
Received 2 October 2023, accepted 8 November 2023, date of publication 13 November 2023,
date of current version 22 November 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3332513

A Time-Driven Dynamic Weapon Target
Assignment Method
CHANG LIU 1,2, JIANG LI 1, YE WANG 1,2, YANG YU1, LIHONG GUO 1, YUAN GAO 1,2,
YANG CHEN1, AND FENG ZHANG 3
1Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
2University of Chinese Academy of Sciences, Beijing 100049, China
3School of Aviation Operations and Services, Aviation University of Air Force, Changchun 130022, China

Corresponding author: Jiang Li (cclijiang@163.com)

This work was supported by the National Natural Science Foundation of China under Grant 61977059.

ABSTRACT The traditional dynamic weapon target assignment model is a combination of multiple static
weapon target assignment stages. The assignment of the next stage is carried out after the result of the
previous static weapon target assignment is settled. However, between two static weapon target assignment
stages, the threat ranking ofmultiple targets may changewith time, and the traditional dynamicweapon target
assignment model does not take this time issue into consideration. This paper proposes a ‘‘time sampling
dynamic weapon assignment model’’. This model divides the decision-making stage by setting the time
interval of data collection, and it can capture the real-time changes in the target threat degree andmake timely
decisions. With this model, this study designed a dynamic weapon target assignment method based on the
reinforcement learning algorithm. Additionally, according to this method, a comparative experiment with
different sampling time divisions was designed, and a better sampling time division method was obtained.
Finally, a comparative experiment between the reinforcement learning algorithm and the traditional heuristic
algorithmwas designed in this study. The simulation results show that, comparedwith the traditional heuristic
algorithm, the proposed assignment model and the reinforcement learning algorithm are better in terms of
decision-making timeliness and global considerations.

INDEX TERMS Dynamic weapon target assignment, simulation model, reinforcement learning, heuristic
algorithm, PPO algorithm.

I. INTRODUCTION
Weapon target assignment (WTA) is one of the most
important research issues for command and control (C2),
which mainly involves the study on how to effectively reduce
the damage caused by the attacker and how to realize the
effective assignment of defensive resources in the case of
limited defensive resources. The WTA problem belongs
to the NP-complete problem [1]. The main characteristic
of this problem is that with the increase in weapons
and targets, the dimension of the solution space increases
exponentially, and the solution can only be obtained through
an approximate solution algorithm. Therefore, the task of
building a reasonable model and adopting a fast and accurate
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convergence algorithm has become an important research
direction for weapon target assignment.

The problem of weapon target assignment is divided
into the static weapon target assignment (SWTA, i.e., static
WTA) problem and the dynamic weapon target assignment
(DWTA, i.e., dynamic WTA) problem. The SWTA problem
was first modeled byManne in 1958 [2]. The SWTA problem
defines a scenario in which the defender can observe a
known number of missiles (targets) and a finite number of
interceptors (weapons), know the probability that the weapon
successfully destroys the target (kill probability), and can
assign targets and weapons in a single scene. In the SWTA
problem, changes in the subsequent battle situation are not
considered; thus, the time factor is not included. Due to
increases in defenders’ demand for timeliness, the research
on the SWTA problem can no longer meet the needs of actual
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combat. Therefore, theDWTAproblem has gradually become
a hot spot in current research. The dynamic weapon target
assignment problem takes dynamic factors into account. The
number of missiles and interceptors changes dynamically.
Therefore, ‘‘weapon-target’’ not only needs to be optimized
in a single scenario, but it also considers whether the
effectiveness of other scenarios can meet the demand. In the
early days, Eckler, Burr and others conducted research on
the DWTA problem, and they proposed and discussed the
solutions for it [3].

According to Murphey [4], DWTA has two model types.
The first model assumes that all targets are known from the
beginning, but in a different order of attack. The second
model assumes some or all of the targets are random, and
that not all are known at the beginning. For the first model,
Eckler and Burr [3] initially proposed the shoot-look-shoot
scheme in the 1970s. This meant that weapons were assigned
to the target in the first engagement, and that subsequent
engagements allowed the remaining weapons to be assigned
to any surviving target. Leboucher et al. [5] considered targets
that survived engagement–those that could be re-engaged
in subsequent iterations. Xin et al. [6] pointed out that if
the defender observes that the target is destroyed in stage t,
it must re-evaluate the target in stage t+1, and the weapons
pre-assigned to the destroyed target must be reassigned.
Zhengrong et al. [7] proposed a multi-stage attack planning
method, established a multi-stage attack target function
model, and applied themulti-stage attackmethod to gradually
weaken the target defense, thus ultimately achieving better
combat effectiveness.

For the second model, Burr et al. [8] assume that the total
number and distribution of attackers are not known, and that
the defender must first set a strategy. Murphey [9] proposed a
specific model of the multi-stage problem, in which weapons
have the same probability of killing the targets of equal value.
A known number of targets are reached in the first stage,
and only the probability distribution is known for the targets
reached in the remaining stages. Ahner and Parson [10]
considers the uncertainty of the second stage and assigned
the available weapons by including the expected value of the
second stage in the first stage target. Silav [11] considers that
the incoming air targets are random, and defines the objective
function as the maximization of the probability of no-leaker
in the engagement sequence of the weapon system. Based on
the above model, various algorithms have been proposed to
solve the DWTA problem since the 1970s.

First, there are mathematical programming methods using
for DWTA. Examples of DWTA combined with algorithms
include: using large-scale neighborhood search algorithms
(VLSN) [12], geometric methods [13], dynamic program-
ming [14], [15], etc. These methods are fast and accurate
when dealing with low-dimensional small problems, but
the programming is cumbersome, and it is difficult to
deal with problems with large variable dimensions. Modern
combat situations are often complex and changeable, and

traditional mathematical planning methods cannot deal with
such problems.

Second, due to the computational complexity of WTA,
many papers have applied heuristic algorithms. These
algorithms are developed by simulating certain natural phe-
nomena or processes, and are focused on providing real-time
solutions rather than guaranteeing optimal solutions. Var-
ious heuristic algorithms have been proposed in the past
like particle swarm optimization (PSO) [16], evolutionary
algorithm (EA) [17], artificial bee colony (ABC) [18] and
many more. In recent years, heuristic algorithms have been
developed and improved in terms of accuracy and algorithm
stability, including monarch butterfly optimization(MBO)
[19], butterfly optimization algorithm (BOA) [20], harris
hawks optimization (HHO) [21], etc. Some of the above
heuristic algorithms are applied in the WTA field. Examples
of algorithm applications include using the precise and
heuristic combination algorithm [22], the improved monarch
butterfly optimization(MBO) [23], the immune-based ant
colony optimization (ACO) algorithm [24], the particle
swarm optimization (PSO) method [25], [26], the artificial
bee colony algorithm (ABC) [27], [28], the parallel simulated
algorithm (PSA) [29], evolutionary algorithm (EA) [30], etc.

The models and algorithms of DWTA are summarized
above, and the deficiencies in them are detailed below.

The common feature of the two traditional dynamic
weapon target assignment models is that they are both
a combination of static weapon target assignment stages.
A static weapon target assignment stage is the process from
collecting the combat situation to giving the assignment
decision, and there is a strike stage between the adjacent
static weapon target assignment stages. Except for the first
static weapon target assignment stage, which is assigned
according to the initial combat situation, the rest of the
assignment stages are all made after the previous strike.
However, between the two static weapon target assignment
stages, and before the end of the previous strike stage, the
threat ranking of targets may change with time and may
require the defender to adjust the strategy in time. The
traditional dynamicweapon target assignmentmodel does not
respond to this change in time.

As for the current DWTA algorithm, there are the following
problems: First, the real time performance of the algorithm
is insufficient. As the decision calculation time increases,
the decision stages overlap with each other. The time of the
latter decision stage is occupied by the previous decision
stage, which may cause the defender to miss some intervals
of missile strike moments, thus resulting in expired decisions
(Figure 1 shows the real-time insufficient example). Second,
the optimization strategy of the algorithm is ‘‘short-sighted’’.
It can only make judgments on the current situation, and
cannot make overall plans for the future situation on the basis
of the current situation.

Due to the problem that the traditional DWTA model
cannot change the strategy in time according to the change
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FIGURE 1. A real-time insufficient example. The time of decision stage 2 is occupied by decision stage 1.

in the target threat degree, a new DWTA model is proposed
in this paper. This model samples the states of every time
interval and makes decisions after sampling. It can solve the
problem where the strategy cannot be changed in time when
the target threat changes.

In recent years, with the widespread application of rein-
forcement learning, some scholars have applied reinforce-
ment learning to the WTA field and achieved good results
[31], [32]. After the learning stage is completed, the algorithm
of reinforcement learning can quickly provide strategies.
It can effectively solve the problem of producing outdated
solutions. Moreover, the reward of reinforcement learning
is the accumulation of overall benefits, and considering the
possibility of changes in the situation after the current time,
which can solve the problem of strategic shortsightedness.

Reinforcement learning is divided into value function
method and policy gradient method. Compared with the value
function method, the policy gradient method has smoother
convergence and is robust to disturbances. The actor-critic
method is a commonly used policy gradient method. It has
the advantage of being able to perform a single-step update,
which is faster than the traditional PG round update.
Commonly used actor-critics include DDPG, A3C, TRPO,
PPO, etc. Among them, TRPO [33] has the advantages of
stable iteration step size and no violent fluctuation of the
optimization curve. As the improved algorithm of TRPO,
PPO [34] not only inherits the advantages of TRPO, but also
improves the proxy objective, thus simplifying the calculation
difficulty. Thismakes PPO themainstream among actor-critic
algorithms. For the new model in this paper, we employ PPO
algorithm to solve the DWTA problem.

The main contribution of this paper can be summarized as
follows.

1. This paper proposes a ‘‘time-sampling dynamic weapon
assignment model’’(abbreviated as TS-DWTA), which is
used to solve the problem that the traditional DWTA model

cannot change the strategy in time with the change of the
target threat level.

2. In this paper, the TS-DWTA model is optimized with
reinforcement learning and heuristic algorithms, and their
effects are compared. Then the study verifies which algorithm
is more suitable for TS-DWTA model.

3. This study conducts separate experiments on different
sampling intervals of the TS-DWTA model to demonstrate
the influence of sampling intervals on the model results.

The structure of this paper is as follows: In Section I,
we introduce the research status of weapon target assignments
and discuss the current DWTA model and algorithm.
In Section II, we present a model of ‘‘temporal sampling
dynamic weapon target assignment’’, and then apply rein-
forcement learning and traditional heuristic algorithms to the
model. In Section III, several typical simulation examples are
designed to compare the computational speed and defense
effect of the heuristic algorithm and reinforcement learning
method that are used in this model. Furthermore, we com-
pared the defense capability of different time sampling
interval models. In Section IV, we summarize the full paper.

II. RESEARCH METHODS
In section I we discussed the background of weapon target
assignment. In section II, we will discuss the model of
weapon target assignment and the algorithms used.

A. RESEARCH MODEL
The traditional dynamic weapon target assignment model is
a combination of multiple static weapon target assignment
stages, and there is a strike stage between the adjacent static
weapon target assignment stages. The assignment of the next
stage will be carried out after the strike stage, resulting in
the neglect of the moments between static weapon target
assignment stages. Therefore, this paper proposes a ‘‘time-
sampling dynamic weapon assignment model’’(abbreviated
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FIGURE 2. (a) The weapon target assignment timings for the traditional DWTA. (b) The weapon target assignment timings for the TS-DWTA model. And
we assume weapons have different reload times. The TS-DWTA model can assign targets to ready weapons while the previous strike is not complete.

as TS-DWTA), which divides the weapon decision-making
steps into time intervals. The defender samples the per time
unit to obtain environmental state data and to give a decision-
making plan. In each step, the model is updated regardless
of whether the strike is completed or not. Moreover, this
model can flexibly set the sampling time to avoid an
out-sync between the received information and the strategy
given. In addition, for weapons such as anti-aircraft guns,
electro-optical jamming, and blinding equipment, which
continuously exert influence on the target, it is difficult to
clearly divide the strike step, and the ‘‘TS-DWTA’’ is more
suitable for them.

Compared with the traditional model, the assignment
idea of the ‘‘TS-DWTA’’ in the first assignment stage is
the same. Strategies are all about distributing weapons to
discovered targets. However, the ‘‘TS-DWTA’’ enters the next
decision-making stage in the next unit time. There is no need
to wait all the assigned weapon strikes are over, i.e., there
is no need to divide the attack stage. In the ‘‘TS-DWTA’’,
the weapons as-signed in the previous stage may not end

the strike and cannot participate in the assignment, but the
weapons that did not participate in the strike and the weapons
that partially completed the strike can be assigned. This is
shown in Figure2.

The model in this paper refers to the idea of the second
model that was detailed in Section I. The number of incoming
targets in each batch is unknown, and the time of attack
is unknown, but only the time of attack and the upper and
lower limits of the targets are known. This model assumes
the following:

(1) There is only one set of assets;
(2) The confrontation target is set as a missile flying at a

constant speed, and the distance from the asset is the same
when it is discovered by the defender. Thus, the time from
being discovered by the defense to striking the asset is the
same. The upper limit of the time from when the missile is
discovered by the defender to when it hits the ‘‘asset’’ is tm;

(3) The missile hitting the ‘‘asset’’ will cause certain
damage to the asset. The damage intensity of the missile i
to the ‘‘asset’’ is set to Di, and it is assumed that D is divided
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TABLE 1. The notations employed in this paper.

into nine levels. After a missile with a damage intensity of Di
hits an ‘‘asset’’, the damage suffered by the ‘‘asset’’ is Di;
(4) There are multiple rounds of incoming missiles,

the missile attack time interval ti ∈ [tiL , tiH ] (tiL , tiH
are the upper and lower bounds of the set missile attack
interval), the number of missiles in each round bn ∈

[bnL , bnH ] (bnL,bnH are the upper and lower bounds of the
number of missiles per round), and ti and bn are not constant;

(5) The weapons are set as follows: the number of weapons
is a, it is a continuous strike weapon, there is no firepower
transfer time, and the probability of a successful strike in the
same time period remains unchanged. The probability of a
single weapon destroying a missile per unit time is p, the
performance of each weapon is the same, and the probability
of multiple weapons successfully hitting the same missile is
independent and identically distributed.

For clarity, the notations employed in this paper are also
listed in Table 1.

The confrontation process is as follows: 1. The first batch
of missiles arrives, and the number is bn ∈ [bnL , bnH ].
Defenders strike when they spot a missile. The missile
detection distance is s;

2. The defender defends against the missile. If there is a
spare weapon, the weapon can strike the missile at any time;

3. After the time interval ti ∈ [tiL , tiH ], the next round of
missiles arrives. Go to Step 1;

4. If the preset missile round is reached or the ‘‘asset’’ is
destroyed, the simulation episode ends (here episode refers to
a simulation process).

When a missile hits an ‘‘asset’’ or the missile is destroyed,
the missile is removed from the missile sequence. Since the
missiles are constantly coming and the number is uncertain,
if the method of assigning a number to each missile is
adopted, then the missiles will have too many numbers
and storage will be difficult. Therefore, we adopt a cyclic
numbering method in this paper. When the storage space is
full, the earliest batch of missiles in the storage space are
deleted, and the free space and corresponding numbers to the
new batch of missiles was saved. However, this requires the
earliest batch of missiles in the storage space to be discovered
for more than tm (tm is the maximum time between the
defender discovering the missile and hitting the asset).

The storage method is as follows: the upper limit of the
number of missiles in each round is bnH , the lower limit of
the missile attack interval is tiL , and the upper limit of time
tm can be estimated (in fact, the number of missiles in each
round will not be too large, and the frequency of missile
attacks will not be too frequent). We reserve bnH storage
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FIGURE 3. (a) Schematic diagram of the storage space. (b) Schematic diagram of the missile storage sequence.

space for each round of missiles. The total storage space size
is bnH ∗ (tm//tiL), and the total batch size is tm//tiL (‘‘//’’
refers to integer division). If the storage is carried out in the
above way, the detection time of a batch of secondarymissiles
must be greater than or equal to the time upper limit tm, which
is when the space is full. By deleting this batch of missiles,
there is now room for new incoming missiles. This is shown
in Figure 3.
Compared with the storage method in which each batch

of missiles is given new numbers, the storage method in this
paper has the following advantages:

1. Save storage space. It is not necessary to assign
new storage space for each new batch of incoming missile
information.

2. It can handle the storage problem of multiple batches of
missiles. If the battle situation lasts for too long, the assigned
storage space required by this method remains unchanged.

3. Convenient algorithm calculation. Using the method in
this paper to number the missiles, the information length
of the missiles is fixed. Then the length of the information

inputting to the algorithm is fixed, which is convenient for
the algorithm to process the information.

Based on the above model assumptions and confrontation
process, we give the following objective function and
constraints.

The objective function is related to the threat value of the
target and the probability of target destruction. The purpose
of the objective function is to maximize the threat eliminated
by the weapon. The objective function expression is as
Equation 1.

R = max(
N∑
i=1

f (thi, pi)). (1)

R is the objective function and N is the total number of
targets observable in the air. thi is the threat degree of the i-th
target, and p is the probability of i-th target destruction. f is
a function related to th and p. The specific objective function
will be given in section B and section C combined with the
specific algorithm.
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Define the decision vector [a1, a2, · · · , awn], ai represents
the target of the weapon attack. wn represents the number of
weapons.

Constraints include the following:
1. The target of the weapon can only be selected in the

missile storage list. i.e. ai ∈ [0,M ], M is the upper limit of
missile storage.

2. A weapon can only hit one target at a time. As Equation
2 shows.

{
a = i, i ∈ [0,M ], if a attacks target i
a = 0, if a does not attack

(2)

B. COMBINATION OF THE ‘‘TS-DWTA MODEL’’ AND
REINFORCEMENT LEARNING ALGORITHM
In section A, we introduces the TS-DWTA model. In the
introduction section, the advantages of reinforcement learn-
ing are introduced. In this section, we combine reinforcement
learning with the TS-DWTA model to illustrate.

Reinforcement learning is learning what to do–how to
map situations to actions–so as to maximize a numerical
reward signal [35]. Reinforcement learning regards learning
as a trial and evaluation process. An agent chooses an action
for the environment and the environment changes state after
accepting the action, which, at the same time, generates a
reinforcement signal (reward or punishment) to feed back to
the agent. Agent chooses the next action according to the
reinforcement signal and the current state of the environment.
The selection principle is to increase the probability of
receiving positive reinforcement (reward). The agent of
reinforcement learning learns a set of behavior strategies after
training, rather than just obtaining a solution to a problem.
Through the obtained behavioral strategies, reinforcement
learning can solve problems quickly and efficiently.

The reinforcement learning algorithm applied in this
paper is the proximal policy optimization algorithm (PPO)
[34]. In the past, the actor-critic algorithm was particularly
sensitive to the step size, and it was difficult to choose
an appropriate step size. In the training process, if the
difference between the old and new policies is too large,
it is not conducive to learning. The PPO algorithm inherits
the TRPO algorithm to improve this and simplify it on the
proxy target. The critic network in the PPO algorithm is the
same as the traditional actor-critic algorithm and is used to
estimate the return value. In the actor network–in order to
reduce the large gradient and risky changes in the policy
πθ , which was caused by the update–the pruned objective
function was used to replace this update. The idea is to
limit the ratio of old and new strategies to a certain range
[1− ϵ, 1+ ϵ]. Through this method, the excessive difference
between the strategies before and after the update is avoided,
so that the update step size is within a reasonable range.
It enables mini-batch updates over multiple training steps,
which solves the problem where the step size is difficult to
determine in the policy gradient algorithm.

The proxy objectives of the PPO algorithm Lclip(θ ) are as
Equation 3.

Lclip(θ ) = E[min(lt (θ )Ât , clip(lt (θ ), 1 − ϵ, 1 + ϵ)Ât )]. (3)

where lt (θ ) =
πθ (at |st )

πθold (at |st )
represents the likelihood ratio, and

Ât is the generalized advantage estimate. clip() means given
an interval, and values outside the interval are clipped to the
interval edges.

The advantage estimate Ât is expressed by generalized
advantage estimator (GAE), and the GAE expression is as
Equation 4.

ÂGAE(γ,λ)
t =

∞∑
l=0

(γ λ)lδVt+l . (4)

where δ and λ are the proportional parameters, δt = rt +

γV (st+1) − V (st ).V (st ) is the state value estimated by the
critic network. The V in δVt+1 also means this.
This article divides the steps by time intervals. Each step

updates the ‘‘environment’’. The ‘‘environment’’ model in
each step handles the following operations:

1. Change the target of the weapon according to the input
action;

2. Determine whether the missile is removed from the
missile queue due to being destroyed or hitting an ‘‘asset’’;

3. Update the missile status according to the time;
4. Give the action reward for the step.
In this way, the DWTA model combined with reinforce-

ment learning is a model with time continuity.
The reinforcement learning algorithm training process is

shown in Algorithm 1.
Next, the weapon target assignment problemwas described

from the state, action, and reward functions of reinforcement
learning.

In this article, the action of a single weapon is the number
of the missile selected by the weapon: 0 means no weapon is
used, 1, 2. . . n means strike missile 1, strike missile 2. . . strike
missile n, a total of n+1 dimensions are set. For example,
aw = 3 means that the ‘‘w’’th weapon hits missile 3. When
a missile is destroyed or hits the ‘‘asset’’, consider ‘‘strike
this missile’’ as an unavailable action. Non-selectable actions
need to be masked to block these actions.

If the model adopts a single-agent network structure, all
weapons will be regarded as the same agent and output
joint actions, i.e., the combination of all weapon actions is
output as a vector action group [a1, a2, · · · , awn] by the actor
network. Furthermore, an is a weapon with n action; the size
of its action space is dimwn, where dim represents the number
of missiles that can be selected by a single weapon, and wn
is the number of weapons. As the action space and weapons
increase, the dimension of the action space will explode,
thereby making calculation difficult.

The actor network in this paper adopts a multi-agent
network structure. Usually, the agent of themulti-agent neural
network can only observe part of the state, and the observed
states are also different. However, this paper assumes that
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Algorithm 1 The Reinforcement Learning Algorithm Training Process
Parameter initialization (learning rate, learning batch size, etc.).
State initialization (initialize the state of missiles and weapons).
Loop n episodes:

Loop episode length or until done is True
Agent receives state parameter. Next actions for all weapons are given by multiple actor neural networks.
Execute the step function according to the action. Give the state, reward r and whether it is done.
Actions, state, and rewards are stored for updates.

After each episode, the reward is used to calculate the return, and the Agent uses the overall reward to update the critic
network parameters.
Compute the advantage function using the critic network output and rewards. Combined with the action probability of
each agent, the actor network parameters are updated.

When the preset algebra is reached, the algorithm ends.

all agents can observe the known global state, because the
defenders share information and obtain the same state. In this
model, each weapon is assigned an actor network, and the
actor network outputs the action selected by a single weapon.
The size of the action space is dim, which is much smaller
than dimwn. This simplifies the computation of the action
space. Moreover, single-agent reinforcement learning can
only give rewards to the action groups of multiple weapon
combinations, while multi-agent reinforcement learning can
give different rewards to the actions of each weapon. In this
model, multi-agent reinforcement learning can give each
agent a clearer reinforcement direction.

The multi-agent decision-making model is shown in
Figure 4.

The state is the threat degree of the missile, which is
divided into two aspects: the distance from the missile to the
‘‘asset’’ and the damage intensity of the missile. State S is
expressed as Equation 5.

S = [s,D]. (5)

where s is the distance from the missile to the ‘‘asset’’ and D
is the damage intensity of the missile.

The reward r reflects the pros and cons of the actions
in each step (in this paper, each step is a unit of time).
There are two methods to select r : One is to directly
guide the agent to choose which missiles to choose, i.e.,
to provide the agent with a high re-ward for when the weapon
chooses an assignment plan that the decision maker thinks is
excellent. The advantage of this approach is that the agent
can obtain knowledge that matches the artificial strategy. The
disadvantage is that if the artificial strategy is not good, the
agent cannot provide a good strategy. The second method is
to use the ‘‘environment’’ value (including the parameters
of entities such as weapons, missiles, and assets in the
confrontation) as r . The advantage of this approach is that
the agent can determines the strategy directly according to the
quality of the ‘‘environment’’. If the ‘‘environment’’ value is
selected well, then the agent’s behavior can make the strategy
develop in a positive direction quickly. The disadvantage
is that if the agent were to select an ‘‘environment’’ value
that will not change after multiple steps, it may become

challenging for the agent to learn an effective strategy. For
example, the primary goal of TS-DWTA is to reduce the
number of missiles that hit ‘‘assets’’. If the number of missiles
that hit ‘‘assets’’ is directly used as the measure of the reward
r , then the re-ward will remain unchanged for multiple steps.
This article uses the second method. The ‘‘environmental

value’’ is selected as the reward.
Let the missile threat degree th be:

th =
D
s

. (6)

where s is the distance from the missile to the ‘‘asset’’, and D
is the damage intensity of the missile. It means that the closer
the missile is to the asset and the greater the damage intensity,
then the greater its threat.

For any agent, i.e., any weapon, the sum of the negative
numbers of all missile threats is used as the first reward r1:

r1 = −

i∑
1

thi. (7)

where i represents the number of missiles and r1 represents a
holistic reward and a threat to the overall environment. The
optimization goal is to minimize the overall threat.

The threat degree of the missile selected by weapon w is
used as the second reward r2.

r2 = thw ∗ p. (8)

where th represents the missile threat degree.w represents the
selected missile number by the weapon. p is the probability
that the weapon will destroy the missile. This is an individual
reward, which means that the weapon hits a missile with a
high threat and that the reward is high.

When applying only the reward mentioned above, the
weapon will frequently change the chosen target. This would
be a waste of resources, as shown in Figure 5.
Therefore, when the action of a single weapon is different

from the action selected in the previous step, the agent will
be given a negative reward, which is set to a constant C .

Then, the reward for a single weapon is as equation 9.

r = r1 + r2 + C = −

i∑
1

thi + thw ∗ p+ C . (9)
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FIGURE 4. Schematic diagram of the multi-agent decision-making model.

FIGURE 5. In the picture, the strike effect on the left and right sides is the same, but the corresponding weapons are
different. If the assignment method on the left side is changed to the right one, the reward re-mains unchanged but strike
resources are wasted.

C. COMBINATION OF THE ‘‘TS-DWTA MODEL’’ AND
HEURISTIC ALGORITHM
In section B, we introduce the combination of reinforce-
ment learning and the TS-DWTA model. In this section,
we will introduce the combination of heuristic algorithm
and TS-DWTA model. And compare it with reinforcement
learning in terms of process.

The heuristic algorithm is a commonly used traditional
DWTA algorithm. The heuristic algorithms used in this
paper for comparison are the particle swarm optimization
(PSO) algorithm, artificial bee colony algorithm (ABC) and
butterfly optimization algorithm (BOA).

The PSO algorithm is a random search algorithm based
on the group cooperation that is developed by simulating
the foraging behavior of birds. It is generally considered to

be a type of swarm intelligence [16]. PSO is initialized as
a group of random solutions, and it then iteratively finds
the optimal solution. In each iteration, the particle updates
itself by tracking two ‘‘extreme values’’ pbest and gbest
(pbest is the best position found by itself so far, and gbest
is the best position found by all particles in the entire
population). After finding these two optimal values, the
particle updates its speed and position through the following
formula Equation 10 and Equation 11.

vi = ω ∗ vi + c1 ∗ rand() ∗ (pbesti − xi)

+ c2 ∗ rand() ∗ (gbesti − xi). (10)

xi = xi + vi. (11)

In the above formula, i = 1,2,. . .,N , where N is the total
number of particles in the group. vi is the particle velocity, ω
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is the inertia weight, rand() is a zero-to-one random number.
xi is the current position of the particle. c1 and c2 are
learning factors, and ω is called the inertia factor (its value
is non-negative).

The artificial bee colony algorithm (ABC) is inspired by
the intelligent foraging behavior of bee colonies [18]. The
ABC algorithm divides the artificial bee colony into three
categories by simulating the honey-gathering mechanism of
actual bees: honey-gathering bees, observation bees, and
scout bees. The goal of the entire bee colony is to find
a nectar source with the largest amount of nectar. In the
ABC algorithm, the bees use the previous nectar source
information to find new nectar sources and they share
the nectar source information with the observer bees. The
observer bees wait in the hive and look for new nectar sources
based on the information shared by the bees. The task of scout
bees is to find a new source of valuable nectar, and they will
randomly search for nectar sources near the hive.

The butterfly optimization algorithm (BOA) is a heuristic
algorithm proposed by Arora and Singh in 2019 [20]. The
algorithm is inspired by the foraging and mating behavior
of butterflies, which receive/sense and analyze scents in the
air to determine potential directions to food sources/mating
partners. Butterflies can identify different scents and perceive
their intensity. When a butterfly moves from one location to
another, its fitness changes accordingly. When the butterfly
senses that another butterfly is emitting more scent in the
area, it moves closer–a phase known as the global search.
In another case, when the butterfly cannot perceive a scent
larger than itself, it will move randomly–this stage is called
the local search.

In the ‘‘TS-DWTA’’ model, the heuristic algorithm makes
a decision on the assignment scheme every time interval,
i.e., the heuristic swarm is used to iterate the current optimal
solution at each time interval.

The specific decision-making process is:
1. When the sampling time is reached, missile parameters

are obtained from the environment (number ofmissiles, threat
degree, distance from ‘‘assets’’).

2. According to the missile parameters and the target
optimization function, through the heuristic algorithm, the
optimal solution is iterated. The weapon assignment decision
is obtained according to the optimal solution.

3. Weapons and missiles interact with the environment
according to the assignment decision until the next sampling
time.

The heuristic algorithm optimizes the current stage, but the
algorithm can only calculate the optimal solution of the cur-
rent stage. The objective function of the heuristic algorithm
r3 is as Equation 12.

r3 = −
D
s

∗ p. (12)

where s is the distance of the missile from the ‘‘asset’’, D is
the damage intensity of the missile, and p is the probability
of the missile being destroyed.

This means that the greater the probability of destroying a
missile with a high threat, the higher the reward.

In addition, when the action of a single weapon is different
from the action selected in the previous step, a negative
reward will be given to the agent, which is set to a constant C
(the same as in Section II-B).

The total rewards r is as Equation 13.

r = r3 + C . (13)

The DWTA algorithm flow based on a heuristic algorithm
is shown in Algorithm 2.

The decision-making flow chart of the combination of rein-
forcement learning and heuristic algorithmwith TS-DWTA is
given in Figure 6.

III. RESULTS
In section II, we introduced the TS-DWTA model, the
combination of reinforcement learning and the TS-DWTA
model, the combination of the comparison algorithm (heuris-
tic algorithm) and the TS-DWTA model. The verification
results of the calculation speed and protection ability of the
algorithm and model are below, and the ‘‘TS-DWTA’’ model
of different time intervals is compared. The simulation runs
on a PC side, 8G memory, 4 cores 2.5GHz, and a CPU
i5-7300HQ.

A. ALGORITHM PARAMETER AND MODEL PARAMETERS
SETTING
For the reinforcement learning PPO, the learning rate of the
action networkwas set asALR = 0.001, the learning rate of the
evaluation network was CLR = 0.001, the discount factor γ

= 0.995, and the generalization advantage estimate λ = 0.95.
For each iteration, 600 samples were collected, and training
was performed 20 times in mini-batches of 300 samples. The
model parameter is the value of a certain scene of end defense,
and is shown in Table 2.

B. SIMULATION RESULT ANALYSIS
Take the sampling time, i.e., the step time interval tstep =

1s, and assume that the unit time tstep = 1s the success
rate of destroying the missile is 0.3; then, use the PPO
algorithm model for simulation. The reward curve during
the PPO learning step is shown in Figure 7. The reward in
the figure is the overall reward of the three agents in one
episode (the simulation round). It can be seen that the reward
r was significantly improved. This shows that reinforcement
learning improves the strike efficiency of weapons.

1) COMPARISON EXPERIMENT OF UNIT DECISION TIME OF
DIFFERENT ALGORITHMS
Experiment 1) tests the time taken by different algorithms
to provide a decision in the decision-making step, which
is expressed by tcompute. Experiment 1 gives the tcompute of
the PPO algorithm and heuristic algorithms. The parameters
of the PPO algorithm are shown in Section III-A. Heuristic
algorithms use certain different algorithm parameters, and the
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FIGURE 6. On the left is reinforcement learning decision flowchart. On the left is heuristic algorithm decision flowchart.

TABLE 2. Combat simulation parameters.

number of populations and the number of iterations in the
parameters are different.

We simulated the model by applying the PPO algorithm
and heuristic algorithms with different parameters, and
tested the time taken by different algorithms to make one
assignment decision. The experiment was repeated 100 times,
and the simulation results are detailed in Table 3.

tcompute represents a delay, which refers to the time from
when the battle situation information is input to the agent to
when the agent makes one assignment decision. If tcompute is
too long, it will cause the decision to miss its applicable battle
situation and become invalid. Taking the terminal defense
distance of 10 km and the missile flight speed of 600 m/s as
an example, if the decision-making time delay reaches 2 s, the
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Algorithm 2 The Reinforcement Learning Algorithm Training Process
Parameter initialization (learning rate, learning batch size, etc.).
State initialization (initialize missiles and weapons state, initial best action).
Loop n episodes:

Loop episode length or until done is True
Execute the step function according to the best action. Gives the next step states.
Calculate the new best action using the heuristic algorithm by the new states.

When the preset algebra is reached, the algorithm ends.

FIGURE 7. Weapon target assignment reward curve. The curve in the figure is the comprehensive effect of
5 repeated experiments, and the blue range is the maximum and minimum value range of 5 experiments. The
solid line curve is the average curve of 5 experiments.

difference between the theoretical decision-making position
and the actual assignment position will be 1200 m; thus, the
error would be too large. However, it is acceptable when the
delay is within 1 s. Therefore, the tcompute of the simulation
experiment in this paper is less than 1 s.

By comparing the PPO and several heuristic algorithms,
it can be seen that the speed of reinforcement learning
PPO processing problems is better than that of heuristic
algorithms. This is because after reinforcement learning is
trained, PPO’s neural network has ‘‘stored’’ the learning
experience. In formal combat, the stored experience can be
used to directly draw results. It is not necessary to iteratively
calculate every time a new target is being attacked as the
heuristic algorithm requires. As for the defensive ability of
the algorithm, it will be compared in the next experiment.

2) COMPARISON EXPERIMENT OF ‘‘ASSET’’ DAMAGE
DEGREE OF DIFFERENT ALGORITHMS
Experiment 2) takes the sampling time, i.e., the step time
interval tstep = 1 s, and assumes that when tstep = 1 s, the

success rate of a single weapon destroying a missile per unit
time is 0.3.

In Experiment 2), the experimental algorithm is PPO,
and several heuristic algorithms with parameters of max
tcompute<1 s are used as comparison algorithms. The
corresponding parameters are detailed in Table 4.
tstep is the time interval for the defender to obtain battle

information and tcompute is the time it takes for the agent to
make decisions after the defender obtains the battle informa-
tion. Generally, tcompute < tstep; otherwise, the assignment of
a battle situation has not been processed, and the next battle
situation will be input to the agent.

The number of missile rounds in each episode is 5. After
each episode, set the sum of the ‘‘asset’’ damage D in each
episode as Dsum(after a missile with a damage intensity of Di
hits an ‘‘asset’’, the damage suffered by the ‘‘asset’’ is Di),
and use it as a reference for algorithm comparison.

Take 200 episodes results for comparison and take the
average: E(Dsum) = Dsum/200.

The results of E(Dsum) are shown in Table 5.
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TABLE 3. Average tcompute and max tcompute of the PPO and heuristic algorithms.

TABLE 4. Average tcompute and max tcompute of the heuristic algorithms in Experiment 2).

TABLE 5. Dsum of the PPO and heuristic algorithms.

Histogram of the number of each algorithm’s Dsum
exceeding a certain value in 200 episodes, as is shown in
Figure 8.

It can be seen from Table 5 that E(Dsum) of the PPO is
smaller than that of heuristic algorithms. This proves that the
PPO algorithm is more effective in dealing with TS-DWTA.
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TABLE 6. Dsum of the PPO algorithm with different tstep.

FIGURE 8. Histogram of the number of each algorithm’s Dsum exceeding a certain value of
200 episodes. The p in PSO means population. (a) Histogram of the number of each algorithm’s Dsum
exceeding 10. (b) Histogram of the number of each algorithm’s Dsum exceeding 20. (c) Histogram of
the number of each algorithm’s Dsum exceeding 40.

In Figure 8, Dsum = 10 is the limit of slight damage
to ‘‘asset’’, Dsum = 20 is the limit of medium damage to
‘‘asset’’, and Dsum = 40 is the limit of serious damage to
‘‘asset’’. The heuristic algorithm is not as good as PPO in
terms of whether the Dsum value is too large in the model.
It shows that the model with the heuristic algorithm suffers
more serious damage after multiple rounds of simulation.
This is because heuristic algorithms focus on the level of the
current missile threat value, while ignoring the consideration
of the missile threat value in the future. This results in
the defender not retaining a part of the defensive force to
deal with the incoming targets whose current threat level
is low but will increase rapidly in the future. The PPO
reinforcement learning algorithm comprehensively considers
the time, focusing on reducing the threat level in the overall
time.

3) TS-DWTA COMPARISON EXPERIMENT OF ‘‘ASSETS’’
DAMAGE DEGREE AT DIFFERENT SAMPLING TIME
Experiment 3) compares the PPO with different sampling
time.

Take three sampling times of tstep = 0.5 s, tstep = 1 s and
tstep = 1.5 s to test the impact of different sampling times on
the defense effect.

Take 0.5 s as the basic sampling interval, tstep = 0.5 s is one
decision for one sampling interval, tstep = 1 s is one decision
for two sampling intervals, and tstep = 1.5 s is one decision
for three sampling intervals.

Section II-A assumes that the probability of successful
strikes in the same time period remains unchanged. In order
to be consistent with the success rate, p1 = 0.3 for a single
weapon destroying a missile when tstep = 1 s in Experiment
2). Furthermore, it is assumed that when tstep = 0.5 s, the
success rate of a single weapon destroying a missile is p0.5 =

0.163. Then, there is

p1 = 1 − (1 − p0.5)(1 − p0.5) = 0.3. (14)

Use Dsum as a reference for algorithm comparison. Take
200 episodes results for comparison. The results of E(Dsum)
are shown in Table 6.
The Dsum scatter plot of 200 episodes is as shown in

Figure 9.
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FIGURE 9. The Dsum scatter plot of 200 episodes with different tstep for PPO. (a) tstep = 0.5. (b) tstep = 1.
(c) tstep = 1.5.

It can be seen from Table 6 that theDsumm of tstep = 0.5s is
lower than that of tstep = 1 s and tstep = 1.5 s, i.e., the damage
to the assets is lesser.

In Figure 9, The Dsum scatter of 9(a) is generally lower
than that of 9(b), and the Dsum scatter of 9(b) is generally
lower than that of 9(c). It also shows that the Dsum of
tstep = 0.5 s is lower than that of tstep = 1 s and tstep
= 1.5 s.This shows that increasing the sampling frequency
will make the algorithm application effect better. The results
of this experiment show the influence of the frequency of
information interaction on the outcome. It corresponds to the
decision frequency. In actual decision-making, if conditions
permit, increasing the frequency of decision-making can
correct the shortcomings in decision-making in time and
improve decision-making efficiency.

At the same time, the actual sampling interval capability
should also be considered in detail. Limited by the ability
to acquire information on the actual battlefield, the sampling
time will not be reduced indefinitely. The model sampling
time should be greater than the information acquisition time
interval that can be provided by the actual battlefield. Under
the premise of ensuring that the tstep is greater than the actual
sampling interval, then the smaller tstep is, the better the
defense effect will be.

4) THE EFFECT OF COMBAT SIMULATION PARAMETERS ON
THE ALGORITHM
In the study, the missile attack frequency fi (corresponds to
missile attack interval ti) and the number of missiles per
round bn are affected by the storage space. According to the

storage space model in Section II-A, if fi is higher than the
minimum fi, the numbers of the old and new missile batches
will overlap. bn exceeding maximum bn will cause a single
batch of missile numbers to overflow the storage space. This
can cause errors in the calculations of algorithms (including
PPO and various heuristics). To solve this problem, it is
necessary to leave a certain margin for max fi and max bn.
That is, the actual fi and bn are smaller than max fi and
max bn. On the premise that the missile number does not
overflow, changing fi and bn, the format of the input value
of the algorithm remains unchanged, and the strike capability
of the algorithm decision is still maintained.

Theoretically, when the fi and bn of the actual battle are
large enough, max fi and max bn can also be very large, which
will not have a great impact on the decision-making effect
of the algorithm. However, max fi and max bn should not
be too far from the actual fi and bn of the battle. Excessive
parameters will make the input have multiple empty inputs
(for example, only 5 valid storage objects are stored in
20 storage locations), i.e., the parameters are sparse. This
affects training and computation performance. The best max
fi and max bn are close to the actual parameters without
overflow.

The wave number has no effect on the algorithm. Because
the missile number is stored cyclically, it will not affect the
input format of the algorithm, so the algorithm performance
will not be affected.

IV. CONCLUSION
This paper proposes a DWTA model divided into stages by
time: ‘‘ TS-DWTA’’. Compared with the method in which
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the traditional DWTA model divides multiple static weapon
target assignment stages, the model in this paper divides
the entire combat process into time intervals; in addition,
it can divide the process when the target threat level changes
between the traditional DWTA stages. It makes up for the
untimely decision-making problem caused by the limitation
of stage divisions in the traditional DWTA model.

The time sampling of TS-DWTA can be set flexibly; thus,
this work studied the influence of different sampling times
on the defense effect under the condition of satisfying the
objective conditions. Through the simulation comparison of
different sampling times, it is concluded that the shorter the
sampling time, the better the defense effect.

At the same time, this study applied the reinforcement
learning PPO algorithm to the DWTA problem. With the
help of rapid calculation after the training is completed, the
timeliness of the calculation of the DWTA problem was
solved. And with the cumulative feature of time dimension
rewards in reinforcement learning, the issues in DWTA
where the current decision-making step cannot consider the
subsequent steps are solved. By comparing with the heuristic
algorithm, it can be seen that the calculation speed of
reinforcement learning is several orders of magnitude higher
than that of the heuristic algorithm, and the ability to take into
account the future decision-making stage is also better.

Due to the use of the new model, the research method
in this paper cannot be directly compared with other
methods using the traditional model. But there is the
indirect comparison method. The traditional DWTA model
can be regarded as the TS-DWTA model in which the
sampling interval is the duration of the strike step. The
TS-DWTA model proposed in this paper effectively expands
the traditional DWTA model by flexibly setting the sampling
time and combining the reinforcement learning method with
the model. The simulation results verify the effectiveness of
the method proposed in this paper.

At the same time, the combination of reinforcement
learning and TS-DWTA as a new algorithm and model
combination also has certain application difficulties:

1. How to define the reward function. The reward function
(corresponding to the objective function of the heuristic
algorithm) has a great influence on the effect of reinforcement
learning. However, there is no uniform standard for setting
the reward function. Therefore, for the DWTA problem, how
to set up the most effective reward function still needs to be
explored.

2. How to define the state space. There are a lot of state
information of weapons and targets in the DWTA problem.
Extracting effective state information can effectively improve
the training results of reinforcement learning.

3. How to improve the generalization ability. The gener-
alization ability of reinforcement learning is an important
issue in reinforcement learning. Reinforcement learning must
ensure that the training results are applicable to practical
applications. For the DWTA problem, reinforcement learning

needs to learn enough battlefield situations to perform well in
practice.

Solving these difficulties will be the focus of the next step
in the research of TS-DWTA with reinforcement learning.
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