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Abstract: The horizontal cavity surface emitting laser (HCSEL) boasts excellent properties, including
high power, high beam quality, and ease of packaging and integration. It fundamentally resolves
the problem of the large divergence angle in traditional edge-emitting semiconductor lasers, mak-
ing it a feasible scheme for realizing high-power, small-divergence-angle, and high-beam-quality
semiconductor lasers. Here, we introduce the technical scheme and review the development status
of HCSELs. Firstly, we thoroughly analyze the structure, working principles, and performance
characteristics of HCSELs according to different structures, such as the structural characteristics and
key technologies. Additionally, we describe their optical properties. Finally, we analyze and discuss
potential development prospects and challenges for HCSELs.

Keywords: surface emission laser; SE-DFB laser; photonic crystal; second order diffraction; high
power semiconductor laser

1. Introduction

Semiconductor lasers have garnered significant interest among researchers due to
their advantages, such as small size, long lifespan, high conversion efficiency, fast modula-
tion rate, wide wavelength range, and ease of integration [1,2]. Over the course of their
development, semiconductor lasers have found extensive use in various fields, includ-
ing industrial production, military defense, and medical treatment [3–5]. Furthermore,
they have emerged as crucial light sources in optical communication, optical pump lasers,
and optical information storage [6]. With the progression of society and the expansion of
semiconductor laser application in laser radar, laser processing, and high-speed laser com-
munication, individuals require laser light sources with lower divergence angles, higher
power, and higher slope efficiency [7,8]. Nonetheless, conventional semiconductor lasers
have drawbacks such as susceptibility to cavity surface damage [9], significant divergence,
and inadequate monochromaticity [10,11]. These conventional semiconductor lasers re-
quire complex systems for beam shaping, collimation, and coupling to attain high beam
quality, but their high cost renders them inadequate for affordable use.

Commercial vertical-cavity surface-emitting semiconductor lasers (VCSELs) have
superior performance with excellent beam shape, no cavity surface catastrophe damage,
and easy two-dimensional integration [12]. However, the thin active region of VCSEL
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results in a lower single-way gain [13], which limits its output power severely. Even with
lateral multimode, the competition from higher-order modes can degrade beam quality
substantially [14,15].

Horizontal-cavity surface-emitting semiconductor lasers (HCSELs) provide the advan-
tages of high power and high coupling efficiency [16]. The structure of HCSEL introduces a
diffraction or reflection structure that improves the beam quality so that the light is emitted
in a direction perpendicular to the epitaxial surface of the crystal. The realization of the
longitudinal mode characteristics of the surface-emitting laser is limited by the diffraction
structure, which in turn has the advantages of small temperature drift and narrow spec-
trum [17]. Moreover, the power-bearing capacity of crystal epitaxial surface is higher than
a cleaved or etched cavity surface, making it possible to withstand higher single-mode
output power [18]. HCSEL also offers benefits such as high surface damage threshold,
simple manufacturing, and easier 2D array integration [19,20]. Therefore, this paper briefly
describes the working principle, device structure, research progress, and development
trends of three different HCSELs.

2. Structure and Principle of the HCSEL

There are three main approaches for achieving high-power horizontal cavity surface-
emitting: mirror emission, grating diffraction, and utilizing the periodic dielectric constants
of photonic crystals to accomplish surface light emission.

2.1. Grating Diffraction

A distributed feedback (DFB) grating structure is introduced to diffract the laser light
from the horizontal to the vertical direction, achieving surface lasing [21]. Figure 1 shows
the basic structure diagram of a second-order grating surface emission DFB (SE-DFB) laser
as an example. The laser device has a second-order grating etched on its P-limited layer.
Laser light is emitted from surfaces by diffraction through a waveguide layer with a second-
order grating. Additionally, Bragg grating is utilized for DFB of the light wave, resulting in
a single longitudinal mode.
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Figure 1. Scheme of the SE-DFB laser structure with the grating placed on the P surface (P
surface-emission).

The laser’s surface emission and stable light oscillation in the resonant cavity are
achieved by satisfying the diffraction and resonance conditions, respectively.

The diffraction condition of the grating can be expressed as:

sinϕ = sin θ+
mλ

neff∗Λ
, (1)

These parameters include θ as the incident angle, ϕ as the scattering angle, m as the
diffraction order, which is indicated by an integer, λ as the wavelength of the incident light,
neff as the effective refractive index, and Λ as the grating period.

The resonance condition for the grating can be expressed as follows:

Λ =
m ∗ λB

2∗neff
, (2)
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The grating period is denoted by Λ, the Bragg wavelength by λB, the effective refractive
index of the grating by neff, and the diffraction order by m (when m = 2, the grating
operates at its resonance condition). By combining Formulas (1) and (2), we obtain a
second-order grating that diffracts the first-order light perpendicular to the incident light
and the second-order light in the opposite direction. Figure 2 depicts a schematic diagram
of these diffraction characteristics.
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Figure 2. Diffraction characteristics of a second-order grating.

The first-order diffracted light is responsible for output coupling and influences
the surface emission coupling coefficient. The second-order diffracted light is utilized
for optical feedback and mode selection, which in turn impacts the feedback coupling
coefficient. The laser’s light output characteristics are influenced by the combination of
these two coupling coefficients. Laser stability is achieved through an increase in the surface
emission coupling coefficient, resulting in a larger threshold gain difference between the
main mode and the lowest order mode, eliminating the degeneracy of modes, and selecting
a single longitudinal mode to stabilize the laser wavelength.

2.2. Photonic Crystal Diffraction Structure

Photonic crystal structures have applications in both horizontal cavity lasers and
vertical cavity lasers [22]. Among them, the HCSELs utilize the photonic crystal diffrac-
tion of the photonic crystal band-edge mode and rely on the band-edge resonance effect
of the two-dimensional photonic crystals to produce stimulated emission amplification
and surface emission [23]. These types of lasers are commonly referred to as photonic
crystal surface-emitting lasers (PCSEL). The photonic crystal (PC) can be viewed as a
two-dimensional grating structure, similar to the lasing principle of SE-DFB lasers.

Figure 3 depicts the energy band diagram of a two-dimensional square lattice air hole
photonic crystal slab. The gray region in the diagram represents the light cone. At high
symmetry points x, M, and Г, the slopes are almost zero. This can be observed from the
group velocity formula:

vg =
dω
dk

, (3)

The analysis demonstrates that a low group velocity results in longer interaction time
and more effective coupling between the radiation mode and the material system, leading
to enhanced optical processes, such as stimulated emission, nonlinear optical processes,
and light absorption. Consequently, these modes are optically localized and form standing
wave oscillations at the high symmetry point of the photonic crystal energy band. A mode
inside the light cone may be a leaky mode from the photonic crystal resonator, with surface-
emitting lasing properties. Conversely, the modes under the light cone are confined within
the photonic crystal resonator [24].
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© The American Association for the Advancement of Science. Copyright 2001 Science.

As shown in Figure 4, the laser resonator is composed of an array of photonic crystals
arranged in a two-dimensional square lattice. The spacing of the photonic crystals in the
array matches the lasing wavelength in both the x and y directions, satisfying the second-
order Bragg diffraction condition, which diffracts light propagating in the +y direction to
the -y direction. Furthermore, since it meets the first-order Bragg diffraction condition, light
waves are diffracted into the ±x direction as well. Ultimately, the light waves propagating
in these four directions interact, leading to the formation of a two-dimensional standing
wave and a large-area photonic crystal cavity. If the plane satisfies the first-order Bragg
diffraction condition, the emission will diffract vertically to create surface emissions. This
phenomenon can be used to produce a photonic crystal surface-emitting laser with a large
area of light output and a small divergence angle [26].
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Figure 4. Scheme of light diffraction in photonic crystal in-plane. The red arrows represent light in
the +y direction, while the green arrows represent corresponding, first-order Bragg diffracted light.
Similarly, yellow arrows represent second-order Bragg diffracted light.

2.3. Mirror-Type

Steering mirror-type horizontal cavity surface-emitting semiconductor lasers [27,28]
incorporate a steering mirror onto the photonic chip and etch a grating structure above the
active layer. The DFB structure is used to realize the mode selection and optical feedback
of the laser, and the optical path is changed by integrating a 45◦ reflector horizontally to
realize surface emission (Figure 5). The mode selection of the structure to the light wave
is similar to that of the surface emitting DFB (SE-DFB) laser, which is determined by the
resonance condition of the second order grating. At the same time, the surface emission
of the laser relies on a 45◦ reflector, which means that the smoothness and quality of the
reflector determine the output power. Thus, the etching process of this structure on the
steering mirror is critical.

3. Research Progress of HCSEL

The evolution of HCSELs dates back to the late 19th and early 20th centuries and aims to
overcome the high divergence angles present in edge-emitting lasers. Diffractive structures or
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etched mirrors on the chip are commonly employed to facilitate surface emission in HCSELs.
Table 1 presents the research advancements of HCSELs over the last decade.
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Figure 5. Scheme of mirror surface-emitting laser. The yellow arrows indicate the internal light path,
where the light in the parallel direction is redirected towards surface emission by passing through
the 45◦ reflector.

Table 1. Recent achievements in HCSELs.

Year Institution Band Output Power Slope
Efficiency

Divergence
Angle Structure Ref

2005 University of Wisconsin 980 nm

20 units form an
array: 1.6 W

(continuous wave
(C.W.))

Linear
second-order

grating
[29]

2006 BinOptics Corporation 1.3 µm 30 mW ~0.3 W/A 15◦ × 36◦ mirror-type
HCSEL [28]

2012 Alfalight Company 97x nm 68 W (C.W.) 0.8 W/A <8◦
curved

second-order
grating

[30]

2014 Kyoto University 941 nm 1.5 W (C.W.) 0.66 W/A <3◦ Photonic
crystals [31]

2016 Taiwan National Chiao
Tung University 1.3 µm 2 mW 1◦ × 8~9◦

Linear
second-order

grating
[32]

2016

Institute of
Semiconductors of the
Chinese Academy of

Sciences

7 µm 2.29 W 500 mW/A 2.9◦ × 0.36◦
Linear

second-order
grating

[33]

2017

Institute of
Semiconductors of the
Chinese Academy of

Sciences

4.97 µm 248 mW 0.14◦ × 16◦
Linear

second-order
grating

[34]

2018 Lehigh University 3.4 THz 170 mW 993 mW/A 5◦ × 25◦
Linear

high-order
grating

[35]

2018 Kyoto University 940 nm 7 W (C.W.) 0.48 W/A <0.4◦ Double lattice [36]

2019
Changchun Institute of
Optics, Fine Mechanics

and Physics
1.3 µm 13.3 mW (C.W.) 40.9 mW/A

Quantum-dot
Photonic-
crystals

[37]

2019 Northwestern University 4.9 µm 6.7 W (peak power) mirror-type
HCSEL [38]

2021 Changchun University of
Science and Technology 976 nm 84 mW 2.6◦ × 6.1◦

Linear
second-order

grating
[39]

2021 Kyoto University 940 nm 29 W (C.W.) ~0.66 W/A <0.4◦ Double lattice [40]
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3.1. SE-DFB Laser
3.1.1. Linear Second-Order Grating

In 2005, the University of Wisconsin developed a surface-emitting laser with a second-
order grating structure that is free from aluminum [29]. The structure employs preferential
etching and secondary epitaxy techniques for the purpose of controlling the transverse
mode. The output light of this laser has a wavelength of 980 nm, and the grating structure
is partitioned into a 700 µm second-order DFB grating and a 600 µm distributed Bragg
reflector (DBR) structure on both sides. The structure presents a transverse effective
refractive index difference, with a 20-unit array resulting in continuous and pulsed output
powers of 1.6 W and 10 W, consecutively.

In 2007, Sushil Kumar et al. [41] from the Massachusetts Institute of Technology
reported a surface emission DFB terahertz (THz) quantum cascade single-mode laser,
and obtained robust single-mode operation and single-lobe beam mode in this structure.
They used a second-order DFB grating to achieve surface coupling out of the laser beam.
Additionally, they combined a metal–metal DFB structure with a resonant phonon THz
quantum cascade laser (QCL) active region. With this structure, not only can the low
waveguide loss advantage of the metal–metal waveguide be maintained but its output
power can also be increased and the beam quality improved. The frequency range of the
quantum cascade single-mode laser is 0.35 THz~2.9 THz. The continuous wave power of
the laser reaches 6 mW at 5 K. Additionally, the maximum pulsed operating temperature
can reach 149 K.

In 2014, the University of Wisconsin carried out the design of a grating-coupled surface-
emitting QCL that operates in the 4.6 µm band [42]. This laser has the remarkable capability
of suppressing the antisymmetric mode, which enables symmetric mode lasing at a low
threshold current and high slope efficiency. The device relies on the feedback from the light
wave mode and the second-order distribution to initiate the resonant coupling function
of the antisymmetric surface plasmon mode of the metal–semiconductor grating, thereby
suppressing the antisymmetric mode and enhancing the symmetric mode significantly.
The device features distributed Bragg reflector (DBR) gratings at both ends, which contain
the optical field and carrier distribution. As a result, the uncontrolled reflection of the
cleavage facet and cavity mirror degradation can be avoided when operating at high power.
Consequently, the device has the potential to generate a stable and coherent output of
light, with the output power capable of reaching a level of watts when in continuous wave
operation. Specifically, the 7.03 mm long grating-coupled surface-emitting QCL exhibits a
remarkably low threshold current of 0.45 A and an impressive slope efficiency of 3.4 W/A.

In 2016, researchers from Taiwan [32] presented the InAs/InGaAs QD SE-DFB laser
for the first time. They utilized indium–tin–oxide (ITO) as the p-type cladding layer. The
benefits of using ITO include the avoidance of the annealing effect of high-temperature
epitaxial growth on the quantum dots due to its lower growth temperature compared to the
deposited quantum dots. Furthermore, its transparency yields low-loss vertical light output
while still providing excellent ohmic contact. In addition, the relatively low refractive index
of ITO provides good light confinement. The study indicates that ITO can potentially
replace traditional semiconductor cladding, simplifying the semiconductor laser process
technology. This research developed a QD SE-DFB laser in the 1.3 µm band with a threshold
current density of 210 A/cm2, a characteristic temperature T0 of 94 K, and a temperature-
dependent wavelength shift of only 0.1 nm/K. The wavelength stability is six times greater
than conventional Fabry–Perot (FP) lasers, indicating good temperature properties.

In 2017, the Institute of Semiconductors at the Chinese Academy of Sciences [33] de-
veloped a surface-emitting QCL array with a coupled ridge-waveguide structure operating
at a wavelength of 7 µm. The array consists of 15 parallel elements for increased peak
power. The coupled ridge waveguide structure produces a narrow divergence angle of
2.9◦ in the ridge width direction and 0.36◦ in the cavity length direction, resulting in a
single-lobe far-field pattern. The use of a buried grating structure ensures stable single lon-
gitudinal mode emission and high extraction efficiency. At 25 ◦C, the surface-emitting DFB
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QCL array achieved a peak output power exceeding 2 W, while at a temperature of 15 ◦C,
and the maximum output power was 2.29 W and the slope efficiency was approximately
500 mW/A.

In 2017, the Institute of Semiconductors, Chinese Academy of Sciences [34] designed
a buried grating-coupled substrate emitting DFB QCL. This design uses a semiconductor
buried second-order grating structure to enable in-plane feedback and the vertical coupling
of semiconductor grating. This structure can eliminate the uncontrollable reflection of
the cleavage surface without the integrated DBR grating. A low-loss symmetrical mode
continuous laser is produced that can emit up to 248 mW of power at the surface while
operating continuously in the 4.97 µm band (operating temperature is 20 ◦C). Under the
action of injected current, a good single-mode characteristic is obtained, and the far-field
divergence angle is approximately 0.14◦ × 16◦.

In 2018, a research team from Changchun University of Science and Technology [43]
explored the utilization of an asymmetric waveguide structure to enhance the performance
of a second-order diffraction SE-DFB semiconductor laser. The study investigated a struc-
ture composed of varying thicknesses of the P and N waveguide layers, while simulating
the performance of the structure. Through simulation, the researchers found that the asym-
metric waveguide structure greatly influences the distribution of light by increasing the
confined light field and promoting photon interaction with the second-order grating. As a
result, this approach successfully reduced the threshold current of the improved horizontal
resonator surface emission SE-DFB semiconductor laser. The laser has an output power of
100 mW, a slope efficiency of 1.04 W/A, with a chip size of 500 µm × 1000 µm, and an exit
hole area of 80 µm × 4 µm.

In 2018,the Institute of Semiconductors, Chinese Academy of Sciences developed a
second-order grating surface-emitting THz QCL based on metal–metal waveguides [44].
With a maximum peak power of 12.2 mW in pulsed mode, the laser achieves a maximum
slope efficiency of 60.4 mW/A at 5 K and can operate at a maximum temperature of 105 K.
The emissions achieve a stable single-mode at approximately 89 µm in wavelength, with a
side-mode suppression ratio of about 25 dB under all operating conditions. Furthermore,
a single-lobe far-field radiation pattern with a small divergence angle of 4◦ in the cavity
length direction can be achieved by inserting a central phase shift in the device.

In 2020, the Institute of Solid-State Electronics of the Vienna University of Technol-
ogy [45] reported the development of an interband cascade laser (ICL). The laser has the
capacity to emit light from surfaces in continuous-wave mode at 38 ◦C. Its unique ring
cavity structure (Figure 6) with a downward mounting on the exterior surface, efficiently
extracts heat from the device. A second-order DFB grating is also employed for single-mode
emission at 3.8 µm wavelength in a vertical orientation. A ring with an 800 µm diameter
generates light output power exceeding 6 mW at 20 ◦C. The threshold current density
reaches 0.6 kA/cm2.
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In 2021, researchers at the Changchun University of Science and Technology conducted
research [39] on a new kind of second-order grating SE-DFB semiconductor laser. By
emitting from the p-surface, the laser achieved a narrow linewidth and reduced far-field
divergence angle, which was presented in Figure 7. Unlike the conventional n-substrate
emitting horizontal cavity SE-DFB semiconductor lasers, the p-surface emitting laser was
fabricated without secondary epitaxy and double-side alignment processes, making the
fabrication process more straightforward. The laser operated at a wavelength of 976.2 nm
and had an output power of 86mW. It boasted a 0.94 nm linewidth and 2.6◦ × 6.1◦ far-field
divergence angle, accompanied by a threshold current of 450 mA.
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In 2022, Tian kun et al. [46] of Changchun University of Science and Technology
found that neglecting the treatment of non-output radiated light leads to serious power
loss, resulting in issues like low differential quantum efficiency and mode instability
through simulation. Traditional metal electrodes at the non-output radiated light source
provide some reflectivity. However, the smoothness of electrodes affects the reflection and
scattering of light, demanding high levels of thinning accuracy on the wafer. The regular
wafer grinder cannot achieve the required thinning accuracy. Therefore, to address this
challenge, they proposed the fabrication of distributed Bragg reflector (DBR) multilayer
reflectors on the P-side second-order grating to enhance the directivity of the device
(Figure 8) and simulated the structure. Specifically, they etched the surface grating into
the P-side cladding layer and coated it with a thick Si3N4 film. A SiO2/Si3N4 multilayer
reflector was formed on the thick film to reflect the upward-diffracted light. This approach
offers several benefits, such as avoiding growth interruption and re-growth of the epitaxial
structure, simplifying the device manufacturing process, and reducing preparation costs.
In addition, the high-reflectivity mirrors based on dielectric materials offer flexibility in
adjusting the device structure because they do not depend on epitaxial materials. Moreover,
the radiation directionality of the surface of the structure is strong, which enhances the
device’s performance and causes the high directionality of the surface radiation to reach
over 98%.

3.1.2. Curved Second Order Grating

In 2010, the American Alfalight Company [47] developed a SE-DFB laser with a curved
second-order grating to enhance the output power significantly. The curved grating creates
an unstable resonator cavity design, enabling lateral mode control, resulting in higher
brightness when compared to edge-emitting lasers. This technology enables a single laser
diode to supplant many of the more complex solid-state lasers. The continuous output
power from a single transmitter was 73 W, with peak pulsed power exceeding 300 W.
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In 2012, the Alfalight Company [30] employed InP-based materials to produce curved
second-order gratings intended to enhance the output power of SE-DFB lasers. The grating
is engraved on the p-cladding layer, with a pumping area at its center, a non-pumping area
and an absorption area on its edges to suppress Fresnel reflection. The curved grating’s
design constitutes a structure akin to a “traditional unstable cavity.” This arrangement
allows the gain medium to provide energy to its maximum extent, resulting in a transverse
mode with improved beam quality. The device has dimensions of 2.0 × 0.075 mm, making
it a long-wavelength SE-DFB laser that can produce an operating output power higher than
1 W at room temperature (20 ◦C) with peak power conversion efficiency of 13%.

3.1.3. High-Order Grating SE-DFB Laser

In 2018, Lehigh University [35] developed a THz QCL laser with a metal waveguide
by replacing the second-order grating with a hybrid grating. The hybrid grating combines
second-order and fourth-order Bragg gratings to excite symmetric modes with higher
radiative efficiency. The second-order grating has a stronger DFB and helps establish
resonant optical modes that have a similar phase relationship to the grating. The fourth-
order grating enhances the outcoupling of the anti-symmetric mode and reduces the
outcoupling of the symmetric mode. Adjusting the design parameters results in a DFB
cavity with higher radiation efficiency compared to the excitation mode of the second-order
DFB cavity. The researchers detected a peak power output of 170 mW with a slope efficiency
of 993 mW/A for a 3.4 THz QCL operating at 62 K, using robust single-mode single-lobe
emission. This study shows that the hybrid grating scheme is easier to implement than
conventional DFB schemes and can increase the power output of surface-emitting DFB
lasers at any wavelength.

In 2019, Huazhong University of Science and Technology [48] proposed a high-order
surface grating Index-Coupled InGaAsP/InP SE-DFB laser at 1550 nm by combining edge-
emitting lasers with second-order gratings. The device consists of a high-order surface
grating etched on an edge-emitting first-order DFB laser to enable coupling of light from
the laser cavity to the surface. Simulation results reveal a surface emission power of 4.2 mW
at an injection current of 30mA, with the coupling efficiency of the fiber close to 50% and
SMSR reaching 48 dB at this current. Compared to a second-order SE-DFB, the coupling
efficiency of the six-order surface grating is only reduced by 5%, while the higher-order
grating can be more deeply etched to attain higher output power. Additionally, the device
inherits excellent performance and mature manufacturing processes from commercial edge-
emitting DFB lasers and offers a means of achieving high-power surface-emitting lasers.

3.1.4. Surface-Emitting DFB Lasers from New Semiconductor Materials

a. Perovskite SE-DFB laser
Perovskite DFB surface-emitting lasers have drawn increasing attention due to their

solution processability, tunable bandgap, single-mode operation, and low threshold. These
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low-threshold characteristics have the potential to enable high-power surface-emitting
lasers. However, fabricating high-quality DFB cavities on perovskite films has proven
challenging, and overcoming this obstacle will be crucial for the development of low-
threshold semiconductor lasers.

In 2018, the University of Texas at Dallas [49] reported the successful fabrication of SE-
DFB methylammonium lead iodide (MAPbI3) lasers on silicon substrates. The perovskite
film was patterned using thermal nanoimprint lithography (NIL) to achieve predefined
cavity geometries, size control, repeatability, and high-Q-factor cavities with large mode
gain overlap (Figure 9). This technique also improved the material’s emission characteristics.
The perovskite laser demonstrated continuous laser output at room temperature and an
ultra-low pump power density of 13 W/cm2. This research represents a significant step
forward for the development of electrically pumped lasers in thin-film and organic materials
and for the integration of perovskite lasers into photonic circuits.
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In 2022, a facile method for fabricating DFB cavities was proposed at North Carolina
State University [19]. The method involves adding polyvinylpyrrolidone to the perovskite
precursor solution, which allows for the production of a stable and highly processable pre-
cursor film after spin coating. Lastly, a simple nanoimprint was achieved on the perovskite
film using the preparation schematic presented in Figure 10. Furthermore, cavity design
was obtained by analyzing the optical mode of the system, and by adjusting the solution
concentration, the effective refractive index of the waveguide mode could be controlled.
As a result, a perovskite DFB laser with a low threshold of 20 µJ/cm2 was obtained. This
simplified fabrication process of a perovskite DFB laser cavity provides guidance for future
studies on perovskite DFB lasers in the field.

In 2017, Kyushu University in Japan [50] successfully developed a surface-emitting or-
ganic DFB laser with low threshold. The study discovered that the organic lasing materials
possess high photoluminescence quantum yield (PLQY) and optical gain with peak lasing
emission and no triplet absorption (TA) bands’ spectral overlap, which makes them perfect
for suppressing triplet losses. The research proves that, when excited with an 80 MHz
quasi-continuous wave and 30 ms long pulse light, the surface-emitting organic DFB laser
has no triplet absorption loss at the lasing wavelength, resulting in a low lasing threshold
by utilizing a hybrid-order DFB grating. Accordingly, this research takes a significant step
towards the development of genuine continuous wave organic laser technology, creating
possibilities for realizing high-power surface-emitting organic semiconductor lasers on a
large scale in the future.
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b. Organic Semiconductor SE-DFB laser
In 2019, the University of Alicante in Spain [51] proposed an all-solution of high-

performance to process organic DFB lasers. As shown in Figure 11, the solution involves a
water-treated photo-resist layer, with a surface-relief grating placed on top of the active layer.
The resonator design enables fine-tuning the device’s emission performance. Further, it
was discovered that controlling the residual resist thickness and grating depth could enable
the optimization of lasing threshold and efficiency simultaneously. The most exceptional
efficiency and lowest threshold of the laser can be achieved by eliminating the residual
layer, with the optimum depth of the grating found to be within the range of 100–130 nm.
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In 2020, the University of Alicante in Spain [52] reported the development of lasers
emitting within the spectral region ranging from 375 to 475 nm. The active material and
resonator, depicted in Figure 12, were fabricated using solution-processable polymer films
with a one-dimensional relief grating configuration. To create ten different active layers, the
authors dispersed various organic compounds in polystyrene, including carbon-bridged
oligo (p-styryl) derivatives and two fluorocarbon compounds. They successfully demon-
strated the feasibility of fabricating a resonant cavity through holographic lithography,
using a dichromate gelatin photo-resist on the active film.
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c. Quasicrystal SE-DFB laser
Quasicrystal DFB lasers do not rely on mirror cavities to amplify and extract radiation.

Upon implementation on the surface of a semiconductor laser, quasicrystal patterns can
facilitate the tuning of radiative feedback and the extraction of high radiative and quality
factor optical modes without defined symmetric or antisymmetric properties.

In 2020, Italian scholars [16] created a quasi-crystal THz QCL. The resonator incorpo-
rates a surface grating designed by Octonacci sequence (as shown in Figure 13) that greatly
enhances the performance of surface-emitting THz lasers. Optimizing the interaction be-
tween the grating-scattered wave vector and photon propagation through the adjustment
of the laser width and patterned slit size leads to efficient surface THz emission with a
double-lobe beam profile. The researchers achieved a maximum peak optical power of
240 mW (190 mW) in a laser capable of both multimode and single-frequency modes, with
a slope efficiency of 570 mW/A at 78 K and 700 mW/A at 20 K. The laser produced a high
power output of THz radiation.
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3.2. Photonic Crystal Diffraction Structure
3.2.1. Single Lattice Structure

In 1999, Meier and Imada proposed surface emitting lasers using photonic crystal
band edge modes [53,54]. Both research groups achieved band-edge surface emission based
on the modulation of the energy band edge and lattice symmetry by the photonic crystal’s
density of states. However, they have fundamental differences in their approach. Meier’s
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group utilized the band edge of the triangular-lattice photonic crystal but did not consider
the Γ-point of the photonic crystal band edge. Consequently, there was a lack of two-
dimensional coupling of light in the photonic crystal resonator, resulting in their device not
exhibiting coherent two-dimensional (2D) oscillations. In contrast, Imada’s team improved
the performance of their device by bonding the structure of the multi-quantum well active
layer with a photonic crystal structure wafer and using the Г-point of the energy band
edge in the triangular lattice photonic crystal. The light in the photonic crystal resonator
undergoes one-dimensional and two-dimensional coupling simultaneously, resulting in
true coherent oscillation. Additionally, the Г point characteristics were well-suited for
vertical surface emission. Furthermore, Imada and his team observed consistent lasing
at a wavelength of 1.3 µm across all tested areas, demonstrating successful realization of
coherent oscillation over a large photonic crystal area.

In 2014, the Noda’s team and Hamamatsu’s team [31] developed a surface-emitting
laser using a two-dimensional photonic crystal that was capable of generating high power
output at a watt-level and good single-mode quality while under room temperature and
continuous wave conditions. They utilized metal–organic chemical vapor deposition to
form a photonic crystal that was capable of extending the coherent oscillation region by
one thousand times (200 µm × 200 µm) through the two-dimensional band-edge resonance
effect to enhance beam quality. In comparison to VCSELs, the focal spot was reduced
by two orders of magnitude (M2 ≤ 1.1). The pore structure of the photonic crystal was
vertically asymmetrical, resembling a triangular pyramid. The photonic crystal structure
with a chip area of 200 µm × 200 µm was able to achieve a high-power continuous output
of 1.5 W at room temperature.

In 2019, researchers from the Changchun Institute of Optics, Fine Mechanics and
Physics [37] incorporated two-dimensional photonic crystals into their study and employed
InAs quantum dots as their active material, as depicted in Figure 14. Compared to a VCSEL,
this laser achieves surface emission through photonic crystal diffraction, circumventing the
growth cost of DBR. Additionally, the enhanced output power is a result of the photonic
crystal’s flat-band structure and an extra feedback mechanism. As a result of the study, a
surface-emitting laser operating at a continuous wave with a wavelength of 1.3 µm at room
temperature was developed. This device has an output of 13.3 mW of continuous power
and 150 mW of pulsed power. Moreover, the device is able to operate in pulsed mode even
at temperatures of up to 90 ◦C. This research offers a method to surpass the constraint of
limited and low-power 1.3 µm surface-emitting lasers and expands its array of uses for
higher-power consumption.
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3.2.2. Double-Lattice Structure

In 2018, the Noda team at Kyoto University in Japan [36] proposed a double-lattice
structure, as shown in Figure 15. The dual-lattice PCESL was designed to enhance the
vertical light output by minimizing resonances, except for the fundamental transverse
mode, through the optimization of both the air filling factor and lattice points distance.
The dual-lattice PCESL comprises cladding layers, sandwiching the PC and MQW layers,
with p-type and n-type conductivity. The successful fabrication of the dual-lattice PCESL
was performed using metal–organic vapor phase epitaxy (MOVPE) crystal growth and
high-precision collimated electron beam lithography, in conjunction with two-step dry
etching methods. The maximum output power of the dual-lattice PCESL was measured at
7 W with a continuous working current at 16 A, with a slope efficiency of approximately
0.48 W/A, while operating at a laser wavelength of 940 nm, which generated a divergence
angle of less than 0.4◦.
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© Springer Nature. Copyright 2018 Nature Materials.

In the year of 2018, a research team [55] successfully produced a photonic crystal
surface-emitting semiconductor laser with a diameter of 0.5 mm, a peak power of 10 W,
and a far-field angle of less than 0.3◦. By providing optical gain at the frequency of the
band-edge cavity mode created in the photonic crystal, the device achieves in-plane wide-
area coherent oscillation. By using appropriately designed PC air holes, the light was
effectively diffracted both vertically and horizontally. The backward-diffracted air holes
were designed to have an optical path difference of λ/2, which lead to in-plane destructive
interference. The higher-order modes’ proximity to the edges leads to a faster increase in
edge losses compared to the fundamental modes, thereby resulting in larger threshold gain
margins. To increase surface emission, the researchers introduced a difference in the height
of a pair of air holes, which created vertical asymmetry.

The following year, in 2019, the Noda team [56] published a theoretical study on
a double-lattice photonic crystal resonator, as depicted in Figure 16. The double-lattice
photonic crystal resonator operated on the principle of misaligning the two lattice point
groups by λ/4 in both the horizontal and vertical directions. The equivalent double-lattice
structure eliminates the direct 180◦ coupling between the fundamental Bloch waves while
maintaining the indirect 90◦ coupling. Three double-lattice structures were compared, and
their 180◦ diffraction coefficients κ1D were calculated through simulation. The intensity
values were I ~470 cm−1, II ~250 cm−1, and III ~100 cm−1 (Figure 17). The authors obtained
the double-lattice structure III with the strongest 180◦ coupling suppression ability.



Sensors 2023, 23, 5021 15 of 23

Sensors 2023, 23, x FOR PEER REVIEW 15 of 23 
 

 

effectively diffracted both vertically and horizontally. The backward-diffracted air holes 

were designed to have an optical path difference of λ/2, which lead to in-plane destructive 

interference. The higher-order modes’ proximity to the edges leads to a faster increase in 

edge losses compared to the fundamental modes, thereby resulting in larger threshold 

gain margins. To increase surface emission, the researchers introduced a difference in the 

height of a pair of air holes, which created vertical asymmetry. 

The following year, in 2019, the Noda team [56] published a theoretical study on a 

double-lattice photonic crystal resonator, as depicted in Figure 16. The double-lattice pho-

tonic crystal resonator operated on the principle of misaligning the two lattice point 

groups by λ/4 in both the horizontal and vertical directions. The equivalent double-lattice 

structure eliminates the direct 180° coupling between the fundamental Bloch waves while 

maintaining the indirect 90° coupling. Three double-lattice structures were compared, and 

their 180° diffraction coefficients κ1D were calculated through simulation. The intensity val-

ues were I ~470 cm−1, II ~250 cm−1, and III ~100 cm−1 (Figure 17). The authors obtained the 

double-lattice structure III with the strongest 180° coupling suppression ability. 

 

Figure 16. Schematic diagram of a double-lattice photonic crystal resonator, which consists of two 

lattice point groups. © Springer Nature. Copyright 2018 Nature Materials. 

 

Figure 17. Top and cross-sectional views of three types of double-lattice photonic crystals. © 

Springer Nature. Copyright 2018 Nature Materials. 

In 2020, the research team led by Noda [57] examined the thermal management sys-

tem of large-area photonic crystals and designed its corresponding structure. The cooling 

system utilizes water and comprises a 1 mm thick copper base plate with a 300 μm thick 

submount attached to its upper surface. Water flows over the bottom surface of the copper 

base plate, while a fin structure on the same surface increases the area available for heat 

exchange. In addition, the study analyzed the distribution of power consumption by pho-

tonic crystal surface-emitting lasers. Figure 18 illustrates the calculated power 

Figure 16. Schematic diagram of a double-lattice photonic crystal resonator, which consists of two
lattice point groups. © Springer Nature. Copyright 2018 Nature Materials.

Sensors 2023, 23, x FOR PEER REVIEW 15 of 23 
 

 

effectively diffracted both vertically and horizontally. The backward-diffracted air holes 

were designed to have an optical path difference of λ/2, which lead to in-plane destructive 

interference. The higher-order modes’ proximity to the edges leads to a faster increase in 

edge losses compared to the fundamental modes, thereby resulting in larger threshold 

gain margins. To increase surface emission, the researchers introduced a difference in the 

height of a pair of air holes, which created vertical asymmetry. 

The following year, in 2019, the Noda team [56] published a theoretical study on a 

double-lattice photonic crystal resonator, as depicted in Figure 16. The double-lattice pho-

tonic crystal resonator operated on the principle of misaligning the two lattice point 

groups by λ/4 in both the horizontal and vertical directions. The equivalent double-lattice 

structure eliminates the direct 180° coupling between the fundamental Bloch waves while 

maintaining the indirect 90° coupling. Three double-lattice structures were compared, and 

their 180° diffraction coefficients κ1D were calculated through simulation. The intensity val-

ues were I ~470 cm−1, II ~250 cm−1, and III ~100 cm−1 (Figure 17). The authors obtained the 

double-lattice structure III with the strongest 180° coupling suppression ability. 

 

Figure 16. Schematic diagram of a double-lattice photonic crystal resonator, which consists of two 

lattice point groups. © Springer Nature. Copyright 2018 Nature Materials. 

 

Figure 17. Top and cross-sectional views of three types of double-lattice photonic crystals. © 

Springer Nature. Copyright 2018 Nature Materials. 

In 2020, the research team led by Noda [57] examined the thermal management sys-

tem of large-area photonic crystals and designed its corresponding structure. The cooling 

system utilizes water and comprises a 1 mm thick copper base plate with a 300 μm thick 

submount attached to its upper surface. Water flows over the bottom surface of the copper 

base plate, while a fin structure on the same surface increases the area available for heat 

exchange. In addition, the study analyzed the distribution of power consumption by pho-

tonic crystal surface-emitting lasers. Figure 18 illustrates the calculated power 

Figure 17. Top and cross-sectional views of three types of double-lattice photonic crystals. © Springer
Nature. Copyright 2018 Nature Materials.

In 2020, the research team led by Noda [57] examined the thermal management
system of large-area photonic crystals and designed its corresponding structure. The
cooling system utilizes water and comprises a 1 mm thick copper base plate with a 300 µm
thick submount attached to its upper surface. Water flows over the bottom surface of the
copper base plate, while a fin structure on the same surface increases the area available
for heat exchange. In addition, the study analyzed the distribution of power consumption
by photonic crystal surface-emitting lasers. Figure 18 illustrates the calculated power
consumption ratios of PCSELs with an 800 µm diameter at various slope efficiencies. It is
apparent that the resonant cavity’s power consumption is relatively high when the slope
efficiency is low. Thus, optimizing the radiation constant, tuning the number of quantum
wells, and suppressing internal absorption loss can reduce the threshold current density of
PCSELs. This will potentially lower heat generation within the device and further increases
its maximum output power.

In 2021, the Noda research team at Kyoto University [40] expanded on previous efforts
and produced a two-dimensional photonic crystal surface-emitting semiconductor laser
with a continuous power output of 29 W at room temperature. The team improved the
laser’s performance by increasing its gain through enlarging and optimizing the photonic
crystal’s geometry. By adjusting the air-filling factor and the distance between two cells,
the researchers were able to isolate the fundamental transverse mode and suppress all
other resonances effectively. The fabricated laser has a working wavelength of 940 nm and
delivers a divergence angle of less than 0.4◦.
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3.2.3. Open-Dirac Cavities

In 2012, Bravo-Abad and colleagues [58] proposed using photonic Dirac cones to
create large-area single-mode photonic crystal structures. They reported on an all-dielectric
3D photonic material with Dirac-like dispersion in a quasi-2D system that significantly
enhances spontaneous emission coupling efficiency (β factor) across a large surface. This
solution addresses the issue of rapid β factor degradation with an increase in system size,
enabling photonic crystal large-area preparation.

In 2022, Kanté’s research group [59] proposed and demonstrated, through an experi-
ment, an open Dirac cavity with linear dispersion. The use of a truncated photonic crystal
arranged in a hexagonal pattern allowed the formation of an open Dirac cavity (Figure 19),
suspended entirely in the air, and connected to the primary membrane using six bridges at
the hexagon’s corners for mechanical stability. The cavity exhibits unique loss scaling in the
reciprocal space. As a result, single-mode lasing remained constant as the cavity size was
scaled, attributed to the special flat-envelope fundamental mode that locks all unit cells’
phasing within the cavity, thereby resulting in single-mode lasing. The researchers aptly
named the solution Berkeley surface-emitting lasers (BerkSELs).
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3.2.4. Topological Cavity Structure

In 2020, Professor Ma Remnin’s team from the Institute of Physics, Chinese Academy
of Sciences utilized a honeycomb photonic crystal structure embodied with a vortex
Dirac mass [60]. The researchers improved the widely used one-dimensional feedback
structures of industrial semiconductor lasers, namely phase-shifted DFB and VCSEL, to
two-dimensional versions similar to the simulation of the Jackiw–Rossi zero mode. The
topological cavity offers a single mid-gap mode with a continuous tunable mode diam-
eter that ranges from a few microns to millimeter scale. Theoretically predicted and
experimentally demonstrated, Dirac vortex cavities with tunable mode areas that span
several orders of magnitude offer arbitrary mode degeneracy, robust large free spectral
range, low-divergence vector beam output, and significantly high compatibility with
high-refractive-index substrates. Consequently, the topological cavity facilitates stable
single-mode operations of photonic crystal surface-emitting lasers (PCSELs).

In 2022, Yang Lechen et al. from the Institute of Physics, Chinese Academy of Sciences,
performed a study [61] that involved the utilization of a Dirac-vortex topological cavity
structure to create a topological cavity surface emitting laser (TCSEL), which achieved
peak power of 10 W at a wavelength of 1550 nm, less than 1◦ divergence angle and 60 dB
side mode suppression. TCSEL fabrication involves depositing a-Si on the MQW by
chemical vapor deposition, and subsequently patterned the a-Si layer using electron beam
lithography (EBL) and dry etching. Such procedures were clearly observed through optical
microscopy and scanning electron microscopy (SEM). The vortex structure of the TCSEL
can be seen in Figure 20.
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Figure 20. (a) Schematic diagram of topological cavity surface-emitting laser (TCSEL) structure; (b) opti-
cal microscope and SEM images of TCSELs. © Springer Nature. Copyright 2022 Nature Photonics.

3.3. Mirror-Type HCSEL

In 1989, Hamao, Sugimoto, and their colleagues [62] utilized 45-degree inclined re-
active ion beam etching technology to produce a surface-emitting GaAs-AlGaAs laser
featuring a 45-degree total reflection mirror, as depicted in Figure 21. The mirror angle
error had an accuracy of 1◦. Additionally, the power output ratio between surface-emitting
and edge-emitting lights was remarkably high at 77%.

In 1991, the American Research Center [63] demonstrated the first ever GaAs/AlGaAs
surface-emitting laser with a 45◦ internal micromirror. The device’s 45◦ and 90◦ mirrors
were fabricated using ion beam etching and reactive ion beam etching techniques, respec-
tively, to enhance their internal structure. The device utilizes internal micro-mirrors to
reflect the beam horizontally towards the substrate. The surface of the laser emits light,
and it was realized as shown in Figure 22. During quasi-continuous wave operation, the
threshold current density was found to be 440 A/cm2 and the output power was achieved
at more than 1 W.
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In 2006, BinOptics Corporation [28] developed a 1300 nm high-power vertically emit-
ting Fabry–Perot laser. The structure utilizes ridge waveguide technology and a chemically
assisted ion beam-etching process. Additionally, they fabricated a 30 mW vertically emit-
ting FP laser by fabricating a 45◦ dry-etched facet at one end of the laser cavity and a 90◦

etched facet at the other end. In addition, they integrated a laser and a monitor photodiode
(MPD) in the same material. This simplifies the packaging process and reduces packaging
and assembly costs. Additionally, the HCSEL with integrated MPD has passed more than
3000 h of reliability testing.

In 2013, the Central Research Laboratory of Hitachi Co., Ltd. in Tokyo, Japan, created
an integrated photonic device that combined a monolithic lens-integrated SE-DFB laser
array and p-i-n photodiode array [64]. The device fabrication process involved dry etching
and wet chemical etching to produce monolithic InP lenses with a parabolic shape that
facilitates the collimation of Gaussian beams. The lens-integrated surface-emitting DFB
laser produces a circular, narrow far-field spot measuring 3.9◦ × 3.5◦. With a coupling
efficiency of 3 dB between the laser and single-mode fiber, the resulting four-channel lens-
integrated DFB laser array operates as a 100 Gbps (25 Gbps per channel) optical transceiver
even at high temperatures of 85 ◦C.

In 2014, researchers at the Central Research Laboratory of Hitachi Co., Ltd., in Tokyo,
Japan, presented a lens-integrated surface-emitting laser (LISEL) incorporating an In-
GaAlAs DFB laser [65]. Using a silicon-on-insulator substrate, this new form of silicon
photonic light source incorporated a grating coupler. The LISEL in this light source com-
prised a 45◦ rearview mirror and an integrated lens with a curvature radius of about 110 µm
to produce a narrow far-field spot measuring 8.5◦ × 3.6◦. Through the prediction of the
alignment tolerance and spot size of the LISEL, researchers designed a suitable aperture size
of the grating coupler. This design indicates that the excessive loss of the structure due to a
misalignment of±5 µm amounted to only 1.5 dB. This study demonstrated the feasibility of
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LISEL implementation on a passively aligned silicon platform and the functionality of this
LISEL/grating coupler (GC) hybrid configuration light source in silicon photonic devices.

In 2015, Hitachi [66] achieved direct optical coupling between a lens-integrated surface-
emitting DFB laser (LISEL) array and a single-mode fiber (SMF) array by monolithically
integrating the InP lens and laser chip. The system achieved a small far-field angle of ~2◦

and an average maximum coupling efficiency of −8.4 dB on all four channels. Moreover,
the measured misalignment tolerance between the LISEL array and the SMF array allows
for a variance of ±5.5 µm, further lowering assembly costs and enabling the creation of
smaller and more affordable 100 Gb/s optical modules.

In 2016, Hitachi Ltd. [67] continued their innovative streak by developing a cost-
effective optical subassembly (OSA) that utilizes lens-integrated surface-emitting lasers
(LISELs) for high-speed optical interconnection. The LISEL µ platform comprises the LISEL
and its installation carrier, while the OSA on the silicon-photonics (SiP) platform consists of
an external modulator, a grating coupler (GC), and a 3-dB coupler. This structure features
low coupling losses, with the single-mode fiber having a loss of only 4.9 dB while the SiP
platform has a loss of 4 dB. Additionally, experiments demonstrate that the structure does
not require optical isolators while having the potential of non-hermetic packaging.

In 2019, Northwestern University [38] developed a reflective outcoupler that generates
reflective outcoupling in a semiconductor waveguide using mask shape transfer to form
the device’s mirrors. The system generates up to 6.7 W of single-mode peak power in
the 90 cm−1 (215 nm) spectral range, exceeding 6 W of power. Furthermore, the system
generates a high-quality output beam using a basic single-layer anti-reflection coating.

4. Summary and Prospects

Horizontal cavity surface-emitting lasers (HCSELs) are exemplary light sources for
future applications due to their high output power and beam quality. In this paper, we
provide an overview of the fundamental principles of three different HCSELs: second-order
grating SE-DFB lasers, photonic crystal diffraction HCSELs, and mirror-type HCSELs. We
also review the latest research progress on these three HCSELs. HCSELs have experienced
rapid development over the last decade. Second-order grating SE-DFB lasers are capable
of obtaining stable wavelengths and surface emissions with high beam quality, narrow
spectral lines, and other significant advantages. Curved second-order grating SE-DFB
lasers can reach a maximum continuous output power of 73 W. The development of high-
order gratings and new materials, such as perovskite and organic semiconductor materials,
is expected to further decrease manufacturing costs and threshold currents. Photonic
crystal diffraction structures provide lasers with high output power, beam quality, and
narrow divergence angles. The Noda team at Kyoto University proposed a large-area
dual-lattice photonic crystal laser that delivered a continuous output power of 29 W and a
divergence angle of less than 0.4◦, surpassing the previous limitations of surface-emitting
semiconductor lasers in high-power fields. Meanwhile, mirror-type HCSELs have simpler
working principles, but their manufacturing processes are more complicated, and they
have larger divergence angles, which have not been given as much attention. Nonetheless,
improving the low cost and high beam quality of HCSELs remains a significant challenge
for researchers. Especially for SE-DFB structures and photonic crystal diffraction structures,
key factors for promoting further development are the expansion of the chip area, the
improvement of surface coupling efficiency (such as buried second-order gratings), the
suppression of high-order modes, and the increase in output power to broaden the laser’s
applications in fields such as material processing, laser medicine, non-linear optics, and
optical communication. In the future, a high-power level cavity laser light source with high
beam quality and high slope efficiency is worth anticipating and will have vast potential in
various industries.
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