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AlScN/n-GaN Ferroelectric Memristors With
Controllable On/Off Ratios and Reversible
Bipolar Resistive Switching Characteristics
Mingrui Liu, Shunpeng Lu, Yuping Jia, Hang Zang, Ke Jiang, Xiaojuan Sun, and Dabing Li

Abstract— AlScN-based memristors show high poten-
tial of non-volatile storage and neuromorphic computing.
Here, we report an AlScN/n-GaN heterostructure memris-
tor with a large ON/OFF ratio over 105 attributed to the
coexistence of heterointerface energy band modulation and
trap-assisted conduction mechanisms. Unlike typical fer-
roelectric memristors, the device presents obvious repro-
ducible bipolar resistive switching characteristics without
polarization flipping due to the extra trap-assisted conduc-
tive path, which effectively reduces energy consumption.
Remarkably, multi-level ON/OFF ratios and reversible bipo-
lar resistive switching characteristics can be achieved by
regulating the magnitude and direction of ferroelectric
polarization, indicating that different operating modes can
be achieved on a single device, which shows promise for
improving device integration density and information secu-
rity. These findings help elucidate the resistive switching
mechanism and the effect of ferroelectric polarization on
device properties, which pave the way for applications of
power-efficient CMOS-compatible nitride memristors.

Index Terms— AlScN/n-GaN, ferroelectric controllable,
memristors.

I. INTRODUCTION

FERROELECTRIC memristors are one of the most
promising candidates for neuromorphic computing, which

can potentially overcome the speed and power consump-
tion bottlenecks imposed by conventional von Neumann
systems [1], [2]. Recently, wurtzite-structured AlScN has
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attracted wide attention due to its combination of the excel-
lent ferroelectric properties and advantages of wide-bandgap
nitride materials. AlScN bears high remnant polarizations
(Pr, of 80-150 µC/cm), a low synthesizing temperature
(< 400 ◦C), and a high Curie temperature (Tc, up to 1100 ◦C)
[3], [4], [5], [6]. The Pr is more than 2–6 times that of HfO2 or
perovskite ferroelectrics [7], which results in a stronger barrier
regulation ability and a larger ON/OFF ratio than other ferro-
electric memristors [8], [9], [10], [11]. The low synthesizing
temperature and high Tc make AlScN attractive for applica-
tions in back-end-of-line CMOS-compatible memristors and
ensure its stability in extreme environments. Furthermore, the
integration process of AlScN memristors onto well-established
nitride optoelectronic and microelectronic devices [12], [13],
[14] is straightforward, which is essential to realize the inte-
gration of multifunctional nitride devices.

However, AlScN-based memristors are still in their infancy.
The resistive switching is mainly attributed to the strong
barrier modulation caused by polarization flipping [15], [16],
[17], which is not power-efficient due to its large coercive
fields (Ec, of 2-8 MV/cm) [6]. In addition, the tunable fer-
roelectric depolarization field (ED P ) can efficiently modulate
the transport of electron and nitrogen vacancies [18], [19],
[20], [21], which may affect memristor properties and should
be further explored.

In this letter, we introduced a suitable defect density in
AlScN by controlling the sputtering temperature and fabricated
an AlScN/n-GaN heterostructure memristor. Interestingly, the
device exhibits reproducible bipolar resistive switching charac-
teristics without polarization flipping. The resistive switching
mechanism and the effect of ferroelectric polarization on
memristor properties were systematically studied both exper-
imentally and theoretically.

II. EXPERIMENTAL SECTION

Al0.75Sc0.25N films were prepared on n-GaN/sapphire tem-
plates by RF-reactive magnetron sputtering from a metal alloy
target in pure N2 with a chamber pressure of 0.7 Pa. The defect
density can be controlled by the deposition temperature, and
the samples grown at 400◦C have a suitable defect density
and good repeatability. The thickness of the AlScN film
was 170 nm, and the bottom Si-doped n-GaN contact layer
was 2 µm with a carrier density higher than 1019 cm−3, which
can be used as the bottom electrode (BE). Au/Ti (30/70 nm)
top electrodes (TE) with diameters of 100 µm were deposited
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Fig. 1. (a) XRD patterns and (0002) rocking curves for the AlScN
film. (b) Polarization/displacement current density variations with electric
fields were collected by Radiant Precision Premier II ferroelectric tester
at 1 kHz. (c) Optical transmission spectra and dependence of (αE)2 on
Eg of the AlScN film.

by electron beam evaporation. Inset Fig. 2(a) is the schematic
diagram of the device.

III. RESULTS AND DISCUSSIONS

Fig. 1(a) shows the X-ray diffraction (XRD) data of a
wurtzite-structure AlScN film. Inset is the rocking curve of the
(0002) peak with a 1.73◦full width at half maximum (FWHM),
and the defect density was calculated as 8.4 × 1010 cm−2. The
ferroelectricity of the AlScN film is confirmed in Fig. 1(b), the
Ec is 5.8 MV/cm, and the Pr is 110 µC/cm2. The bandgap (Eg)
of the AlScN film is 5.3 eV, as shown in Fig. 1(c).

First, we applied a positive write voltage (100 V, 10 ms)
which is higher than the coercive voltage (Vc) to the TE
to make the ferroelectric polarization of AlScN downward
towards n-GaN (Pdown). In Fig. 2(a), the Au/Ti/AlScN/n-GaN
device shows counterclockwise bipolar resistance switching
behaviour. As the voltage increases from 0 V to “+V”, the
programming current increases gradually and switches from a
high-resistance state (HRS, or OFF state) to a low-resistance
state (LRS, or ON state), then switches back to HRS when
applying a “-V”. Furthermore, multi-level programming cur-
rents emerge with an increasing voltage range from 10 to 40 V,
which is essential for high-density data storage and neuromor-
phic computing [22]. Note that the applied voltage is more
than 65% [the “write” voltage is 20 V, and the Vc measured
by the quasi-DC sweep is 58 V (not shown)] lower than the
Vc, indicating the device exhibits bipolar resistive switching
characteristics without polarization flipping, which is essential
to reduce energy consumption. Fig. 2(b) shows the program-
ming current of HRS and LRS at 5 V extracted from Fig. 2(a).
The programming current increases with the applied voltage
increase, especially for LRS, which results in an order of
magnitude increase in the ON/OFF ratio and reaches 5.3 ×

103 at 40 V. Inset Fig. 2(c) shows the current-voltage (I-V)
curves from 10 manually performed 40 V DC cycles, which
indicate that the device is stable and repeatable. As shown in
Fig. 2(c), the retention properties were 103 s measured at a
read voltage of 5 V after a write voltage of 40 V.

Furthermore, the large Eg and suitable permittivity of the
AlScN film lead to better insulation properties [23], hence,
the device exhibits a satisfactorily low programming current
of less than 2 × 10−7 A (the current flow through the
device during “set” operation [21]) without additional access
transistors or selectors, which will help suppress the sneak
current in the crossbar array, simplify the integration steps, and
reduce device power consumption [21], [22], [23], [24], [25].
A comparison of the AlScN/n-GaN memristor with others is
shown in Fig. 2(d) , [11], [15], [17], [25], [26], [27], [28], [29],
[30], we used the programming current times thickness divided
by area and converted it to resistivity in order to eliminate
the effects of device thickness and area. The difference in

Fig. 2. (a) Bipolar resistive switching characteristics under a DC voltage
sweep on the device; inset is the schematic of the device structure.
(b) The programming currents of HRS and LRS and ON/OFF ratio
versus the applied voltages. (c) Retention properties of the low and high
current for 103 s, by the readout at 5 V, Inset: 10 cycles of I-V curves
performed at 40 V. (d) The comparison for programming resistivity.

resistivities among other AlScN memristors is caused by the
different composition of Sc, which leads to a different Eg [23].

To study why the resistance can be switched without
polarization flipping, we analyzed the I−V curve according to
transport mechanisms. In Fig. 3(a), when the applied voltage
increases from 0 to 5 V, the current density (JF) can be fitted
by the thermionic emission mechanism (Equation 1), which
means that Schottky barriers dominate the transport [27], [31]:

JF = A∗T2exp
[
−q(φB −

√
q E/4πε)

KBT

]
(1)

where A∗ is the effective Richardson constant, T is the
absolute temperature (300 K), KB is the Boltzmann constant,
φB is the Schottky barrier height, ε is the permittivity, and q
is the electron charge. When the applied voltage is further
increased until the device reaches a LRS, the I−V curve
can be well-fitted by the Trap-assisted tunneling (TAT) model
(Equation 2) [31]:

JF= Aexp
(

−8π
√

2qm∗

3hE
φ

3/2
T

)
(2)

where A is a constant and φT is the energy of the elec-
tron traps with respect to the conduction band edge. These
results indicate that more than one mechanism leads to the
resistance switching. Note that the defects densities of the
sputter deposited AlScN film are two orders of magnitude
higher than those grown by MBE [32], [33], [34], [35], these
defects cause trap states in the bandgap, as shown in Fig. 3(b).
Hence, in addition to the barrier modulation by ferroelectric
polarization, the effect of the ED P on electron hopping among
traps should also be considered.

Fig. 3(c) shows the band offset diagram of the device.
As illustrated in Fig. 3(d), in the case of Pdown , the band
of AlScN is tilted towards the BE. The positive polarization
charges at the AlScN/n-GaN interface result in a downward
bending of the n-GaN band profile and form an electron
accumulation region. When “-V” (< Vc) is applied to the TE,
the external electric field (Eappl) is in the same direction as the
ED P of AlScN, the positively charged nitrogen-vacancy (V+

N)

traps [18] tend to distribute near the TE, and the trap assisted
conduction path is ruptured. Electron transport can only over-
come the high barrier φ1, showing a HRS. In Fig. 3(e), when
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Fig. 3. (a) Fitting of experimental I-V data to the thermionic emis-
sion mechanism (left) and TAT model (right). (b) Left: High-resolution
transmission electron microscope images for the AlScN film, inset is the
fast Fourier transform (FFT); Right: Inverse FFT and the dislocations
are marked. (c) The band offset diagram of the device. Schematic
band structures of the HRS (d) and LRS (e) in the case of Pdown.
(f) Schematic band structures modulated by the magnitude of ferroelec-
tric polarization in AlScN at LRS. It is assumed that the trap levels are
at mid-gap.

Fig. 4. ON (a) and OFF (b) switching using a 50 µs voltage pulse. (c)I-V
curves after a short write pulse.

applying a “+V” on the TE, the direction of the Eappl is
opposite to the ED P , which is beneficial for the V+

N traps to
move towards the BE and form the conductive path. On the one
hand, electrons hop from highly occupied traps to empty traps,
which obey TAT [31]. On the other hand, the electron barrier
φ2is much lower than the barrier φ1. Therefore, the device
switches from HRS to LRS and exhibits rectification charac-
teristics where the current at “+V” is greater than that at “-V”.
Furthermore, comparing Fig. 3(f) with (e), the magnitude of
ferroelectric polarization in AlScN increases with the increase
of the “+V”, the downward bending degree of the n-GaN
band profile becomes more prominent, and more electrons
are attracted to the AlScN/n-GaN interface. Correspondingly,
the Fermi level gradually moves upward [red dotted lines in
Fig. 3(f)], and electrons are more likely to fill the defect traps,
which benefits for the formation of conductive paths and elec-
trons hopping. Therefore, multi-level programming current can
be established by gradually increasing the magnitude of ferro-
electric polarization and resulting in a tunable ON/OFF ratio.

Fig. 4 (a) and (b) shows the ON/OFF switching times under
a short write pulse. The device was set to a HRS after the
voltage sweeping in the Fig. 2(a) (process 1 to 4). Then, a
“+40 V” pulse with a width of 50 µs was applied to the
TE. The large current change from 10−12 A to 7.6 × 10−7 A
with a FWHM of 52.6 µs can be observed in Fig. 4 (a). Later,
when we performed the 0→“+ 10 V” sweeping voltage again,
the current remained in a LRS [Fig. 4(c) process 5], which
suggested that the 50 µs positive write voltage was sufficient
to turn on the device. Correspondingly, the current could be
successfully set to HRS with a switching time of 50 µs by
applying a “−40 V” pulse, as shown in Fig. 4 (b) and process
6 in Fig. 4 (c). In fact, according to the previous report,
the movement of nitrogen vacancy has ultra-fast speed and
achieved a switching time of 85 ps in the AlN memristor [18],

Fig. 5. (a) Bipolar resistive switching characteristics for Pup (black) and
Pdown (red). Schematic band structures of the LRS (b) and HRS (c) in
the case of Pup. (d) Typical I-V characteristics for Pup and Pdown.

meaning that the device in this work may have the potential to
achieve a shorter switching time. Unfortunately, we could not
measure a pulse width of less than 50 µs due to the resolution
limits of the PDA FS380 Pro semiconductor analyzer. But
we believe that the AlScN/nGaN memristors will have higher
speed and lower energy if we further optimize the device
structure, such by reducing the thickness and device area.

Furthermore, the effect of ferroelectric polarization direction
on resistance switching is also investigated. We applied a
negative voltage (−100 V, 10 ms) to the TE to make the
ferroelectric polarization of AlScN upward towards TE (Pup).
Interestingly, the bipolar resistive switching characteristics
were reversed as shown in Fig. 5 (a). In the case of Pup,
the band of AlScN is tilted towards the TE, the negative
polarization charges at the AlScN/n-GaN interface will repel
electrons, leading to an upward bending of the n-GaN band
profile as well as a depletion region, as shown in Fig. 5(b)
and (c). When applying a “-V” (< Vc) on the TE, the ED P
of AlScN is weakened by the Eappl , and V+

N traps gradually
move towards the BE to form the conductive path, showing
an LRS. On the contrary, applying a “+V” leads to a rupture
of the conduction path, the device switches from the LRS
to HRS and exhibits rectification characteristics where the
current at “+V” is lower than that at “−V”, as shown by the
black date line in Fig. 5(a). However, compared to Figs. 3(d)
and (e), the ON/OFF ratio for Pdown is one order of magnitude
larger than that of Pup due to the different barrier heights
(φ3 > φ2, φ4 < φ1). To further compare the ON/OFF ratio
caused by the polarization flipping [15], we extracted the
I-V curves of Pup and Pdown from Fig. 5(a). In Fig. 5(d),
the ON/OFF ratio read at 5.7 V is more than 105, which is
three orders of magnitude larger than that reported by Ding
Wang et al. [15]. Such a large ON/OFF ratio is the result of
the coexistence of semiconductor-ferroelectric heterointerface
energy band modulation and TAT mechanisms.

IV. CONCLUSION

In summary, we fabricated an Au/Ti/AlScN/n-GaN het-
erostructure memristor with a large ON/OFF ratio over 105,
due to the coexistence of TAT and semiconductor-ferroelectric
heterointerface energy band modulation machinisms. Without
polarization flipping, the device presents bipolar resistive
switching characteristics with the applied voltage being more
than 65% lower than the Vc. Furthermore, the controllable
ON/OFF ratio and reversible bipolar resistive switching char-
acteristics indicate that resistance switching can be regulated
by both the magnitude and direction of ferroelectric polar-
ization. These results facilitate a deeper understanding of the
resistive switching mechanism and the role of ferroelectric
polarization in AlScN memristors. However, it has to be admit-
ted that the V+

Ndefects sacrifice the retention characteristic to
a certain degree, which suggests that the performance of the
device has further room for improvement.
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