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Abstract

Ensuring the correct use of cell lines is

crucial to obtaining reliable experimental

results and avoiding unnecessary waste

of resources. Raman spectroscopy has

been confirmed to be able to identify cell

lines, but the collection time is usually

10–30 s. In this study, we acquired Raman spectra of five cell lines with

integration times of 0.1 and 8 s, respectively, and the average accuracy of using

long–short memory neural network to identify the spectra of 0.1 s was 95%,

and the average accuracy of identifying the spectra of 8 s was 99.8%. At the same

time, we performed data enhancement of 0.1 s spectral data by real-valued

non-volume preserving method, and the recognition average accuracy of

long–short memory neural networks recognition of the enhanced spectral data

was improved to 96.2%. With this method, we shorten the acquisition time of

Raman spectra to 1/80 of the original one, which greatly improves the efficiency

of cell identification.
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1 | INTRODUCTION

Cell lines are utilized frequently in life science and clini-
cal research as a common material in investigations like
cytokine activity tests and the screening of anti-tumor
drugs [1, 2]. Cell line abuse brought on by contaminated
cell lines can directly affect the precision and dependabil-
ity of scientific research and lead to time and resource
waste. The National Institutes of Health (NIH) and other
organizations have recently requested that researchers
identify cells before performing studies [3]. The currently
prevalent methods for identifying cell lines, such as short
tandem repeat (STR) analysis, often require complex
operations such as staining or culturing of cells [4]. Given

the successful applications of Raman spectroscopy in
various fields, such as microbial identification, species
identification, food identification, microplastic identifica-
tion, drug analysis, and tumor diagnosis [5–12], we
utilized Raman spectroscopy and a self-built SL-Raman
model to accurately distinguish between normal and
gastric cancer cell lines in our previous study [13].

In our previous study, we set the acquisition condi-
tion for Raman spectra of animal cells to 8 s, and the
acquisition time of most Raman spectra of animal cells is
about 10–30 s. However, this acquisition time is consider-
ably longer than the 1–5 s acquisition time reported in
other studies of microbial Raman spectra. For cell or
tissue samples, it usually takes hours to obtain spectral
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signals over a large area or to obtain high-resolution
Raman spectroscopic imaging, which is fatal for the
application of high-throughput Raman spectroscopy. To
address this issue, we aim to improve the efficiency of
spectral acquisition and shorten the identification time
of cell lines using the real-valued non-volume preserving
(RealNVP) algorithm for spectral data enhancement and
long-short memory neural networks (LSTM). Specifically,
we plan to utilize these techniques to achieve an acquisi-
tion time of 0.1 s for identifying Raman spectra of cell
lines. By leveraging these approaches, we hope to signifi-
cantly reduce the acquisition time of Raman spectra in
cell line studies and enhance the efficiency of spectral
acquisition without compromising the average accuracy
of cell line identification.

The mainstream generative models commonly used
are variational self-encoder (VAE), generative adversarial
network (GAN), and flow-based generative models. VAE
stores potential attributes as probability distributions, but
its method of recovering data distribution and calculating
loss function can result in a vague generated output [14].
GAN is a deep learning-based generative model that can
generate new content, but it only distinguishes between
“real” and “fake” images, which can lead to generated
images without actual objects but with similar-looking
styles [15, 16]. In contrast, the flow-based generative
model is constructed by a sequence of reversible transfor-
mations and learns the data distribution explicitly. There-
fore, the loss function is only negative log-likelihood. In
this study, we employ the upgraded stream-based genera-
tive model, RealNVP, to generate Raman spectral data
with an integration time of 0.1 s.

Machine learning and deep learning methods are com-
monly utilized in the study of Raman spectral data identi-
fication. However, traditional machine learning methods
such as K-Nearest Neighbor (KNN) and linear discrimi-
nant analysis (LDA) can reduce the predictive power of
the models when the sample source, spectral acquisition
conditions, and spectral instruments change [11]. Convo-
lutional neural networks (CNN) such as Resnet and visual
geometry group (VGG) are adept at extracting features
from data but are better suited for processing image data.
Additionally, when there are many spectral categories to
be classified, increasing the depth of the CNN network
can improve classification average accuracy, but this
requires more computation and time [15, 17, 18]. Recur-
rent neural networks (RNN) were developed to consider
the correlation of data before and after processing sequen-
tial data. The primary method is to add the data preceding
(and/or following) the data as a weight to the original
inference. Compared to CNN, RNN is more suitable for
processing one-dimensional Raman spectral data [19].
However, RNN has the issue of gradient explosion or long-

term dependence. To address these issues, we utilize the
LSTM approach. LSTM adds a forgetting mechanism to
RNN, making it possible to selectively retain or forget cer-
tain data from the previous period. It also avoids the prob-
lem of gradient explosion by using an additive method
instead of the multiplicative iteration used in RNN [14].

To enhance the efficiency of cell line identification and
shorten the time of Raman spectrum acquisition, we
employed RealNVP for data enhancement of Raman spectra
with an integration time of 0.1 s and LSTM for Raman spec-
trum identification of cell lines with low signal-to-noise
ratio. We initially attempted to identify spectral data with
low signal-to-noise ratios using KNN and LDA for the 0.1
and 8 s Raman spectra, respectively, but found it to be chal-
lenging. We subsequently utilized LSTM to identify the 0.1
and 8 s Raman spectral data and achieved high recognition
average accuracy for both. Furthermore, the average accu-
racy of LSTM recognizing the 0.1 s Raman spectra was
improved after data augmentation. By combining data aug-
mentation and LSTM, we reduced the acquisition time of
Raman spectra for cell line identification to 1/80 of the origi-
nal time. This approach significantly improves the efficiency
of spectral acquisition without compromising the average
accuracy of cell line identification and has promising appli-
cations in the field of life science and clinical research.

2 | MATERIALS AND METHODS

2.1 | Sample preparation

In this study, we utilized one normal cell line (GES-1) and
four gastric cancer cell lines (AGS, HGC-27, MKN-45, and
MKN-74). The cells were preserved in a �80�C freezer and
defrosted in a 37�C water bath before sample preparation.
AGS cells were cultured in DMEM/F12 medium supple-
mented with 10% fetal bovine serum and 1% penicillin–
streptomycin, while the other cell lines were cultured in
RPMI-1640 medium with 10% fetal bovine serum and 1%
penicillin–streptomycin. All cell lines were cultured in a
5% CO2 humidified incubator at 37�C.

After 48 h of culturing in a cell culture flask, the cells
were removed with 0.25% trypsin–EDTA and washed
three times with phosphate-buffered saline. The collected
suspended cells were then fixed in sterilized deionized
water with 4% paraformaldehyde, diluted to 10 000 per
milliliter using deionized water, immobilized on a slide,
and air-dried for Raman spectra measurements. The
Raman detection sample for each cell line was approxi-
mately 7.5 μL (2.5 μL/drop �3). We used a glass slide
coated with a 25 nm thick aluminum film in the experi-
ment. All reagents used in this process were purchased
from Gibco Company, USA.
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2.2 | Raman measurements

In this study, we utilized a Raman spectroscopy system
from Hooke Instruments, Changchun, China (R300
(objective: Olympus, 100�, NA = 0.8), with a laser wave-
length of 532 nm) to collect Raman spectra of six gastric
cancer cell lines. Due to the difference between animal
cells and the laser spot size, the Raman spectra collected
at a single location were not representative of the bio-
chemical composition information of the entire cells.
Therefore, we randomly collected four to five spectra at
different locations of each cancer cell to ensure the
representativeness of the biochemical composition infor-
mation. The Raman spectra acquisition conditions were
set at 600 grating, a laser power of 9 mW, and integration
times of 0.1 and 8 s. To avoid irreversible damage to the
cells caused by the integration time of 8 s, we first
acquired the spectra of 0.1 s, followed by the spectra of
8 s at the same position. Hence, the material information
corresponding to the two batches of Raman spectra with
different integration times was the same.

Finally, we collected a total of 1000 (500 for 0.1 s and
500 for 8 s) Raman spectra of the normal cell line GES-1,
1010 Raman spectra of gastric cancer cell line AGS, 1002
Raman spectra of gastric cancer cell line HGC-27, 1060
Raman spectra of gastric cancer cell line MKN-45, and
1008 Raman spectra of gastric cancer cell line MKN-74.

2.3 | Data preprocessing

To address the minor disparities in the x-axis across the
various spectra, we utilized a three-fold spline interpolation
technique to process the data. The preprocessing of Raman
spectra obtained under distinct integration time conditions
involved the removal of cosmic rays, baseline correction,
and normalization. Adaptive iterative re-weighted penal-
ized least squares (airPLS) algorithm was employed for
baseline correction, and min-max normalization was used
for normalization [20, 21]. The preprocessed spectral data
ranged from 400 to 3820 cm�1, and the number of spectral
data features was 1326. The process of spectral preproces-
sing was implemented using the Python programming
language.

3 | RESULTS AND DISCUSSION

3.1 | KNN and LDA based identification
of gastric cancer cell lines

We have acquired a total of 5080 Raman spectra (2540
for 0.1 s and 2540 for 8 s) of one normal gastric epithelial

cell line and four gastric cancer cell lines, as presented in
Table 1. Figure 1 displays the mean spectra of Raman
spectra obtained at different integration times, while
Figure 1B represents the signal-to-noise box plots of these
spectra. It is evident that the noise of the Raman spectral
signal is slightly higher for 0.1 s, and the signal-to-noise
ratio ranges from 0 to 40 for the 0.1 s data and 0 to 400 for
the 8 s data. The Raman spectra of the cells obtained at an
integration time of 8 s are of superior quality.

We employed two traditional machine learning tech-
niques, KNN and LDA, to classify the two datasets.
Figure 2A,B illustrates the confusion matrices of KNN for
classifying 0.1 and 8 s gastric cancer cell lines, respec-
tively, where the number of spectra in the test set is
100 per class. KNN achieved an average accuracy of 59%
for identifying 0.1 s Raman spectral data and 94.8% for
identifying 8 s Raman spectral data. Figure 2C,D presents
the confusion matrix of LDA for classifying 0.1 and 8 s
gastric cancer cell lines, respectively. The average accu-
racy of LDA for identifying 0.1 s Raman spectral data
was 88.6%, and for 8 s Raman spectral data, it was 99%.
KNN faced difficulty in recognizing spectral data with a
poor signal-to-noise ratio. To improve the utilization of
0.1 s data for recognizing 8 s data, we may need to
explore alternative methods.

3.2 | RealNVP-based Raman spectral
data generation

To be able to better utilize the poor-quality data of 0.1 s,
we intend to first perform data enhancement of Raman
spectra using the Flow data generation algorithm
(Figure 3A), and then identify the spectral data using
LSTM (Figure 3B).

RealNVP is an advanced version of the NICE
model, which was one of the pioneering Flow
models, proposed by Dinh [22]. RealNVP generalizes
the coupled layers and successfully incorporates con-
volutional layers in the coupled model, enabling
improved handling of image problems. Additionally, it
proposes the use of multiscale layers, which can reduce
the computational burden and provide a powerful reg-
ularization effect, thereby enhancing the quality of
generated samples.

After collecting the 0.1 s Raman spectra of cell lines,
we preprocessed the data by randomly selecting 100 spec-
tra of each normalized spectral data type as the test set.
The remaining Raman spectra were used as the training
set for the RealNVP data generation network. The
RealNVP network consisted of 8 hidden layers with
256 neurons each, and the network was trained for 1000
epochs using a batch size of 64. The amount of generated
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data was set to 1600, and the number of spectral features
was 1326.

Figure 4 illustrates a comparison between the gener-
ated Raman spectra and the mean spectrum of the origi-
nal Raman spectra. The red curve represents the average
spectrum of the acquired data, while the black curve rep-
resents the average spectrum of the algorithm-generated
spectral data. It can be observed from the two average
spectra that the RealNVP-generated Raman spectral data
exhibit slightly more divergence and a slightly weaker
signal-to-noise ratio than the acquired real data.

Figure 5A,B displays 2D and 3D plots of PCA down-
scaling of Raman spectral data (acquired real spectrum
and algorithm-generated spectrum) of cell line GES-1 (real
spectrum n = 400, generated spectrum n = 1600), respec-
tively. We can see that the distribution ranges of the two
sets of data are essentially the same. Figure 5C shows the
confusion matrix of the two sets of data identified by
KNN. This matrix classifies the two sets of data as one
class, indicating that the data generated using RealNVP is
not significantly different from the original data.

3.3 | LSTM-based identification of
gastric cancer cell lines

LSTM is an improved version of RNN that addresses the
issue of long-term dependencies in RNNs. LSTM incorpo-
rates a forgetting mechanism into RNN, allowing it to
selectively retain or forget certain data from the previous
time step. Additionally, it uses addition instead of the
multiplicative iteration used in RNN to avoid the prob-
lem of gradient explosion [23]. The core idea of LSTM
is that the previous memory (data) is not output in
its entirety. Instead, when selecting to output the pre-
vious data, it adds its own judgment based on three

FIGURE 1 Mean Raman spectra and spectral S/N box plots of cell lines. (A) Mean Raman spectra of five cell lines acquired at

integration times of 0.1 and 8 s. (B) Raman spectra S/N box plots of five cell lines acquired at integration times of 0.1 and 8 s.

TABLE 1 Number of Raman spectra of cell lines collected

under different integration time conditions.

Cell line
name

Number of
spectra (0.1 s)

Number of
spectra (8 s)

GES-1 500 500

AGS 505 505

HGC-27 501 501

MKN-45 530 530

MKN-74 504 504

Total 2540 2540
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FIGURE 2 Identification results of

Raman spectra of gastric cancer cell

lines with 0.1 and 8 s identified by KNN

and LDA, respectively. (A) Confusion

matrix of Raman spectra of gastric

cancer cell lines with 0.1 s identified by

KNN. (B) Confusion matrix of KNN

recognition of 8 s Raman spectra of

gastric cancer cell lines. (C) Confusion

matrix of LDA recognition 0.1 s Raman

spectra of gastric cancer cell lines.

(D) Confusion matrix of LDA

recognition of 8 s Raman spectra of

gastric cancer cell lines.

FIGURE 3 Structure of the algorithm based on RealNVP and LSTM. (A) Structure of the data generation model based on RealNVP.

(B) Structure of the cell line Raman spectra identification model based on LSTM.
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questions [1]: Should the old content be forgotten based
on the new content? [2] How much of the new content
needs to be remembered? [3] How much of the
remembered content should be taken out to output? By
considering these questions, LSTM can effectively cap-
ture long-term dependencies in sequential data and has
achieved remarkable success in various applications such
as natural language processing and speech recognition.

In this study, we utilized a three-layer structured
LSTM to identify gastric cancer cell lines. The hidden
layer of the LSTM network consisted of 100 nodes, and a
five-dimensional output was produced through a fully
connected layer using the ReLU activation function. The
loss values were calculated using the cross-entropy loss
function. Use the cross entropy loss function to calculate
the loss value. ADAM optimizer was used to train the
network, using the following parameters: the learning
rate at 0.0001; exponential decay rates at β1 = 0.5 and
β2 = 0.999.

Figure 6A,B displays the confusion matrix and ROC
curves for identifying Raman spectra with an integration
time of 8 s using the LSTM network. The training set data
contained n = 2040 samples, while the test set data con-
tained n = 500 samples. The recognition average accu-
racy of LSTM for the 8 s data was calculated to be 99.6%.
Figure 6C,D shows the confusion matrix and ROC curves
for identifying Raman spectra with an integration time
of 0.1 s using the LSTM network. The training set data
contained n = 2040 samples, while the test set data

FIGURE 4 Comparison of the real Raman spectra and the Raman spectral data generated by the RealNVP algorithm. The

red curve is the real average Raman spectrogram acquired by the spectrometer. The black curve is the average Raman

spectrogram generated by the RealNVP algorithm. The gray area is the standard deviation of the spectra generated by the

RealNVP algorithm.

FIGURE 5 Distribution of spectral data and KNN recognition

results for PCA downscaling of two data sets of cell line GES-1.

(A) Distribution of real spectra (n = 400) versus algorithm-

generated spectra (n = 1600) under two-dimensional PCA.

(B) Distribution of real spectra versus algorithm-generated spectra

under three-dimensional PCA. (C) KNN recognition of confusion

matrix for two data sets.
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contained n = 500 samples. The recognition average
accuracy of LSTM for the 0.1 s data was calculated to be
95%. Finally, Figure 6E,F displays the confusion matrix
and ROC curves of Raman spectra with an integration
time of 0.1 s after data enhancement using LSTM. The
training set data contained n = 10 040 samples, while the
test set data contained n = 500 samples. The recognition
average accuracy of LSTM for the data enhanced with
0.1 s was calculated to be 96.2%.

The results of the study indicate that LSTM outper-
forms KNN, LDA, and other machine learning methods
for recognition of Raman spectral data. The recognition
average accuracy of LSTM for Raman spectra with an
integration time of 0.1 s is 95%, and the recognition aver-
age accuracy after data enhancement using RealNVP is
improved to 96.2%. Therefore, RealNVP is effective for
enhancing Raman spectral data and improving the classi-
fication average accuracy of the classification model.

FIGURE 6 Results of LSTM recognition of Raman spectra of gastric cancer cell lines. (A) Confusion matrix of LSTM recognition of

Raman spectra of cell lines with 8 s. (B) ROC curve of LSTM recognition of Raman spectra of cell lines with 8 s. (C) Confusion matrix of

LSTM recognition of Raman spectra of cell lines with 0.1 s. (D) ROC curve of LSTM recognition of Raman spectra of cell lines with 0.1 s.

(E) Confusion matrix of LSTM for the identification of Raman spectra of cell lines after data enhancement. (F) ROC curves of LSTM for the

identification of Raman spectra of cell lines after data enhancement.
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Although the final recognition average accuracy of the
model using the enhanced data is lower than that of the 8 s
data, a recognition average accuracy of 96.2% can meet the
needs of most application scenarios. Overall, these findings
suggest that the combination of RealNVP and LSTM can be
a promising approach for enhancing and analyzing Raman
spectral data, especially in fast identification scenarios
where Raman acquisition times are critical.

4 | CONCLUSIONS

In this study, Raman spectra of one normal gastric epithe-
lial cell line and four gastric cancer cell lines were
acquired, including 2540 Raman spectra with an integra-
tion time of 0.1 s and 2540 Raman spectra with an integra-
tion time of 8 s. The spectral quality of the 0.1 s data was
found to be much worse in terms of signal-to-noise ratio.

The results of the study showed that the average accu-
racy of identifying the Raman spectral data of 0.1 s using
KNN was only 59%, while the average accuracy of identi-
fying the Raman spectral data of 8 s was 94.8%. The aver-
age accuracy of identifying the Raman spectral data of
0.1 s using LDA was 88.6%, while the average accuracy
of identifying the Raman spectral data of 8 s was 99%.
These results suggest that the identification and charac-
terization of gastric cancer cell lines can be successfully
achieved using machine learning methods with high
quality Raman spectral data, but such identification is
not possible with spectral data that has an integration
time of 0.1 s due to its poor quality.

We employed deep learning LSTM to achieve recogni-
tion of Raman spectral data with an integration time of
0.1 s, yielding an impressive recognition average accuracy
of 95%. Additionally, for Raman spectral data with an
integration time of 8 s, LSTM achieved a recognition
average accuracy of 99.8%. Furthermore, we utilized
RealNVP to augment the amount of spectral data in the
training set with a factor of four, resulting in an increase
in the recognition average accuracy of LSTM to 96.2%.

Hence, RealNVP can effectively generate Raman spec-
tral data, reduce the amount of data collection, and
enhance the recognition average accuracy of the classifica-
tion model. Although the recognition average accuracy of
RealNVP combined with LSTM is lower than that of
LSTM for 8 s spectral data, the recognition average accu-
racy of 96.2% is sufficient for most application scenarios.
Moreover, this method significantly reduces the time
required for Raman spectrum acquisition, down to 1/80th
of the original time.

In our future research, we aim to standardize the
processing of spectral samples, as well as the acquisition
conditions and pre-processing parameters of Raman

spectroscopy, for the purpose of cell identification. Addi-
tionally, we intend to establish a comprehensive Raman
spectroscopy database for human cell lines, with the ulti-
mate goal of effectively applying Raman spectroscopy
technology to early cell identification.
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