1
(yi − y)2

/

(n − 1)

)

(11)  

R2
pre = 1 −

∑n

i=1

(
yi − ŷi

1 − hii

)2
/

∑n

i=1
(yi − y)2 (12)  

where n-p is the degrees of freedom of the model residuals, n-1 is the total corrected degrees of freedom, and hii is the ith diagonal 
element of H = X(XTX)− 1XT [18]. 

3.4. Multi-objective genetic algorithm (MOGA) 

Multi-objective optimization refers to solving problems with multiple design objectives. In many practical engineering problems, 
there may be conflicts among multiple design goals. When one design goal is optimal, the other design goals are not optimal. Therefore, 
the term “optimization” in multi-objective problems usually refers to finding a set of non-inferior solution points [19]. Designers only 
need to select the final solution from the Pareto set according to the engineering needs. 

Fig. 8. Schematic of radiator parameters.  
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MOGA can solve various multi-objective optimization problems and obtain optimal Pareto solutions. Researchers can select the 
required optimal solutions from the Pareto optimal solutions according to the project’s needs. Compared with other optimization 
methods, MOGA randomly searches the space based on the information obtained from the evolutionary process, which can reduce the 
probability of falling into the local optimal solution—the algorithm is easy to implement after long-term development [20]. The 
optimization flow chart is depicted in Fig. 7b. The design parameters of MOGA are as follows: population size of 200, generations of 
300, Crossover Fraction of 0.8, Pareto frontier population score of 0.3, StallGenLimit of 500, and function tolerance of 10− 10. 

The radiator area and detector temperature are the two objective functions in this study. The goal of optimization is to minimize the 
area of the radiator while minimizing the detector temperature. The four design parameters of the optimization process are the length 
of the radiator, the length of the width of the radiator, the rotation angle of the radiator around line L and the rotation angle of the 
radiator around the Y axis. In practical design studies, a range of design variables is determined according to the limited space in which 
the radiator is located. The optimization problem can be expressed by Equation (13). 

⎧
⎪⎪⎨

⎪⎪⎩

Find : XW ,XH , θ1, θ2
Minimize : TD(XW ,XH , θ1, θ2), S(XW ,XH)

Within ranges : 0.13m ≤ XW ≤ 0.2m, 0◦ ≤ θ1 ≤ 14◦

0.10m ≤ XH ≤ 0.165m, − 12◦ ≤ θ2 ≤ 6◦

(13) 

The relative error of the detector temperature before and after optimization can be calculated as follows: 

error=(TTA − TMOGA) / TTA (14) 

The weight of the radiator is calculated as follows: 

m= ρXW XHd (15)  

where ρ is the density of the radiator, the radiator is made of aluminum alloy, ρ is 2710 kg/m3, d is the thickness of the radiator, the 
thickness remains unchanged before and after optimization, and d is 0.003 m. 

4. Results and discussion 

4.1. Numerical experimental design 

In this study, a Box–Behnken design with four factors and three levels was conducted, and a range of design parameters was 
confirmed according to the spatial location of the radiators and engineering analysis. The height of the radiator cannot exceed the 
height of the imager because of the outer contour of the imager. The height of the radiator cannot exceed 0.165 m. According to the 
simulation calculation, the height of the radiator cannot be lower than 0.1 m, so this value range is 0.1–0.165 m. On the basis of the 
distribution of the imager and the rest of the load on the mounting substrate, the length of the radiator should not exceed 0.2 m. 
Similarly, on the basis of the simulation calculation, the excess length of the radiator should not be less than 0.13 m, so its value range 
is 0.13–0.2 m. Furthermore, considering the actual situation of on-orbit operation, a larger turning angle will cause the radiator to be 
exposed to the Sun. A smaller turning angle will reduce the viewing angle coefficient of the radiator toward the cool and dark space, 
reducing the cooling capacity of the radiator. Therefore, the value ranges of θ1 and θ2 are 0–14◦ and -12–6◦. Fig. 9 shows the thermal 
analysis model relevant to the experimental design. Table 2 shows the Box–Behnken experimental design and computational results. 

4.2. Analysis of variance (ANOVA) 

The residual normal probability plot of the detector temperature is depicted in Fig. 10. The detector temperature residual points are 

Fig. 9. TA model.  
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located on both sides of the straight line, indicating that the detector temperature residual points obey a normal distribution. Fig. 11 
compares the results from the experimental data with those predicted by RSM. The predicted value is consistent with the distribution 
law of the experimental value, which is roughly on the same straight line, which verifies the accuracy of the regression. 

ANOVA is used to test the significance of quadratic model terms. On the basis of Table 3, the F-value of the detector temperature 
model is 383.26, indicating that the equation model is highly significant. The difference between the corrected complex correlation 
coefficient and the predicted complex correlation coefficient is small (R2 = 0.9974, R2 adj = 0.9948, R2 pre = 0.9858), and both are 
close to 1, indicating that the equation model does not require further optimization. The linear terms XW, XH, and θ2 in this equation 
model are significant (P < 0.05), and the quadratic terms Xwθ1, XHθ2, X 2 W, and X 2 H are highly significant (P < 0.01), indicating that 
each factor affects the detector temperature in addition to its own, with distinct interactions between them. A coefficient of variation in 
1.97% < 15% indicates that all experimental data have no significant abnormality. The lack of fit is not significant (P > 0.05), 
indicating that the regression equation fits well, and the model is stable. 

The results of variance analysis demonstrate that the model can fit the experimental results well, so the regression model can be 
used to analyze the relationship between factors and obtain the optimal combination of factors. Then, the objective function will be 
optimized next using the MOGA to continue the optimization process. 

4.3. Regression model 

On the basis of the experimental results in Table 3, the regression response surface model with respect to the detector temperature is 
fitted based on Equation (16), which is the fitted quadratic polynomial model, and Table 4 presents the coefficients of each item. 

TD = a + bXW + cXH + dθ1 + eθ2 + fXW XH + gXW θ1 + hXW θ2 + iXHθ1 + jXHθ2 + kθ1θ2 + lXW
2 + mXH

2 + nθ1
2 + oθ2

2 (16) 

Equation (16) is optimized using the MOGA, and the Pareto fronts for obtaining detector temperature and radiator area are plotted 
in Fig. 12. Because the temperature index of the detector is − 20 to − 10 ◦C, each point in the dotted line in Fig. 12 is the optimal design 
value. The optimal point is typically chosen based on the radiator area and the temperature requirements of the detector. The thermal 
control index of the detector is − 20 to − 10 ◦C, so the optimal solution that satisfies the thermal control index can be selected within a 
range of the dotted line in the figure. Table 5 presents the optimal point within the dotted line in detail. 

The entire optimization process is intended to optimize the radiator under high-temperature conditions to verify that the radiator 
can dissipate heat and lower the detector temperature to a range of − 20 ◦C. Under low-temperature conditions, the radiator can also 
reduce the detector temperature to − 20 ◦C, or even lower than − 20 ◦C, so that the temperature can be controlled within the target 
range using active heating. On the basis of Table 5, when the detector temperature is around − 10 ◦C, the area of the radiator may be the 
smallest relative to the entire Pareto optimal solution set. Given various uncertain factors in the design, corresponding design errors 

Table 2 
Box–Behnken experimental design and computational results.  

experiment No. Variable Response 

XW (mm) XH (mm) θ1 (◦) θ2 (◦) TD (◦C) 

1 0.165 0.1650 0 − 3 − 18.167 
2 0.130 0.1325 7 − 12 − 9.689 
3 0.165 0.1650 7 − 12 − 16.19 
4 0.165 0.1325 0 6 − 16.545 
5 0.130 0.1325 0 − 3 − 10.779 
6 0.165 0.1325 0 − 12 − 12.468 
7 0.130 0.1000 7 − 3 − 5.123 
8 0.165 0.1000 14 − 3 − 8.955 
9 0.165 0.1000 7 − 12 − 8.407 
10 0.200 0.1650 7 − 3 − 20.87 
11 0.165 0.1650 7 6 − 20.744 
12 0.165 0.1325 7 − 3 − 14.822 
13 0.165 0.1325 7 − 3 − 14.822 
14 0.165 0.1325 7 − 3 − 14.822 
15 0.200 0.1325 7 6 − 19.18 
16 0.165 0.1325 7 − 3 − 14.822 
17 0.200 0.1325 0 − 3 − 17.921 
18 0.165 0.1000 0 − 3 − 9.765 
19 0.130 0.1325 7 6 − 12.874 
20 0.200 0.1000 7 − 3 − 11.95 
21 0.130 0.1325 14 − 3 − 11.992 
22 0.165 0.1325 14 6 − 16.633 
23 0.165 0.1000 7 6 − 9.696 
24 0.200 0.1325 7 − 12 − 15.698 
25 0.130 0.1650 7 − 3 − 15.123 
26 0.165 0.1325 14 − 12 − 13.111 
27 0.200 0.1325 14 − 3 − 17.116 
28 0.165 0.1650 14 − 3 − 18.229 
29 0.165 0.1325 7 − 3 − 15.133  
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may be caused. For example, the actual contact thermal resistance is inconsistent with the design value because of installation or 
processing. The tightness of the multilayer thermal insulation material is not easy to control. It is necessary to leave a sufficient design 
margin within the temperature specification range. Therefore, a detector temperature of approximately − 20 ◦C is selected as the 
optimal design value for the radiator. 

4.4. Multi-objective optimization 

Table 6 lists the optimization results and the relative errors of the simulation results for the three cases selected from Table 5. On the 
basis of Table 6, the detector temperature for Case 3 is closest to the cryogenic requirement (− 20 ◦C). Therefore, the area of the 
radiator is determined to be 0.027 m2, the width of the radiator is XW = 165.58 mm, the height XH = 160.29 mm, and the inclination 
angle θ1 = 7.28◦, the inclination angle θ2 = 5.87◦. 

Operation of the detector at low temperatures requires increasing the compensated heating power consumption of the detector and 
controlling the detector temperature above − 20 ◦C. Simultaneously, to verify the heating ability to compensate for the heating power 

Fig. 10. Normal distribution plot of residuals.  

Fig. 11. Distribution of predicted and experimental values.  
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consumption, the detector temperature must be increased to − 10 ◦C. Table 7 compares the design parameters obtained based on 
experience and the optimized parameters. After optimization, the area required to reduce the temperature to − 20 ◦C under high- 
temperature conditions is reduced by 18.18%, and the weight is reduced by 48.78 g. Under the low-temperature condition, the 
heating power consumption required to control the detector temperature to − 10 ◦C is only 0.81% higher than before optimization. 

5. Conclusion 

The purpose of this study is to optimize the design of the area and space of the radiant cooler, to increase the cooling capacity of the 
radiant cooler, and then control the detector temperature within a range of − 20 to − 10 ◦C. Numerical relationships between design 

Table 3 
ANOVA results of detector-temperature response surface-regression model.  

Source Sum of squares DOF Mean square F-value P-value 

Model 417.58 14 29.83 383.26 <0.0001 
XW 115.04 1 115.04 1478.19 <0.0001 
XH 256.01 1 256.01 3289.57 <0.0001 
θ1 0.0127 1 0.0127 0.1637 0.6919 
θ2 33.70 1 33.70 432.99 <0.0001 
XWXH 0.2916 1 0.2916 3.75 0.0734 
XWθ1 1.02 1 1.02 13.08 0.0028 
XWθ2 0.0221 1 0.0221 0.2834 0.6029 
XHθ1 0.1901 1 0.1901 2.44 0.1404 
XHθ2 2.67 1 2.67 34.24 <0.0001 
θ1θ2 0.0770 1 0.0770 0.9895 0.3368 
X 2 W 1.34 1 1.34 17.16 0.0010 
X 2 H 7.72 1 7.72 99.16 <0.0001 
θ1

2 0.0071 1 0.0071 0.0909 0.7675 
θ2

2 0.0511 1 0.0511 0.6567 0.4313 
Residual 1.02 14 0.0726 – – 
Lack of Fit 1.01 10 0.1012 5.23 0.0624 
Total 420.7 28 – – –  

Table 4 
Coefficients of quadratic polynomial terms.  

Coefficient Value Coefficient Value 

a 54.133569270576 i − 0.95824175824176 
b − 257.27544740974 j − 2.7905982905983 
c − 456.6092533108 k 0.002202380952381 
d − 0.22027922553637 l 370.42176870749 
e 0.21361132817799 m 1032.6785009862 
f 237.36263736266 n 0.00067380952380937 
g 2.0591836734694 o 0.0010958847736625 
h − 0.23571428571428    

Fig. 12. Pareto optimization frontier for MOGA.  
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parameters and response variables were investigated using an RSM based on the design of experiments and numerical experiments. 
ANOVA was used to determine the accuracy of the detector temperature regression model, and the regression coefficient was greater 
than 0.9, indicating that the fitted regression model had high accuracy. The genetic algorithm is used to optimize the regression model. 
The optimization result is expressed in the form of a Pareto front. The optimal design point of the radiator is selected based on the low 
weight requirements of the load and the temperature requirements of the detector. The optimal size is width XW = 165.58 mm, height 

Table 5 
Optimal points for multi-objective optimization.  

XW (m) XH (m) θ1 (◦) θ2 (◦) S (m2) TD (◦C) 

0.131487 0.117359 10.26515 5.68273 0.015431 − 10.2165 
0.131051 0.118192 12.14575 5.687517 0.015489 − 10.4091 
0.131218 0.119593 11.76255 5.6742 0.015693 − 10.7025 
0.135038 0.119703 10.13475 5.617266 0.016164 − 11.0802 
0.131887 0.12345 10.83462 5.654252 0.016282 − 11.5132 
0.131354 0.125801 9.051457 5.493463 0.016524 − 11.8099 
0.131918 0.126339 11.42733 5.611025 0.016666 − 12.0948 
0.131406 0.127014 10.6169 5.393031 0.01669 − 12.1026 
0.134648 0.126279 12.53906 5.751009 0.017003 − 12.4315 
0.133289 0.133966 9.768367 5.873613 0.017856 − 13.5977 
0.132485 0.136847 11.32434 5.761183 0.01813 − 14.0659 
0.132941 0.138533 10.80115 5.686702 0.018417 − 14.3566 
0.131845 0.140907 11.24307 5.564189 0.018578 − 14.6316 
0.132182 0.142274 11.46637 5.595258 0.018806 − 14.9025 
0.13229 0.142692 12.05513 5.798812 0.018877 − 15.0486 
0.131623 0.144577 12.37804 5.721148 0.01903 − 15.2802 
0.133224 0.145938 10.21986 5.608716 0.019442 − 15.5029 
0.131487 0.148609 10.26515 5.68273 0.01954 − 15.7301 
0.135541 0.145868 11.37088 5.765487 0.019771 − 15.8237 
0.132087 0.149737 11.64979 5.570378 0.019778 − 16.0212 
0.132226 0.150837 11.03653 5.629989 0.019944 − 16.163 
0.13377 0.150407 12.23599 5.7248 0.02012 − 16.3514 
0.132245 0.153495 11.74755 5.801248 0.020299 − 16.6131 
0.131652 0.155548 12.29418 5.615114 0.020478 − 16.8265 
0.133273 0.157637 10.45047 5.425405 0.021009 − 17.0855 
0.13448 0.156416 10.95791 5.707532 0.021035 − 17.149 
0.135985 0.157765 11.1311 5.754534 0.021454 − 17.4894 
0.138275 0.160267 9.801732 5.782926 0.022161 − 17.94 
0.137147 0.163138 9.795562 5.97172 0.022374 − 18.2057 
0.139098 0.162235 11.73108 5.800101 0.022567 − 18.3725 
0.140556 0.163288 10.57439 5.699535 0.022951 − 18.5349 
0.145678 0.161392 10.73385 5.712715 0.023511 − 18.8034 
0.145959 0.162887 11.25945 5.844858 0.023775 − 19.055 
0.160266 0.156135 2.701376 5.819544 0.025023 − 19.3065 
0.157106 0.160058 7.368135 5.666771 0.025146 − 19.5388 
0.155584 0.16206 8.90513 5.827677 0.025214 − 19.7104 
0.16558 0.16027 7.27615 5.86992 0.02654 − 20.339  

Table 6 
Optimization results and TA calculation results.   

XW (m) XH (m) θ1 (◦) θ2 (◦) TA (◦C) MOGA (◦C) Error 

Case1 0.15711 0.16006 7.37 5.67 − 18.59 − 19.54 5.11% 
Case2 0.15558 0.16206 8.91 5.83 − 18.87 − 19.71 4.45% 
Case3 0.16558 0.16029 7.28 5.87 − 19.72 − 20.34 3.14%  

Table 7 
Comparison of optimized design and experiential design results.    

Experiential design Optimal design Error 

Design parameter XW(m) 0.2 0.16558 – 
XH(m) 0.165 0.16029 – 
θ1 (◦) 0 7.28 – 
θ2 (◦) 0 5.87 – 

Result TD (◦C) − 20.81 − 19.72 – 
S (m2) 0.033 0.027 18.18% 
W (g) 268.29 219.51 48.78 
P (W) 2.45 2.47 0.82%  
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XH = 160.29 mm, inclination angle θ1 = 7.28◦, and inclination angle θ2 = 5.87◦. 
Compared with before optimization, the area of the radiator after optimization is reduced by 18.18%, the weight is reduced by 

48.78 g, and the active heating power consumption is only increased by 0.82%. The optimized radiator can reduce the detector 
temperature to − 20 ◦C under high-temperature conditions and heat the detector to − 10 ◦C using compensation heating under low- 
temperature conditions. This finding confirms that the optimal design of the radiator combined with the response surface and ge-
netic algorithm can control the detector temperature in a range of − 20 to − 10 ◦C, satisfying the thermal control index. The optimal 
design method of the radiator proposed in this paper provides a critical reference for the design of the radiator in a complex space 
environment. In the Pareto optimal solution set, designers can choose the appropriate optimal value according to the actual design 
requirements. 
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