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Abstract
To achieve the requirement of flexure hinges for specific optical precision equipment, a new triangular bi-axial flexure
hinge is proposed. The analysis model for the flexibility of the triangular bi-axial flexure hinges is derived. After that,
the linear and nonlinear finite element methods are used to verify the analysis model. Then, the physical dimensions of
the hinge are optimized using the multi-island genetic algorithm in conjunction with the finite element method, and the
rotational stiffness and center drift are diminished. Static analysis and modal analysis of the hinge are conducted. A test
system was built to gage the flexure hinge’s rotational stiffness. The results demonstrated that there was good
agreement between the analytically calculated value, simulated calculated value, and experimental value. To summarize,
the analysis model met the design requirements of the triangular bi-axial flexible hinge, and the multi-island genetic
algorithm effectively optimized the physical dimensions of the hinge and enhanced its performance. The design process
provides new ideas for the design of other forms of hinges.
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Introduction

When used as connecting parts to transfer force and
motion, traditional rigid hinges generate rotational
motion using the relative rotation between the rotating
shaft and the support. However, because of the pres-
ence of clearance in the rigid hinge, problems such as
friction and lubrication steadily emerge when the hinge
is used in high-precision scenarios, which places a
higher demand on lubricants, while also weakening the
hinge’s service life and increasing maintenance costs.
Friction wear also reduces hinge performance and has
a direct effect on transmission accuracy. When sub-
jected to torsional force, a flexure hinge is a unique
kinematic pair that uses material deformation to gener-
ate displacement and produces rotary motion around
its center of rotation within a limited angle range. It
has several advantages over standard rigid hinges, such
as no return stroke, no friction, no gap, no noise, no
wear, a small size, high motion sensitivity, and steady
motion.1–4 Therefore, flexure hinges are used in many
devices, such as a mirror mount,5,6 positioning-vibration
isolation stage,7 piezoelectric stick slip actuator,8,9

micro-positioning stage,10–12 and accelerometer.13

Flexure hinges can be categorized as single-axis,
double-axis, or multi-axis based on the number of

rotational axes and the functions used.14 Single-axis
flexure hinges include the cycloidal hinge,15 straight
beam-type hinge,16 and annulus-shaped hinge.17

Double-axis hinges include the notch U joint18 and
compliant Cardan U joint.19 Multi-axis hinges include
multiple-axis flexure hinges20 and the CS joint.21

Additionally, according to the cross-sectional geome-
try of flexure units, hinges can be classified into the
regular type (e.g. elliptical hinge, straight beam hinge,
parabolic hinge, and cycloidal hinge) and composite
type (e.g. cartwheel hinge, straight beam-straight cir-
cle hinge, straight circle-elliptical hinge).

Because stress is dispersed throughout the length of
the entire straight beam when it is loaded, the straight
beam-type flexure hinge has a wide range of rota-
tion.22 In recent years, scholars have conducted in-
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depth research on it. Some scholars have investigated
the hinge itself. Lobontiu et al.23 established the stiff-
ness model of the straight beam-type flexure hinge
based on Castigliano’s second theorem and analyzed
its rotation accuracy. In the Framework of Screw
Theory, Yu et al.24 analyzed the constraint fundamen-
tal building blocks (FBBs) equivalent and equivalent
freedom FBBs for the straight beam-type flexure
hinge. Dirksen and Lammering25 derived analytical
expressions for the displacement and stress of the
hinge and verified the results through a numerical
simulation and experiments. Shusheng et al.26 ana-
lyzed the deformation properties of the straight beam-
type flexure hinge. Mahto27 developed an optimiza-
tion model using the Lagrange finite element method
(FEM) and investigated the design optimization prob-
lem of the hinge. Other scholars have designed new
types of hinges based on straight beam-type flexure
hinges. Pei et al.28 combined two beams with two rigid
bodies to form the leaf-type isosceles-trapezoidal flex-
ural hinge, which has the characteristics of a large
stroke and small stiffness. Ling et al.29 derived the
dynamic stiffness matrix, which depends on the fre-
quency of the flexure beam. Chen et al.30 created a
hinge with damping layers using a strain energy
approach and the Kelvin damping model, which effec-
tively reduced vibration. Based on the X-lattice struc-
ture, Zhang et al.31 designed a new structure for the
beam flexure hinge. Awtar et al.32 simplified the canti-
lever beam stress-strain model to facilitate the design
of reed-type flexure hinges. Li and Hao33 proposed
the nonlinear spatial model of anti-buckling universal
joint consisting of two inversion-based symmetric
crossspring pivots.

The triangular flexure hinge (Figure 1) is a single-
axis composite hinge with its center of rotation at the
junction of two straight beams. It consists of two
straight beam-type flexure hinges that are placed on
the same plane. This type of flexure hinge has the
benefits of large corner travel, small center drift, high
rotational accuracy, strong yield resistance, and easy
processing and assembly. A triangular bi-axial flexure
hinge with the same stiffness in two orthogonal direc-
tions is formed using Wire cut Electrical Discharge

Machining (WEDM) to process a hollow cylinder in
orthogonal directions. This form of bi-axial flexure
hinge has the following advantages: (1) The rotational
rigidities in orthogonal directions are equal, and the
axial and torsional rigidities are higher. (2) WEDM is
used for integrated processing; hence, so there is no
need for assembly.34

In this study, to achieve the requirement of flexure
hinges for specific optical precision equipment, a new
triangular bi-axial flexible hinge is proposed and
investigated. This paper is organized as follows: In
Section 2, the analysis model for the flexibility of the
triangular bi-axial flexure hinge is derived. Then, the
relationship between rotational stiffness and the hinge
parameters is analyzed. In Section 3, the linear and
nonlinear finite element methods are used to verify
the analysis model, the designed hinge is compared
with the cross-axis bi-axial hinge. In Section 4, the
physical dimensions of the hinge are optimized using
the multi-island genetic algorithm in conjunction with
the FEM. In Section 5, static analysis and modal anal-
ysis of the hinges are conducted. In Section 6, a test
system that was built to verify the correctness of the
analysis and design is described. Finally, in Section 7,
the study is summarized.

Triangular bi-axial flexure hinge analysis
model

Flexure hinges for specific optical precision equipment
require more flexibility in the direction of motion and
less flexibility in the non-motion direction. Four com-
pletely consistent triangular flexure hinges with rota-
tional flexibility are formed by performing WEDM on
the hollow cylinder, thereby providing constraints for
rotation around two axes. The designed triangular bi-
axial flexure hinge is shown in Figure 2.

Single straight beam hinge

The reeds of straight beam-type hinges can be
regarded as cantilever beams because they are a com-
posite of straight beam-type flexure hinges that make
up the triangular flexure hinge. Based on von Mises
theory and screw theory, Selig and Ding35 deduced
the elastic model of the cantilever beam. When a load
is applied to the end of a homogeneous beam, the end
of the beam is deformed or moves slightly. According
to the screw theory, in the coordinate system shown
in Figure 3, the deformation at the end of the beam
can be represented by the motion screw T; the load
applied to the end of the beam can be represented by
the force screw W.

T= ux uy uz dx dy dz
� �T ð1Þ

W= Mx My Mz Fx Fy Fz½ �T ð2Þ

Figure 1. Triangular flexure hinge.
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In equation (1), u and d represent the angular
deformation and linear deformation at the end of the
beam, respectively. In equation (2), M and F repre-
sent the torques and forces applied to the beam.
Under the condition of linear elasticity and small dis-
placement, the relationship between the motion screw
and the force screw is as follows:

T=CW,W=KT,C=K�1 ð3Þ

In equation (3), C represents the flexibility matrix
of the cantilever beam, K represents the stiffness
matrix of the cantilever beam.

According to the von Mises theory, the flexibility
matrix when the force spin is applied to the end of the
cantilever beam is:

C=

cux�Mx
0 0 0 cux�Fy

0
0 cuy�My

0 cuy�Fx
0 0

0 0 cuz�Mz
0 0 0

0 0 0 cdx�Fy
0 0

0 0 0 0 cdy�Fy
0

0 0 0 0 0 cdz�Fz

2
6666664

3
7777775

ð4Þ

Where:

cux�Mx
= 12L

Ehb3
cux�Fy

= cdy�Mx
=� 6L2

Ehb3

cuy�My
= 12L

Ebh3
cuy�Fx

= cdx�My
= 6L2

Ebh3

cuz�Mz
= 24(1+ n)L

E hb3 + bh3ð Þ cdx�Fy
= 4L3

Ebh3

cdy�Fy
= 4L3

Ehb3
cdz�Fz

= L
Ehb

ð5Þ

L and b are the length and width of the beam,
respectively; E is the modulus of elasticity of the mate-
rial; v is the Poisson’s ratio of this material; and h is
the height of the beam.

The triangular flexure hinge

For the triangular flexure hinge, it is formed by orthogo-
nal parallel connection of two straight beam hinges. The
local coordinate systems OTH�1 � XTH�1 YTH�1ZTH�1
and OTH�2 � XTH�2YTH�2ZTH�2 are established at the
end of the straight beam type hinge, the reference coor-
dinate system OTH � XTHYTHZTH is established at the
vertex of the triangle, as shown in Figure 4.

The rotation matrix of the local coordinate sys-
tems OTH�1 � XTH�1YTH�1ZTH�1 and OTH�2�
XTH�2YTH�2ZTH�2 transformed with the reference
coordinate system OTH � XTHYTHZTH is RTH.

RTH=RTHXRTHYRTHZ ð6Þ

RTHX, RTHY, RTHZ represent the rotational
matrixes around XTH, YTH, and ZTH, respectively, as
shown in equation (7):

RTHX=

1 0 0

0 cosuTHX sinuTHX

0 sinuTHX cosuTHX

2
64

3
75

RTHY=

cosuTHY 0 sinuTHY

0 1 0

�sinuTHY 0 cosuTHY

2
64

3
75

RTHZ=

cosuTHZ �sinuTHZ 0

sinuTHZ cosuTHZ 0

0 0 1

2
64

3
75 ð7Þ

Figure 2. Designed triangular bi-axial flexure hinge: (a) front
view of the hinge, (b) partially enlarged view of the hinge,
(c) top sectional view of the hinge, and (d) positive tri-axial
view of the hinge.

Figure 4. Force model of the triangular flexure hinge.

Figure 3. Mechanical model of the cantilever beam.
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The translation vector of the local coordinate sys-
tems OTH�1 � XTH�1YTH�1ZTH�1 and OTH�2 � XTH�2
YTH�2ZTH�2 with the reference coordinate system
OTH � XTHYTHZTH is tTH.

tTH= xTH, yTH, zTHð Þ ð8Þ

The antisymmetric matrix of the translation vector
is:

TTH =
0 �zTH yTH

zTH 0 �xTH
�yTH xTH 0

2
4

3
5 ð9Þ

The accompanying matrix AdTH of the coordinate
transformation is:

AdTH=
RTH 033 3

TTHRTH RTH

� �
63 6

ð10Þ

where 033 3 is a third-order zero matrix.
For the straight beam flexure hinges 1 and 2, the

coordinate transformation satisfies:

RTH�1 =RTHX(0)RTHY �
p

4

� �
RTHZ(0)

tTH�1 = �lsin p
4

� �
0 lcos p

4

� �� � ð11Þ

RTH�2 =RTHX(0)RTHY
p

4

� �
RTHZ(0)

tTH�2 = lsin p
4

� �
0 lcos p

4

� �� � ð12Þ

For the triangular flexure hinge, it is made of two
straight type flexure hinges orthogonally connected in
parallel, so its flexibility matrix CTH is:

CTH = AdTH�1CAd
T
TH�1

� ��1
+ AdTH�2CAd

T
TH�2

� ��1� ��1
ð13Þ

Substituting equations (4), (10), (11), and (12) into
equation (13), the flexibility matrix of the triangular
flexure hinge CTH can be calculated as follows:

CTH =

cTH�11 0 0 0 cTH�15 0
0 cTH�22 0 cTH�24 0 0
0 0 cTH�33 0 0 0
0 cTH�42 0 cTH�44 0 0

cTH�51 0 0 0 cTH�55 0
0 0 0 0 0 cTH�66

2
6666664

3
7777775

ð14Þ

Where:

cTH�11 =
24 L+Lvð Þ

Ebh 2b2 v+3b2 + h2ð Þ ð15Þ

cTH�15 = cTH�51 =
6L2

ffiffiffi
2
p

v+
ffiffiffi
2
p� �

Ebh 2b2 v+3b2 + h2ð Þ ð16Þ

cTH�22 =
6 L3 +Lh2
� �

Ebh 4L2 h2 + h4ð Þ ð17Þ

cTH�24 = cTH�42 =�
3
ffiffiffi
2
p

L2

Ebh 4L2 + h2ð Þ ð18Þ

cTH�33 =
24 L+Lvð Þ

Eb 9b2 h+ h3 +8b2hvð Þ ð19Þ

cTH�44 =
4L3

Ebh 4L2 + h2ð Þ ð20Þ

cTH�55 =
L3 8b2 v+9b2 + h2
� �

2Eb3h 2b2 v+3b2 + h2ð Þ ð21Þ

cTH�66 =
L3

Eh bL2 + bh2ð Þ ð22Þ

The triangular bi-axial flexure hinge

The motion and load of the triangular bi-axial flexure
hinge is defined at its top center where a global coor-
dinate system OTBH � XTBHYTBHZTBH is located as
shown in Figure 5(a). The four triangular flexure
hinges are numbered, and their corresponding local
coordinate systems are denoted as
OTBH�1 � XTBH�1YTBH�1ZTBH�1, OTBH�2 � XTBH�2
YTBH�2ZTBH�2, OTBH�3 � XTBH�3YTBH�3ZTBH�3,
and OTBH�4 � XTBH�4YTBH�4ZTBH�4, respectively, as
shown in Figure 5(b) and (c).

The rotational matrix of the local coordinate sys-
tems OTBH�i � XTBH�iYTBH�iZTBH�i transformed
with the global coordinate system OTBH�
XTBHYTBHZTBH is RTBH:

RTBH =RTBHXRTBHYRTBHZ ð23Þ

RTBHX, RTBHY, and RTBHz represent the rotational
matrixes around XTBH, YTBH, and ZTBH, respectively,
as shown in equation (24).

RTBHX =

1 0 0

0 cosuTBHX sinuTBHX

0 sinuTBHX cosuTBHX

2
64

3
75

RTBHY =

cosuTBHY 0 sinuTBHY

0 1 0

�sinuTBHY 0 cosuTBHY

2
64

3
75

RTBHZ =

cosuTBHZ �sinuTBHZ 0

sinuTBHZ cosuTBHZ 0

0 0 1

2
64

3
75

ð24Þ
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The translation vector of the local coordinate sys-
tems OTBH�i � XTBH�iYTBH�iZTBH�i with the global
coordinate system OTBH � XTBHYTBHZTBH transfor-
mation is tTBH.

tTBH = xTBH, yTBH, zTBHð Þ ð25Þ

The antisymmetric matrix of the translation vector is:

TTBH =
0 �zTBH yTBH

zTBH 0 �xTBH
�yTBH xTBH 0

2
4

3
5 ð26Þ

The accompanying matrix Ad of the coordinate
transformation is:

AdTBH =
RTBH 033 3

TTBHRTBH RTBH

� �
63 6

ð27Þ

where 033 3 is a third-order zero matrix.
For the triangular flexure hinges, the coordinate

transformation satisfies:

RTBH�1 =RTBHX(0)RTBHY(0)RTBHZ(0)

tTBH�1 = 0 � w
2 � t

2

� �
ð28Þ

RTBH�2 =RTBHX(0)RTBHY(0)RTBHZ(p)

tTBH�2 = 0 w
2 � t

2

� � ð29Þ

RTBH�3 =RTBHX(p)RTBHY(0)RTBHZ
p

2

� �
tTBH�3 =

w
2 0 � t

2

� � ð30Þ

RTBH�3 =RTBHX(p)RTBHY(0)RTBHZ �
p

2

� �
tTBH�3 =

w
�2 0 � t

2

� � ð31Þ

The triangular bi-axial flexure hinge consists of
four triangular flexure hinges that is firstly connected
in parallel and then in series. According to the spring
series-parallel principle,36 the model of equal effec-
tiveness is shown in Figure 6, so its flexibility matrix
CTBH is:

CTBH= AdTBH�1CTHAd
T
TBH�1

� ��1
+ AdTBH�2CTHAd

T
TBH�2

� ��1� ��1

+ AdTBH�3CTHAd
T
TBH�3

� ��1
+ AdTBH�4CTHAd

T
TH�4

� ��1� ��1

ð32Þ

The flexibility matrix of the triangular flexure hinge
CTBH can be calculated as follows:

CTBH=

cTBH�11 0 0 0 cTBH�15 0
0 cTBH�22 0 cTBH�24 0 0
0 0 cTBH�33 0 0 0
0 cTBH�42 0 cTBH�44 0 0

cTBH�51 0 0 0 cTBH�55 0
0 0 0 0 0 cTBH�66

2
6666664

3
7777775

ð33Þ

The elements in CTBH are:

Figure 5. Local coordinate systems and the global coordinate system of the hinge: (a) the global coordinate system
OTBH � XTBHYTBHZTBH, (b) the side view of the local coordinate systems OTBH�i � XTBH�iYTBH�iZTBH�i, and (c) the top view of local
coordinate systems OTBH�i � XTBH�iYTBH�iZTBH�i.

Figure 6. Equivalent force model of the hinge.
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cTBH�11 = cTBH�22 =
3L L2 + h2
� �

Ebh 4L2 h2 + h4ð Þ +
12L3 v+1ð Þ

Ebh 3L2b2 +L2 h2 +6L2w2 +6h2w2 +2L2b2 v+6L2 vw2 +6h2 vw2ð Þ ð34Þ

cTBH�15 = cTH�51 =
3L

ffiffiffi
2
p

L3 � 2L2 t+
ffiffiffi
2
p

L3 v� 2L2 tv
� �

Ebh 3L2 b2 +L2h2 +6L2w2 +6h2w2 +2L2 b2 v+6L2 vw2 +6h2 vw2ð Þ �
3L tL2 +

ffiffiffi
2
p

Lh2 + th2
� �
2Ebh 4L2 h2 + h4ð Þ ð35Þ

cTBH�24 = cTH�42 =
3L

ffiffiffi
2
p

L3 +2L2 t+
ffiffiffi
2
p

L3 v+2L2 tv
� �

Ebh 3L2 b2 +L2h2 +6L2w2 +6h2w2 +2L2 b2 v+6L2 vw2 +6h2 vw2ð Þ +
3L tL2 �

ffiffiffi
2
p

Lh2 + th2
� �
2Ebh 4L2h2 + h4ð Þ ð36Þ

cTBH�33 =
24L3 v+1ð Þ

Eb L2 h3 +6h3w2 +9L2 b2 h+6L2 hw2 +6h3 vw2 +8L2 b2 hv+6L2 hvw2ð Þ ð37Þ

cTBH�44 =
L 8L2h2 +3L2 t2 � 6

ffiffiffi
2
p

Lh2 t+3h2 t2
� �

4Ebh 4L2 h2 + h4ð Þ +

L 9L4 b2 +L4 h2 +6L4w2 +8L4b2 v+6L4 vw2 +12L2b2 t2 +6L2h2w2 +12L2b2 t2 v+6L2h2 vw2 +12
ffiffiffi
2
p

L3b2 t+12
ffiffiffi
2
p

L3b2 tv
� �

4Eb3h 3L2 b2 +L2 h2 +6L2w2 +6h2w2 +2L2b2 v+6L2 vw2 +6h2 vw2ð Þ

ð38Þ

cTBH�55 =
L 8L2 h2 +3L2 t2 +6

ffiffi
2
p

Lh2 t+3h2 t2ð Þ
4Ebh 4L2 h2 + h4ð Þ +

L3 9L2 b2 +L2 h2 +6L2 w2 +12b2 t2 +6h2 w2 +8L2 b2 v+6L2 vw2 +12b2 t2 v+6h2 vw2�12
ffiffi
2
p

Lb2 t�12
ffiffi
2
p

Lb2 t vð Þ
4Eb3 h 3L2 b2 +L2 h2 +6L2 w2 +6 h2 w2 +2L2 b2 v+6L2 vw2 +6h2 vw2ð Þ

ð39Þ

cTBH�66 =
L3

Eh bL2 + bh2ð Þ ð40Þ

The rotational stiffness of the triangular bi-axial
flexure hinge in the x-axis and y-axis directions are:

KMx�ux =KMy�uy =
1

cTBH�11
=

1

cTBH�22
ð41Þ

Equation (41) shows that the length L, height h,
and width b of the hinge all have effects on the stiff-
ness of the triangular bi-axial flexure hinge. Figure 7
shows the effect of variables L, h, and b on rotational
stiffness for a given E, t, and w. It can be seen from
Figure 7 that when h is fixed, the rotational stiffness

K increases as L decreases and b increases, and the
change is essentially the same. And as h is increasing,
K is likewise increasing.

Analysis of the triangular bi-axial flexure
hinge

In this section, a finite element model was built to
analyze the hinge. The initial hinge parameters were
h=3.0mm, L=27.5mm, b=10mm, t=100mm,
and w=60mm. The material of the hinge had an
elastic modulus E of 106,820MPa and Poisson’s ratio
v of 0.34. The flexure hinge’s C3D10 mesh model was
created, and as shown in Figure 8(a), the mesh’s aver-
age edge length was 3mm. In all deformation zones,
detailed meshes with at least five elements per line
were created to obtain accurate results even in areas
of high strain concentration (Figure 8(b)).

Rotational flexibility analysis

Because the hinge is used to support an optical preci-
sion equipment, its role is equivalent to that of a uni-
versal joint. So only the elements of the flexibility
matrix CTBH that affect the rotational angle of the
hinge around the x, y axes, that is,cTBH�11(cux�Mx

),
cTBH�22(cuy�My

)), cTBH�15(cux�My
)), and cTBH�24

(cuy�Mx
)) are verified. The results are shown in Table

1. As can be seen from the table, the relative error is
less than 4%, which verifies the correctness of the
analysis model.Figure 7. Variation of rotational stiffness K with respect to

design variables L, h, and b.
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Linear and nonlinear analysis

In the small deformation analysis of the hinge, the
linear angle transformation of the hinge under the
torque in the y-direction was studied by using the lin-
ear finite element model. The lower platform of the
flexure hinge was subject to a 6-DOF constraint as
part of the finite element analysis’s boundary condi-
tions, whereas the center of the upper platform was
subject to the y-direction torque of M. Therefore, it
was possible to use the FEM to determine the hinge’s
rotational angle in the y-direction. The comparison
between the analysis model and the linear finite ele-
ment model is shown in Figure 9. The analytically
calculated value closely resembled the outcome of the
finite element simulation value, and the relative error
was 2.3% or less.

The nonlinear problem of a structure refers to
the change of its stiffness with its deformation,
mainly geometric nonlinearity, material nonlinear-
ity, and state nonlinearity. For flexure hinges, the
nonlinearity in the structural response caused by
large changes in geometry when subjected to large

deflections or rotations is geometric nonlinear-
ity.18,37 In the hinge’s large deformation analysis,
the nonlinear finite element model was used to
study the nonlinear transformation of the rotational
stiffness of the hinge with the rotational angle under
the torque about the y-direction, and the rotational
stiffness was compared with that of the analysis
model. In Figure 10, when the torque is smaller
than 12.2 (N� m), which correspond to a rotational
angle of 0.0119 (rad), the rotational stiffness errors
between the nonlinear finite element model and
analysis models were less than 10%. When the rota-
tional angle is less than 0.0047 (rad), the rotational
stiffness error was less than 3%.

Figure 9. Comparison of analysis model and linear FEM of
hinge rotational angle uy .

Figure 10. Comparison of analysis model and nonlinear FEM
of hinge rotational stiffness Kuy�My

.

Figure 8. Finite element mesh of the hinge: (a) mesh of the FEM and (b) mesh detail in thin sections.

Table 1. Verification of rotational flexibility.

Analysis
(rad/N� mm)

Simulation
(rad/N� mm)

Error
(%)

cTBH�11 7.26E27 7.18E27 1.10
cTBH�22 7.26E27 7.09E27 2.34
cTBH�15 23.64E25 23.52E25 3.29
cTBH�24 3.63E25 3.62E25 0.24
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Comparison with the cross-axis flexure hinge

Compared to the cross-axis flexure hinge, which is
also a compact hinge, the triangular hinge has a lim-
ited range of motion. Since the designed hinge is used
for supporting an optical precision equipment, high
precision is required for the hinge rotation, while
there is less requirement for the range of motion. The
nonlinear finite element method was used to compare
the rotational capacity and center drift of the triangu-
lar triangular bi-axial hinge and the cross-axis bi-axial
hinge, respectively. The cross-axis bi-axial hinge is
shown in Figure 11, and its flexible unit is the same
size as the triangular bi-axial hinge.

A series of bending torques about the y-direction
were applied to the top center of the triangular bi-
axial hinge and the cross-axis bi-axial hinge respec-
tively, and the corresponding rotational angles are
shown in Figure 12. As can be seen from the figure,
the rotational angle of the cross-axis bi-axial hinge is
more than six times than that of the triangular bi-
axial hinge when subjected to the same torque. And it
can be seen that with the increase of torque, the rota-
tional angle of the cross-axis bi-axial hinge shows a
significant nonlinearity phenomenon. The finite ele-
ment simulation results confirm that the use of the
triangular hinge will lead to a limited motion range
compared with the cross-axis hinge.

Figure 13 shows the corresponding center drift of
the hinge at the different rotational angles. As can be
seen from the figure, the center drift of both hinges
increases as the rotational angle increases. The cross-
axis bi-axial hinge has more than 3.7 times as much
center drift as the triangular bi-axial hinge when

rotated at the same angle about the y-direction. The
finite element simulation results confirm that the tri-
angular hinge has higher motion precision than the
cross-axis hinge.

The results of the nonlinear finite element method
show that for structure we designed, the cross-axis bi-
axial hinge has high rotational capacity and the trian-
gular bi-axial hinge has high rotational accuracy.
Since the hinge is used for supporting an optical pre-
cision equipment, the triangular bi-axial hinge is more
suitable compared to the cross-axis bi-axial hinge.

Optimization of the triangular bi-axial
flexure hinge

To determine the flexure hinge design that meets the
requirements and has the best performance, it is nec-
essary to determine the optimal values of h and L.
According to the handbook of metal properties, TC4
(Ti-6Al-4V) has the advantages of low density, high
strength, high specific stiffness, low expansion

Figure 11. The cross-axis bi-axial hinge.

Figure 12. Rotational angles at different torques.

Figure 13. Center drift at different rotational angles.
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coefficient, and good mechanical properties.
Therefore, titanium alloy TC4 was chosen as the
hinge material, whose modulus of elasticity is
106,820MPa, Poisson’s ratio is 0.34, density is 4.51 g/
cm3, and yield strength is 895MPa.

Many researchers have applied algorithms to the
structural optimization of flexure mechanisms.38,39

For the triangular bi-axial flexure hinge, the general
expression of the optimized mathematical model is as
follows:

find
max u h,Lð Þ
min d h,Lð Þ

	
ð42Þ

S:t:
2:5mm4h43:5mm
25mm4L430mm

	
ð43Þ

where u h,Lð Þ is the rotation angle of the flexure hinge
subjected to a bending moment and d h,Lð Þ is the cen-
ter drift of the hinge rotation axis under the same
moment.

To simplify the optimization algorithm, the dimen-
sionless number C is designated. The maximal rota-
tion angle u and minimal center drift d are achieved
by maximizing C:

C=
u h,Lð Þ
d h,Lð Þ ð44Þ

The geometric parameter optimization process is
shown in Figure 14. This algorithm use the same
FEM as that in Section ‘‘Analysis of the triangular
bi-axial flexure hinge,’’ with element type C3D10.

The torque is applied to the top center of the hinge
with a magnitude of 1000N�mm and a direction par-
allel to the rotation axis.

Compared with traditional optimization algo-
rithms, the multi-island genetic algorithm has superior
computational efficiency, better global search capabil-
ity, and avoids local optimal solutions.40,41 Multiple
subpopulations are created by MIGA from a large
population. Subpopulation evolution results from
genetic manipulation. Additionally, an elite retention
strategy is used to guarantee that the best traits of the
parents are passed on to the progeny. For migration
operations, multi-island genetic algorithms typically

Figure 14. Geometric parameter optimization process.

Figure 15. Optimization process.
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randomly choose some individuals and move them to
other islands. This preserves the population’s diversity
and avoids local optimal solutions as much as possi-
ble. Hence, in this study, MIGA was used to optimize
the geometrical parameters. The subpopulation size
was 10, the number of islands was 5, the number of
generations was 10, and the rate of crossover was 1.0.
The initial geometrical parameters were h=3:0mm
and L=27:5mm. After 500 iterations of the optimi-
zation process, the geometrical parameters were
h=2:5mm and L=25:3mm. Figure 15 shows the
optimization process. Each red point in the graph cor-
responds to an optimal solution. Table 2 shows the
results both before and after optimization. All calcula-
tions are conducted on a desktop PC (CPU frequency:
2.60GHz, RAM: 16GB) with 64-bit Windows 10
operating system. The computational time of 500
iterations is 4 h and 10min.

Table 2 shows that optimizing the geometrical
parameters of the flexure hinge resulted in the rota-
tion angle improving by 49.1%, the center drift reduc-
ing by 5.4%, and the dimensionless number C
increasing by 57.4%. This indicates that, using
MIGA, the rotational stiffness and rotational accu-
racy of the hinge were effectively enhanced.

Mechanical analysis

As a result of the structural design in Section
‘‘Triangular bi-axial flexure hinge analysis model,’’ in
addition to dimensional optimization in Section
‘‘Optimization of the triangular bi-axial flexure
hinge,’’ the flexure hinge configuration was finally
determined. To verify its compliance with the require-
ments, it had to undergo static analysis and modal
analysis.

Static analysis

Considering the influence of the mass of the optical
instrument, the entire bottom of the flexure hinge was
fixed and 280N of force was applied along the x or z-
direction at the top center to simulate the vertical or
horizontal placement of the optical instrument
(Figure 16).

As shown in Figure 16(a), in the case of vertical
placement, the maximum stress area was at the top of
the triangular area of the hinge and the maximum
stress was 361.4MPa. From Figure 16(b), in the case
of horizontal placement, the maximum stress area
was also at the top of the triangular area of the hinge
and the maximum stress was 5.646MPa. Under these
two conditions, the stress of the hinge was much less
than the ultimate yield stress of the titanium alloy
TC4 (895MPa). Hence, in the structural design, the
strength of the hinge met the requirements.

Modal analysis

The system’s dynamic performance is reflected in the
system’s modal shape and modal frequency. Because
the hinge is used to support optical precision equip-
ment, it is affected by a series of complex scenarios,
such as vibration and noise during transportation
and use, and the hinge requires sufficient mechanical

Figure 16. Results of the static simulation: (a) force in the x-direction and (b) force in the z-direction.

Table 2. Results before and after optimization.

Before
optimization

After
optimization

Relative
change (%)

Geometrical
parameters
(1024 mm)

h = 3:0,
L = 27:5

h = 2:5,
L = 25:3

Rotation
angle (1024 rad)

6.97 10.39 49.1

Center drift
(1024 mm)

6.89 6.52 5.4

C 1.01 1.59 57.4
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performance to ensure its safety. The second-order
dynamic equilibrium equation is usually used for the
modal analysis of the mechanical structure:

M½ � €x tð Þf g+ C½ � _x tð Þf g+ K½ � x tð Þf g=F tð Þ ð45Þ

where M½ � is the mass matrix, C½ � is the damping
matrix, K½ � is the stiffness matrix, €x tð Þf g is the exter-
nally excited acceleration signal, _x tð Þf g is the exter-
nally excited velocity signal, x tð Þf g is the externally
excited displacement signal, and F tð Þ is the external
load.

When no external load is applied and damping has
little effect on the modal frequency and modal shape
of the mechanical structure, the damping matrix of
the mechanical system can be ignored. Equation (45)
can be transformed into the dynamic equation of
undamped free vibration:

M½ � €x tð Þf g+ K½ � x tð Þf g=0 ð46Þ

The free vibration of the mechanical structure is sim-
ple harmonic motion, but its displacement is a sinu-
soidal function:

xf g= ff gi cos vitð Þ ð47Þ

ff gi denotes the eigenvectors of the i-th order
modal vibration, vi is the inherent frequency of the i-
th order mode, and t is time.

Substituting equation (47) into equation (46)
yields:

K½ � � v2
i M½ �

� �
ff gi =0 ð48Þ

Because the amplitude of each node cannot be
zero, the coefficient determinant in equation (48)
must be zero; hence, the free vibration equation of
the mechanical structure can be obtained as follows:

K½ � � vi M½ �j j=0 ð49Þ

For mechanical structures with N DOFs, the natu-
ral frequencies of the N orders can be obtained using
equation (49), and the modal shapes of the corre-
sponding orders can be obtained by substituting them
into equation (48).

The modal superposition procedure was used in
this study’s modal analysis of the triangular bi-axial
flexure hinge. First, the FEM in Section 4 ‘‘Analysis
of the triangular bi-axial flexure hinge’’ was used to
divide the coarse mesh and fine mesh, and then the
boundary constraints were applied to simulate the
mechanical resonant frequency of the hinge.

The first six modes of the triangular bi-axial flex-
ure hinge are shown in Figure 17. The figure shows
that the first mode rotated around the x-axis, the sec-
ond mode rotated around the y-axis, the third mode
was translational along the x-axis, the fourth mode
rotated around the z-axis, the fifth mode was

Figure 17. Simulation results for the modals: (a) first mode, (b) second mode, (c) third mode, (d) fourth mode, (e) fifth mode, and
(f) sixth mode.
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translational along the z-axis, and the sixth mode was
translational along the y-axis.

The first six orders of modal frequencies and the
modal shape of the triangular bi-axial flexure hinge are
shown in Table 3, where the first and second-order
simulation results are mechanical resonant frequencies
in the working direction and the last four orders are
mechanical frequencies in the non-working direction.

The first and second inherent frequencies of the
hinge were 152.1 and 156.8Hz, respectively, accord-
ing to the finite element modal analysis. The hinge’s
structural dynamic stiffness, which surpassed the
design index requirements that the natural frequency
be larger than 150Hz, is reflected in these frequencies.
This means that the hinge did not resonate with other
structural parts of the optical precision equipment.

The physical hinge is shown in Figure 18.

Testing

Rotational stiffness

A test system was built, as illustrated in Figure 19, to
evaluate the accuracy of the stiffness equation and

simulation optimization findings. The precise experi-
mental approach is as follows: To simulate the torque
applied to the hinge, a metal weight of mass M was
suspended in the upper fixture at a distance of 0.1m
from the hinge’s center axis. A laser range finder was
used to measure the triangular bi-axial flexure hinge’s
vertical displacement z when the hinge was subjected
to simulated torque. The following equation can be
used to determine the rotation’s angle b:

b=
parctan z

r

� �
1808

ð50Þ

where r is the distance between the measuring point of
the laser range finder and the center of the hinge; its
value was 100mm. All experimental equipment was
placed on an air-floating vibration isolation platform
to isolate external vibration. The metal weight used in
the experiment started off at a mass of 100 g, and
changed in the rotation angle of the flexure hinge were
monitored in increments of 100 g up until 1200 g.

The results are shown in Table 4. Then the experi-
mentally measured value of the rotational stiffness KM

of the triangular bi-axial flexure hinge was derived from

KM =
Mgl

b
ð51Þ

where g=9:8m/s 2 and l=0:1m.

Figure 19. Test system.

Table 4. Rotation angle experimental data.

Number of
measurements

Weight
mass
M (g)

The angle of
rotation
(b 10�5 rad)

The rotational
stiffness
KM (N� m)

1 100 8.8 1114.3
2 200 16.6 1181.5
3 300 29.9 983.9
4 400 44.4 883.4
5 500 54.4 901.3
6 600 64.4 913.6
7 700 77.8 882.3
8 800 89.9 872.6
9 900 101.1 872.9
10 1000 114.4 857.2
11 1100 126.6 852.1
12 1200 138.9 847.2
Average value 930.9

Figure 18. Physical view of the triangular bi-axial flexure
hinge: (a) front view and (b) side view.

Table 3. Modal analysis results.

Modal
order

Modal
frequency (Hz)

Modal
shape

1 152.1 Rotate around x
2 156.8 Rotate around y
3 1190.7 x direction
4 1269.3 Rotate around z
5 1294.3 z direction
6 1606.2 y direction
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Table 5 shows a comparison of the three results for
the triangular bi-axial flexure hinge’s analytically cal-
culated value (calculated using analysis model), simu-
lated calculated value, and experimental value. The
maximal relative error between them was 6.95%. This
result verifies the accuracy of the derived analytical
formula and simulation optimization results.

Error analysis

Table 5 shows that the maximum relative error
between the analytically calculated value, simulated
calculated value, and experimental value was 6.95%.
It is imperative to analyze the source of the error.
First, the cantilever beam stress-strain model was sim-
plified in the process of deriving the hinge rotational
stiffness equation. The hinge deformation in the real
case was more complex; hence, simplification intro-
duced model errors. Second, during the finite element
analysis, a discrete approximation of the continuum
was used in the computation. The type and size of the
element had an impact on the quality of the calcula-
tion, which eventually resulted in discrete mistakes.
Additionally, the numerical computation method was
applied to resolve the finite element problem; how-
ever, it approximated the actual analytical solution
and introduced errors. Finally, during the measure-
ment experiment, the surface roughness of the upper
fixture caused errors in the laser range finder during
the measurement of the displacement of the hinge.

Conclusions

To achieve the requirement of flexure hinges for
specific optical precision equipment, in this study, a
new triangular bi-axial flexure hinge was proposed,
the analysis model for the flexibility of the triangu-
lar bi-axial flexure hinges was derived, for and the
effect of hinge length L, hinge height h, and hinge
width b on rotational stiffness were investigated.
After that, the linear and nonlinear finite element
methods were used to verify the analysis model, the
designed hinge was compared with the cross-axis bi-
axial hinge. Then, the hinge geometry was opti-
mized using the multi-island genetic algorithm,
which improved the rotation angle by 49.1% and
reduced center drift by 5.4%. Next, static and
modal analyses of the hinges were conducted.
Finally, a test system was constructed to measure
the flexure hinge’s rotation angle and rotational
stiffness. The results demonstrated that the analyti-
cally calculated value was 869.6N�m/rad, simulated

calculated value was 934.6N�m/rad, and experimen-
tal value was 930.9N�m/rad, and the maximum rela-
tive error between the three was 6.95%. Then three
aspects of the error sources were analyzed. In con-
clusion, the analysis model met the requirements of
the design of hinges, and the use of the multi-island
genetic algorithm effectively optimized the hinge
parameters and improved its performance. The
design of triangular bi-axial flexure hinges provides
new ideas for other structural forms of hinges.
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