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Abstract: To achieve high frame rates and continuous streaming simultaneously, we propose
a compressed spatio-temporal imaging framework implemented by combining time-delay-
integration sensors and coded exposure. Without additional optical coding elements and
subsequent calibration required, this electronic-domain modulation enables a more compact
and robust hardware structure, compared to the existing imaging modalities. By exploiting
the intra-line charge transfer mechanism, we achieve a super-resolution in both temporal and
spatial domains, thus multiplying the frame rate to millions of frames-per-second. In addition,
the forward model with post-tunable coefficients, and two reconstruction strategies proposed
therefrom, facilitate a flexible voxels post-interpretation. Finally, the effectiveness of the proposed
framework is demonstrated by both numerical simulations and proof-of-concept experiments.
With the prominent advantages of prolonged time window and flexible voxels post-interpretation,
the proposed system will be suitable for imaging random, non-repetitive, or long-term events.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

To visualize various instantaneous phenomena and fast dynamic processes, there is an ever-
growing performance demand for high-speed imaging systems. A higher temporal resolution is
highly desired for all sorts of scientific research and industrial applications [1–6]. However, the
frame rate is generally limited to tens of frames-per-second by image sensors in conventional
systems. With the advantages of high integration and parallelized quantization, some CMOS
sensors can reach hundreds of frames-per-second, which can be further improved by sacrificing
spatial resolution through the region of interest (ROI) operation. For those high-speed systems
using image sensors specially designed for high frame rates, on-board digital caching is a solution
to deal with the transmission pressure caused by large data flux. Further, in ultra-high-speed
imaging beyond the quantization rate, the analog charge will be cached in the in-pixel storage
through a special sensor structure, but at the expense of degraded spatial resolution and filling
factor [7–10]. Whether by means of on-board memory or in-pixel storage, there is a limited
recording time capacity.

In addition to the efforts at the sensor end, under the conventional imaging framework, an
alternative path to increase the frame rate will focus on the system modality. The camera
array comes to mind first. With a fast rotating mirror prism sweeping an array of 128 cameras,
allowing up to 25 million frames-per-second with a full sequence of 128 [11]. Using a stationary
beam-splitter instead, along with the image intensifier gated, the frame rate can be increased to
200 million frames-per-second [12]. By staggering each camera’s exposure window, a dense array
of cameras geometrically aligned is demonstrated for capturing thousands of frames-per-second
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with continuous streaming supported [13]. Commonly, this hardware stacking in exchange for
performance improvement has resulted in a bulky architecture, as well as complicated calibration.
Another burst capturing modality is sequentially timed all-optical mapping photography (STAMP),
which equivalently achieves trillions of frames-per-second by temporal and spatial separation, yet
falls short in number of frames [14]. By mapping the spatial image into a serial time-domain data
stream, the serial time-encoded amplified microscopy (STEAM) enables a continuous operation
at millions of frames-per-second [15]. However, it encodes the image into the spectrum of a
broadband pulse, sacrificing the spectral information, and thus depriving its ubiquitous adaption.
Despite being accessible to hundreds of billions of frames-per-second, the streak camera can
only provide one-dimensional images, as well as a narrow time window [16].

In summary, within the conventional imaging framework, high-speed imaging always leads
to either a bulky and complicated system, or a shallow sequence depth, or a degraded spatial
resolution. An approach to circumvent these problems is the compressed sensing-based imaging
framework, in which dynamic events can be reconstructed from the modulated sampling data
that is far less than required by Nyquist [17–20]. This low sampling rate reduces the frame
rate and pixel count required for the image sensor, and thus slashing the data flux by a large
amount, so that both high frame rate and continuous time window become feasible within a
compact system. Moreover, by means of multiplexed sampling and applying specific priori
in reconstruction, its immunity to noise is enhanced, which is critical in high-speed imaging
due to insufficient exposure. However, the dynamic scene needs to be modulated controllably
before being projected to the sensor, which introduces an additional operation in the optical path,
usually implemented with mechanical or time-varying optical elements. Typically, mechanical
translation of a passive coded aperture by the piezoelectric stage is employed in coded aperture
compressed temporal imaging (CACTI) [21,22], and it can be improved by a more flexible spatial
light modulator (SLM) [23–26]. These elements modulate the incident scene at a rate faster than
the sensor, thereby multiplying the achievable frame rate. However, limited by their refreshing
rate, the frame rate is generally clamped at several thousand frames-per-second. In contrast,
the galvanometer scanner can achieve millions of frames-per-second through temporal shearing.
But confined by the sensor’s frame rate, only single-shot operation is available, depriving the
continuous window capability [27].

All these physical-based approaches rely on relatively significant modifications or additions to
the imaging system, as well as complicated calibrations. By comparison, without employing
any mechanical or optical scanning device, the electronic-domain approaches allow a more
compact system, with the advantages of high speed and high accuracy. Temporal shearing by a
streak camera, compressed ultrafast photography (CUP) enables an acquisition rate of up to 100
billion frames-per-second [28]. Intermittent exposure or pixel-wise exposure realized in specially
manufactured CMOS sensors are also effective means of spatio-temporal modulation, capable of
hundreds of millions of frames-per-second [29,30]. Limited by the electronic readout speed of
the sensor, these approaches do not have continuous acquisition capability.

The rolling-shutter operation, which is commonly used in CMOS sensors, theoretically has a
temporal resolution of several microseconds by leveraging the subtle time delay between adjacent
lines, and the data can be continuously read out in lines. However, its mechanism determines that
there is no spatial multiplexing, so essentially, it is not a quite efficient modulation, although
several systems based on it have been proposed [31–33]. With the same temporal resolution and
continuous readout capability, the time-delay-integration (TDI) operation multiplexes temporal
and spatial information, enabling a more efficient acquisition. By utilizing a pseudorandom binary
mask and a TDI camera, the high-speed system developed by J. Park et al. can record the dynamic
events at a 200kHz frame rate in the continuous streaming mode [34]. In addition, restricted by
their stationary optical frameworks, the mapping relationship between the data cube voxels and
the image sensor pixels is fixed in the existing systems. Therefore, for better performance, the
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flexible voxels post-interpretation will be a remedy for non-repetitive or difficult-to-reproduce
events, which is appreciated [35,36].

To achieve high frame rates and continuous streaming simultaneously, with voxels post-
interpretation considered, in this paper, we propose a compressed spatio-temporal imaging
framework implemented by combining TDI sensors and coded exposure, enabling a continuous
sampling at millions of frames-per-second. Compared to the existing high-speed imaging
modalities, this electronic-domain approach promotes a more efficient and flexible modulation
implementation. By leveraging the on-chip TDI operation, the spatio-temporal multiplexing
no longer requires additional optical coding elements and subsequent calibration, resulting in a
more compact and robust hardware structure. Furthermore, with regular TDI as the baseline,
both temporal resolution and spatial resolution are subdivided by exploiting the intra-line charge
transfer mechanism, thereby multiplying the achievable frame rate. In addition, the continuous
streaming is arbitrarily separable, which ensures that segments of interest can be selectively
reconstructed, with significantly reduced computational complexity and memory pressure in
reconstruction. Finally, the forward model with post-tunable coefficients, and two reconstruction
strategies proposed therefrom, facilitate a flexible voxels post-interpretation.

Our contributions can be summarized as follows:

1) We propose a compressed spatio-temporal imaging framework based on TDI combined
with coded exposure, and specify two system architectures. Compared to conventional
TDI-based systems, it can achieve super-resolution in both temporal and spatial domains,
resulting in millions of frames-per-second with continuous streaming capability.

2) Given the same sampling results, we realize a flexible voxels post-interpretation through the
forward model with post-tunable spatio-temporal merging coefficients. Two reconstruction
strategies are then derived, which can flexibly specify the spatial and temporal resolution
for the target concerned.

With the prominent advantages of prolonged time window and flexible voxels post-interpretation,
the proposed system will be suitable for imaging random, non-repetitive, or long-term events.

2. System architecture and modulation principle

TDI operation was originally designed to improve the sensor’s sensitivity in dynamic scene
applications. For this purpose, the charge line transfer needs to be synchronized with the image
motion to achieve staring imaging equivalently, thus extending the integration time without
causing blur. For a general scene without image motion matching constraint, the charge packet
transfers one line at a time in a stepwise manner, as shown in Fig. 1(a), and keeps continuously
exposed throughout the transfer process. After performing all the line transfer steps, namely
the integral stages, each charge packet to be read out contains both temporal information and
one-dimensional spatial information along the TDI direction. In this case, the spatial resolution
is determined by the pixel size, and the temporal resolution depends on the line transfer rate,
which can generally reach hundreds of thousands of frames-per-second. This off-the-shelf sensor
performs spatio-temporal multiplexing by leveraging the on-chip TDI operation, with high
temporal resolution and continuous time window capability, making it a high-quality candidate
for compressed spatio-temporal imaging.

Furthermore, by insight into the driving timing of TDI, we find that the charge packet inter-line
transfer is realized through a relay of multiple driving signals. Taking the three-phase TDI
sensor as an example, the line transfer process consists of six subdivided phases. Therefore, this
intra-line transfer can be reorganized into multiple sub-steps, each of which moves a fraction of the
pixel, and a continuous transfer mode is adopted to provide equal time intervals for each sub-step.
The size of the charge packet within the sensor, as well as its readout and quantization operation,
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Fig. 1. Illustration of how TDI works. (a) and (b) show the inter-line and intra-line charge
transfer and readout processes, respectively. (c) Comparison of charge displacement between
these two cases.

determines that the sampling at each sub-step remains implemented in full pixels. As shown in
Fig. 1(b), the inter-line charge transfer is refined into three sub-steps, with each displacement
of 1/3 pixel, and the transfer trajectories of three adjacent charge packets are represented in
three distinguished colors. The charge transfer displacements in these two cases are compared
in Fig. 1(c), which shows that the intra-line charge transfer also synchronously subdivides the
temporal resolution into fractional line periods. In this way, with the same sensor architecture
and data flux, we have further improved the spatial and temporal resolution simultaneously, as
shown in Fig. 1(b), compared to Fig. 1(a) for the division of the spatio-temporal data cube.

However, information multiplexing alone is insufficient, and it needs to be supplemented by
coding modulation. Based on the intra-line TDI, we propose a compressed spatio-temporal
imaging framework, which is implemented by combining coded exposure and TDI. The intra-line
charge transfer depicted in Fig. 1(b) multiplies both the one-dimensional spatial resolution and
temporal resolution of the spatio-temporal data cube, while the spatial resolution perpendicular
to the TDI direction remains at the pixel level. To this end, we present a dual-arm system as
shown in Fig 2(a), which subdivides the remaining spatial dimension through two orthogonally
installed TDI cameras, and also doubles the sampling rate. The system consists of a coding light
source, an objective lens, a beam splitter, two relay lens and TDI cameras, a synchronization
trigger, and the data acquisition and reconstruction computer. After being reflected by the target
scene, the coded beam is incident to the beam splitter through the objective lens, and then equally
divided into two parts, which are finally projected to the TDI cameras through the relay lenses,
respectively. The two TDI cameras are installed orthogonally and maintain sub-pixel geometric
registration.

Directed by the data acquisition and reconstruction computer, the synchronization trigger
drives the light source to flash with a preset coding sequence, which is a pseudo-random binary
one composed of 0’s and 1’s, and synchronously generates the TDI intra-line transfer signal with
the same period. The data acquisition and reconstruction computer captures the TDI cameras’
data in real time, and then implements video reconstruction in accordance with the selected time
segment and spatio-temporal resolution requirements.

Figure 2(b) presents an alternative compact version within the same principle framework. The
coded beam reflected by the target scene is incident to two Dove prisms through the objective lens,
and then projected to two separate areas of the TDI camera through the relay lenses, respectively.
To achieve two orthogonal projections, these two Dove prisms have a relative rotation angle of
45° along the axis. Compared with the former, it only uses one TDI camera to realize sampling in
both two orthogonal directions, fully utilizing the horizontal pixel count margin, and thus has the
advantages of lower cost and smaller volume. The above two systems have the same modulation
effect on the spatio-temporal data cube, which is depicted in Fig. 3. The original spatio-temporal
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Fig. 2. The hardware composition of the proposed system. (a) The dual-arm version, in
which the incident beam is divided into two parts through a beam splitter and projected onto
two orthogonally installed TDI cameras, respectively. (b) An alternative compact version,
which projects two orthogonal images to separate areas of the TDI camera by leveraging the
image rotation function of Dove prism.

data cube is modulated in temporal domain through coded exposure, and then spatially sheared
through TDI in the horizontal and vertical directions, respectively. Finally, these projections are
merged at a pixel-wise scale to form the sampled data.

Fig. 3. The modulation effect of the proposed system on the spatio-temporal data cube,
which is modulated in the temporal dimension by coded exposure, and then spatially sheared
by TDI in the vertical and horizontal directions, respectively. Finally, they are projected to
the sensors and spatially merged by pixel sampling to obtain the sampled data.

Temporal coding is selected here instead of spatial coding. Actually, the projections along
highly redundant dimensions, such as time or spectrum, are preferred by most high-dimensional
compressed imaging systems. In this case, spatial coding is a more general and effective solution,
and temporal coding is not feasible. While the projection under the TDI mechanism is along
the spatio-temporal direction, as shown in Fig. 1, that is, the sampling includes both temporal
and spatial multiplexing. This particularity determines the validity of temporal coding, even
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if the one-dimensional coding it presents is still with a poor capability. Benefiting from this
dual-arm architecture, temporal coding can approximate quasi-two-dimensional coding through
orthogonal projection. Although this is still inferior in coding capability compared to spatial
coding, it has achieved comparable results. In addition to performance considerations, we are
committed to removing the spatial coding elements from the system to obtain a more compact
and robust hardware structure. Therefore, balancing system performance and implementation,
we ended up choosing the current solution.

Compared with the existing compressed imaging systems, the advantages of the proposed
one are summarized as follows: First, the electronic-domain modulation based on TDI sensors
combined with coded exposure simplifies the system architecture and promotes a more efficient
and flexible modulation implementation. In addition, no optical coding element required,
eliminating the need for calibration, which is beneficial to improve the robustness. Second, the
modulation based on intra-line TDI has both high-speed and continuous streaming capability,
thus having an infinitely prolonged time window, which is suitable for recording random, or
long-term events. Moreover, compared with the regular TDI, both temporal resolution and spatial
resolution are further multiplied. Third, its spatio-temporal voxels post-interpretation enables
a more flexible reconstruction for the target scene with the given sampled data. This will be
described in detail in the following section.

3. Forward model and reconstruction strategy

3.1. Forward sensing model with variable coefficients

Referring to the visual modulation effect presented in Fig. 3, we establish a mathematical
model to describe the modulation and acquisition process of the proposed framework on the
spatio-temporal data cube. With the reference coordinates defined in Fig. 3, the sampling result
Y(i, j), where (i, j) are the row and column coordinates, can be expressed as follows:

Y(i, j) =
j ·S∑︂

c=(j−1)·S+1

(︄
S−1∑︂
u=0

(︄
M ·S∑︂
r=1

X(r, c, r + u + (i − 1) · S) · E(r + u + (i − 1) · S)

)︄)︄
+ δ(i, j), (1)

where M is the TDI integral stages, and S is the TDI intra-line steps, namely the theoretical
spatial super-resolution times. X∈R(M·S) × (M·S)×T represents the target spatio-temporal data cube,
E∈RT represents the coded exposure sequence, and δ∈RLR×M signifies the measurement noise .
T is the time span of the reconstructed video, there is T= S× (M+LR)-1, where LR is defined
as the number of lines read out by each TDI camera. The physical meaning of Eq. (1) is that
the innermost summation represents the regular TDI operation, the middle and the outermost
summation represent the merging operation along the TDI direction and perpendicular to the
TDI direction, respectively. Note that the latter two are mandatory because the sensor is always
read out in full pixels, with no fractional pixels accessible.

Derived from Eq. (1), the sampling results of both TDI cameras in the proposed system can be
reformulated into a matrix representation:⎧⎪⎪⎨⎪⎪⎩

YA = R · DA · XA · C = AA · XA · C

YB = R · DB · XB · C = AB · XB · C
, (2)

where DA, DB∈R(LR ·S) × (M·S·T) are TDI operation matrices. Both R∈RLR × (LR ·S) and C∈R(M·S)×M

are merging matrices, which realize spatial merging along the TDI direction and perpendicular
to the TDI direction, respectively. To simplify the model representation, define R multiplied by
DA, DB as the projection matrix AA, AB∈RLR × (M·S·T). YA, YB∈RLR ×M are the sampling result
matrices, and the target spatio-temporal data cube is flattened into two-dimensional matrices XA,
XB∈R(M·S·T) × (M·S) along the temporal dimension.
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Each matrix in Eq. (2) is visualized in Fig. 4. The projection matrix A is sparse with a fixed
structure, which is jointly determined by the TDI stages M and intra-line steps S, and its internal
elements are composed of exposure sequences. The spatial merging matrix C has a diagonal-like
structure, which is also determined by the TDI stages and intra-line steps.
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Fig. 4. A graphical representation of the matrix in the forward model. In the two dotted
boxes are the enlarged display of local areas in the upper left corner and lower right
corner of matrix A, respectively. The target spatio-temporal data cube is flattened into a
two-dimensional matrix X along the temporal dimension.

The formula for calculating the sampling rate Sr of the above model is given in Fig. 4. When
LR→∞, there is Sr→2/(M·S3), which means that its upper limit is extremely low, so it would be
quite difficult to reconstruct high-quality video frames. Therefore, we consider downscaling the
model in the spatial or temporal dimensions to improve the sampling rate. Then, the forward
model described in Eq. (2) can be transformed into a spatio-temporal downscaled version:⎧⎪⎪⎨⎪⎪⎩

YA = AA · MT · MN · X′
A · CN

YB = AB · MT · MN · X′
B · CN

, (3)

where MT∈R(M·S·T) × (M·S·T/Tm) is the temporal merging matrix, and MN∈R(M·S·T/Tm) × (M·S/Nm ·T/Tm)

is the spatial merging matrix. They are used to merge the time-related and space-related columns
of projection matrix A for downscaling operation, respectively. CN∈R(M·S/Nm)×M is a matrix that
compensates for the spatial scale difference between the sampling results and the merged target
in the direction perpendicular to TDI. X’A, X’B∈R(M·S/Nm ·T/Tm) × (M·S/Nm) are the target matrices
with downscaled temporal and spatial resolution. Tm is the temporal merging coefficient, and
Nm is the spatial merging coefficient, indicating the descending times in temporal and spatial
resolution, respectively.

According to the geometric relationship between the two TDI cameras, if the target matrix X’B
is defined as a frame-by-frame transpose of X’A, that is, X’B= transpose(X’A) by frame of size
(M·S), then the projection matrix AB is a group-by-group reversed column order of AA, that is,
there is AB=fliplr(AA) by group of size (M·S). In this case, the two discrete parts in Eq. (3) can
be integrated into a standard compressed sensing model:

⎛⎜⎝
vec(YA)

vec(YB)
⎞⎟⎠ = ⎛⎜⎝

((AA · MT · MN) ⊗ CN) · P

(AB · MT · MN) ⊗ CN

⎞⎟⎠ · vec(X′
B) (abbreviated as YV = Λ′ · X′

V ), (4)
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where ⊗ denotes the Kronecker product operation, and vec(·) denotes the vectorization operation
of splicing matrix by row. P∈R(M2 ·S2/Nm2 ·T/Tm) × (M2 ·S2/Nm2 ·T/Tm) is a remapping matrix, which is
responsible for the mapping operation from vec(X’B) to vec(X’A), that is, vec(X’A)=P·vec(X’B).
Its abbreviated expression is included in the right bracket, where YV∈R(2LR ·M) × 1 is the result
vector, Λ’∈R(2LR ·M) × (M2 ·S2/Nm2 ·T/Tm) is the sensing matrix, and X’V∈R(M2 ·S2/Nm2 ·T/Tm) × 1 is the
target vector in this case.

For the forward sensing model described in Eq. (4), we can reconstruct the video frames by
solving the following optimization problem:

X̂′
V = arg min

X′V

{︃
1
2
| |YV − Λ′X′

V | |
2
2 + λφ(X

′
V )

}︃
, (5)

where | |·| |2 denotes the ℓ2 norm. The first quadratic term enforces the fidelity between the
measurements and the estimated results. The second term is a regularization function φ(·), and
λ is its weight coefficient. To solve Eq. (5), we adopt a total variation (TV) regularizer and a
two-step iterative shrinkage thresholding (TwIST) algorithm [37].

3.2. Reconstruction strategy

The proposed framework performs a high-speed continuous sampling process, thus recording
the entire event with an infinitely extended time window. In response, we segment the sampling
results and reconstruct the scene in a piecewise manner, which has the following advantages:
First, segmentation reduces the matrix size and computational complexity, thus accelerating
reconstruction. Second, multiple segments can be reconstructed in parallel without interfering
with each other. Third, the reconstruction can be targeted to the specific segments of interest to
avoid wasting computing resources. In addition, this approach also brings higher flexibility in
reconstruction, that is, given the sampling results, the reconstruction parameters can be freely
post-tuned based on the variable model described in Section 3.1, so as to achieve flexible voxels
post- interpretation. Based on the fact that a certain sampling rate should be guaranteed for
a successful reconstruction, it is impractical to capture high-speed and high-resolution scenes
simultaneously without compromising either of them, so a trade-off between temporal and spatial
resolution is inevitable.

Thus, two reconstruction strategies are derived, which are called selective reconstruction
and combinatorial reconstruction, respectively. The former is shown in the left half of Fig. 5.
In view of the difference in characteristics of the concerned targets, the merging coefficients
are selectively set in the model for the same time segment. For high dynamic targets, a small
temporal merging coefficient is adopted to ensure high frame rate. While for the targets with
high spatial resolution requirements, a small spatial merging coefficient is used to facilitate the
capture of detailed information. Note that although only the parallelepiped shown in Fig. 5 has
been effectively sampled, the cuboid span from t0 to t3 is still taken as the reconstruction target,
thus preserving the integrity of the spatio-temporal data cube. In this case, certain areas at both
ends are excluded from the reconstruction results for credibility, as shown in Fig. 5, only the part
t1∼t2 is retained after reconstruction with the sampling results of t0∼t3.

The other combinatorial reconstruction strategy is shown in the right half of Fig. 5, which splits a
complex scene into several sub-segments. With the guidance of small temporal merging coefficient
corresponding to high dynamic targets and small spatial merging coefficient corresponding to the
targets with high spatial resolution requirements, each sub-segment has its distinguish setting on
the merging coefficients. Then, they are reconstructed separately and integrated into a complete
video. Note that a certain overlapping area between adjacent parallelepipeds should be ensured
for a continuous video streaming. As shown in Fig. 5, the first sub-segment is reconstructed with
the sampling results of t4∼t8, and the second sub-segment is reconstructed with the sampling
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Fig. 5. Schematic diagram of the image reconstruction strategy, which shows two cases. In
one case, as shown on the left side, flexible temporal and spatial merging coefficients can be
selected for reconstruction for the same sampling process. It is noted that in order to ensure
the effectiveness of reconstruction, only the part t1∼t2 is retained after reconstruction with
the sampling results of t0∼t3. The other case is shown on the right side. A piece of video
can be segmented and reconstructed separately with different temporal and spatial merging
coefficients. The first segment is reconstructed with the sampling results of t4∼t8, in which
the part t5∼t7 is retained. The second segment is reconstructed with the sampling results
of t6∼t11, in which the part t7∼t10 is retained. The third segment is reconstructed with the
sampling results of t9∼t13, in which the part t10∼t12 is retained. In this way, we obtain the
continuous reconstructed video streaming of t5∼t12.

results of t6∼t11. In this way, we get the reconstruction results of t5∼t7 and t7∼t10, respectively,
thus realizing a seamless connection.

4. Numerical results

In the TwIST algorithm implementation, to make full use of the temporal redundancy in the
wide time window, we first sparse the temporal dimension with a discrete cosine transformation
(DCT) base before adopting the TV denoiser. The TV regularization function is of an isotropic
type and oriented towards two-dimensional images. Therefore, the spatial image slices in the
video will be de-noised separately. Like most other algorithms, as a hyper-parameter, the weight
coefficient λ needs to be manually fine-tuned according to the scene characteristics and spatial
resolution, and the larger it is, the smoother the image and vice versa. Its value involved in all the
following experiments is set in the range of 0.1 to 10. On the premise of the segment selected
in the experiment and the computer configuration described in Section 5.1, it takes about ten
more minutes to complete a reconstruction, and a larger merging coefficient means a significantly
shorter time. Generally, it will converge within 200 iterations.

To verify the effectiveness of the proposed system, we first carried out numerical simulations.
In order to quantify the improvement in spatial and temporal resolution brought by intra-line
TDI, we designed a simulation experiment to explore the upper limit of the proposed system’s
spatial and temporal resolution, taking inter-line TDI as the baseline for comparison. In the
following two evaluations, the scene is set to have a spatial resolution of 192× 192, and a temporal
resolution of 980, with a time span of 0.54 ms in the case of 1,800,000 frames-per-second.



Research Article Vol. 31, No. 5 / 27 Feb 2023 / Optics Express 7312

In the evaluation of spatial resolution, the USAF 1951 test target remains static in order to
avoid interference caused by the spatial displacement. The results obtained by inter-line TDI
and intra-line TDI, both based on the dual-arm architecture, are shown in Fig. 6(a) and Fig. 6(b),
respectively. To facilitate quantitative analysis, the contrast ratios, covering all elements in
Group2 and Group3, are plotted in Fig. 6(c). Compared to a mosaic effect in the former, the
intra-line TDI enables a significantly finer image, and it can recognize up to the fifth element in
Group3, with a contrast of 0.1 as the threshold.
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Fig. 6. Evaluation results of spatial and temporal resolution. In the evaluation of spatial
resolution, (a) and (b) are the results obtained by inter-line TDI and intra-line TDI, respectively,
and their contrast ratios are plotted in (c). In the evaluation of temporal resolution, the
intensity response curves of inter-line TDI and intra-line TDI are plotted in (d) and (e),
respectively. Note that the dotted line in (d) and (e) represents the theoretical pulse intensity.

In the evaluation of temporal resolution, the scene also remains static but with intensity
fluctuations, which are modulated by pulses of 300kHz and 900kHz, respectively, and the former
is the Nyquist frequency referring to the inter-line TDI process. Fig. 6(d) and Fig. 6(e) are the
response curves of inter-line TDI and intra-line TDI to these two pulses, respectively, which are
defined as the average intensity over time. In contrast, the pulse in Nyquist frequency can be
captured by intra-line TDI with a higher fidelity. It can even capture intensity fluctuations at
900kHz.

Following the above reconstruction strategy, we specifically designed two different scenes.
One is a scene that contains quasi-static target and high dynamic target simultaneously to verify
the selective reconstruction strategy. The other is that there are targets with various dynamic
attributes distributed in different sub-segments of the time segment concerned, which is used to
verify the combinatorial reconstruction strategy.

In order to reduce the computational complexity and memory pressure in the video reconstruc-
tion, while retaining sufficient sampling intensity, the first goldfish scene is set to have a spatial
resolution of 162× 162, and a temporal resolution of 4100, with a time span of 2.28 ms in the
case of 1,800,000 frames-per-second. This corresponds to a hardware architecture where the
TDI integral stages M is 54 with an intra-line steps S of 3, and the line rate is 600kHz, which
is the highest one available to date. The motion trajectories of the two goldfish are shown in
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Fig. 7(a), where the broad-finned fish makes a fast circular swimming counterclockwise, while
the zebra fish rotates slowly clockwise.
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Fig. 7. Simulation results for the goldfish scene. The trajectories of the two goldfish are
shown in (a), where the broad-finned fish makes a fast circular swimming counterclockwise,
while the zebra fish rotates slowly clockwise. When the merging coefficients are set to
Nm = 1 and Tm= 820, the reconstructed video frames are shown in (b), in which the zebra
fish’s stripes can be clearly discerned, while the broad-fined fish is severely motion blurred.
When the merging coefficients are set to Nm= 3 and Tm= 4, the reconstructed video frames
are shown in (d). Compared to the frames at the same time as the former, the broad-fined fish
can be clearly captured, but the contrast of zebra fish’s stripes degrades, which can also be
confirmed by the normalized intensity curves depicted in (c). Note that the time is marked
in the upper right corner of each reconstructed video frame. See Visualization 1 for the full
video.

When the merging coefficients are set to Nm= 1 and Tm= 820, the reconstructed video frames
are shown in Fig. 7(b). Since the spatial resolution remains at 162× 162, the zebra fish’s stripes
can be clearly discerned. However, the temporal resolution is degraded significantly due to
a large temporal merging coefficient, resulting in the broad-finned fish being severely motion
blurred. With the merging coefficients set to Nm= 3 and Tm= 4, the reconstructed video frames
are shown in Fig. 7(d). Compared to the frames at the same time as the former, the high temporal
resolution ensures that the motion trajectory of broad-fined fish can be clearly captured. Along
with this, however, the spatial resolution drops to 54× 54, degrading the contrast of zebra fish’s
stripes, which can also be confirmed by the normalized intensity curves depicted in Fig. 7(c). To
sum up, given the sampling results, the first set of coefficients is preferred to explore the spatial
information of zebra fish in detail, while the second one is suitable for capturing the time-varying
information of broad-fined fish.

It is noted that compared with the results in Ref. [34], more scene contents are included here
at a lower spatial resolution, and the sampling rate is further significantly reduced due to the
spatio-temporal subdivision. For these two reasons, Tm in the second set of coefficients is kept at
least 4 to maintain a considerable reconstruction quality. The lower Tm values will be verified in
the following experimental section.

With the same spatial resolution and frame rate as the above scene, as well as the hardware
configuration, the second dynamic scene consists of three time sub-segments. To match the

https://doi.org/10.6084/m9.figshare.21555162
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Fig. 8. Simulation results for the dynamic test target. The scene is divided into three time
sub-segments. A narrow rectangular window shown in (a) and (e) slides vertically downward
and horizontally to the left, respectively, generating the time sub-segments #A and #C. The
time sub-segments #B between them is a static process with the fully open window. In
the case of Nm= 3 and Tm= 4, the reconstructed video frames of sub-segments #A and #C
are shown in (b) and (f). While in the case of Nm= 1 and Tm = 230, the reconstruction
results of sub-segment #B are given in (d). Close-up views of the target bars in these three
sub-segments are collected in (c). See Visualization 2 for the final integrated video.

overlapping relationship of adjacent sub-segments shown in Fig. 5, sub-segment #A and #C are
both 2136 frames with a time span of 1.19 ms, and sub-segment #B sandwiched between them
has a total of 1972 frames and lasts for 1.09 ms. By using a narrow open window on the static test
target to slide vertically downward and horizontally to the left, respectively, we get the ground
truth scenes of sub-segments #A and #C, as shown in Fig. 8(a) and Fig. 8(e).

In reconstruction, the merging coefficients Nm= 3 and Tm= 4 are set for these two sub-segments
to ensure a clear capture of the sliding processes, and the reconstructed video frames are shown
in Fig. 8(b) and Fig. 8(f). Sub-segment #B is a static process with the fully open window,
which is suitable for taking the merging coefficients as Nm= 1 and Tm= 230 to explore the
target details. The reconstructed video frames are shown in Fig. 8(d). See Visualization 2 for
their final integrated video. In terms of resolving for the target bars, the reconstructed frames
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for sub-segment #B will be significantly better than the other two due to no spatial resolution
degradation, which can also be confirmed by the close-up views collected in Fig. 8(c). Note that
although we cannot accurately predict the target characteristics before reconstruction, both the
scene prior and the tentative reconstruction by multiple sets of coefficients can still enable an
optimized set of coefficients and satisfactory reconstruction effects.

We observed in Fig. 7 and Fig. 8 that the system has slight artifacts when imaging targets with
spatial displacement, which presents that the target in other time periods will appear slightly in
the current frame. After analysis, it is concluded that the artifacts are caused by low sampling
rate and the resulting mediocre reconstruction quality. To obtain a considerable target image with
such a small amount of sampled data, we performed a sparse transformation along the temporal
dimension to squeeze its redundancy during reconstruction, and then the limited bandwidth effect
is also responsible for the artifacts. In reconstruction, a better deep denoiser or neural network is
expected to suppress these artifacts and further improve the video quality.

5. Experiments

5.1. Experimental setup

Following the dual-arm system depicted in Fig. 2(a), we built a proof-of-concept setup to verify
the effectiveness of the proposed framework. The light beam emitted from the dynamic scene,
whose generation will be described separately below, is incident to the beam splitter (BS013,
50:50 Non-Polarizing, Thorlabs, Inc.) through the objective lens (MVL50M23, 50 mm EFL,
f/2.8, Thorlabs, Inc.), and then the transmitted and reflected beams are projected to the focal
planes of two orthogonally installed TDI cameras (VT-4K5C-H100, Vieworks Co., Ltd.) through
the relay lenses (MVL35M23, 35 mm EFL, f/2.0, Thorlabs, Inc.), respectively. Each camera is
equipped with a line start trigger interface to facilitate synchronization. We developed a FPGA
(XC4VSX55, Advanced Micro Devices, Inc.)-based synchronization trigger to synchronize coded
exposure and TDI line transfer. The computer configured with an Intel Core i7-10750 H CPU and
16 G RAM is responsible for real-time data acquisition and reconstruction algorithm execution.

In particular, the controllable intra-line charge transfer described in the theoretical model is not
supported in the off-the-shelf TDI cameras, so we use the inter-line charge transfer to simulate
it equivalently, which is convincing because of the same physical mechanism. With the TDI
intra-line steps S set to 3, the TDI camera with a pixel size of 5µm and an integral stage set to
192 in the experimental setup will be equivalently merged to a model with a pixel size of 15µm
and an integral stage of 64. The maximum line rate of 100kHz will also be reduced to 33.33kHz.
Besides, the raw sampled data should implement a 3× 3 merging in the digital domain to get the
equivalent sampling results.

After the above equivalence, the experimental setup has a spatial resolution of 192× 192 in
case of no downscaling, and a frame rate of up to 100,000 frames-per-second. Note that the
latter does not represent the upper limit of the system framework described in this paper. Since
the charge transfer rate in TDI sensors is in nanoseconds, the line rate is mainly limited by the
electronic readout and quantization operation, as well as data transmission bandwidth, which
can reach hundreds of kilohertz at present. On this premise, benefiting from the intra-line TDI
operation, the proposed framework will be further improved by several times in terms of temporal
resolution, reaching millions of frames-per-second capable of continuous streaming.

5.2. Results

In the above numerical simulations, the effectiveness of the proposed framework, and the
capability of flexible voxels post-interpretation, as well as the reconstruction strategy derived
from it, have been demonstrated. Therefore, we focus on its ability to capture high-dynamic
scenes in the experimental verification. In order to demonstrate its adaptability to scenes with
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different characteristics, we designed three fast changing scenes in total, covering changes in
intensity, morphology, and their mixture. In addition, with such a high frame rate requirement, it
becomes costly to capture the ground truth directly with a high-speed camera. To circumvent
this issue, we use the controllable dynamic scenes instead, so as to verify the experimental
results by comparing them with the theoretical truth value. These dynamic scenes are generated
with the help of manually manipulated LEDs and an optical chopper, respectively. Note that in
the implementation of the former, the LEDs will take on the functions of both dynamic scene
generation and temporal coding, so a logical “and” operation is required between the coded
exposure signal and the modulated signal used for high dynamic analog, before finally driving the
LEDs. Additionally, in both simulations and experiments, we have tried to generate multiple sets
of coding sequences with different seeds, and the results show that the reconstruction quality is
quite robust to the coding sequence. So there is no specific coding sequence requirement within
the pseudo-random coding framework.

In Scene #1, we use four independently driven LEDs to illuminate targets with different shapes,
where x-shape, triangle, and circle are implemented with sinusoidal driving signals of 5kHz,
2.5kHz, and 1kHz, respectively, by means of high-frequency pulse width modulation. While
the equal-sign-shape keeps a constant intensity by fixing the duty cycle. The two TDI cameras’
sampling results are shown in Fig. 9(a). From the continuous streaming, we cut out 263 lines
of readout data, spanning from 52 ms to 59.89 ms. Then, with the merging coefficients set to
Nm= 3 and Tm= 1, a video data cube with a size of 64× 64× 598 is reconstructed, which spans
from 52 ms to 57.98 ms at a frame interval of 10µs. See Visualization 3 for the full video. The
representative frames are shown in Fig. 9(b), in which the close-up views of the three shapes
visualize the fluctuation of their intensity over time, referring to the frame number and time
marked within the image. To facilitate comparison with the theoretical truth value, the average
intensity of the local areas covering these three shapes is calculated separately, and then plotted
in Fig. 9(c). As expected, they all appear as sinusoids with the same frequency as the theoretical
one, except that the circle’s intensity curve is slightly distorted compared to the other two.
By analyzing this distortion, we found that its LED entered the near-saturated operating area,
resulting in a nonlinearity between the luminous intensity and the driving current, which was
also effectively identified by our proposed system.

With the intensity change similar to that in Scene #1 preserved, Scene #2 also contains
an embodiment of changes in spatial information. Two seven-segment displays (HDSP-7513,
Broadcom, Inc.) are used as target generating devices, mounted in left and right, and display
Arabic numerals alternately in the manner described in Fig. 10(a). The intensity of each digit
fluctuates in triangular waves with a display period of 1.28 ms. With the same merging coefficients
setting as above, and also the sampling results spanning from 52 ms to 59.89 ms are cut out for
reconstruction, we obtain a reconstructed video of Scene #2, including a total of 598 consecutive
frames, as seen in Visualization 4. The representative frames are shown in Fig. 10(b). In the frame
with peak intensity, we can clearly capture and identify the Arabic numerals, as shown in the
close-up views. To present the intensity change in the scene, we calculated the average intensity
of the small rectangular boxes marked in Fig. 10(b), and their changes over time are plotted in
Fig. 10(c). The two areas corresponding to the left side of the figure are fully activated during the
digital display period, so their intensity presents a continuous triangular wave. Since they belong
to the left and right digits respectively, there is a 180-degree phase difference between them,
which is consistent with the theoretical value shown in Fig. 10(a). As for the area corresponding
to the right side of Fig. 10(c), when 1-3-5-7 alternates, it is only activated at 3-5 with the rest
blanked, so its average intensity shows an intermittent fluctuation as in the figure.

Finally, to demonstrate its ability to capture high-speed motion, we designed Scene #3. The
setup used to generate this dynamic scene is shown in Fig. 11(a), which uses an optical chopper
to sweep across the static USAF target at high speed in the middle image plane, forming the
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trajectory shown in the lower left corner of the figure. From the continuous sampling streaming,
we cut out a segment that contains a complete sweeping process, spanning from 30 ms to 70 ms.
With the merging coefficients set to Nm= 3 and Tm= 1, the size of the reconstructed video
corresponding to this process will reach 64× 64× 4000. To reduce the computational complexity
and memory pressure in the reconstruction, it is divided into 7 sub-segments overlapped in the
manner depicted on the right side of Fig. 5, which are then reconstructed separately, and finally
combined together. The representative video frames are shown in Fig. 11(b), which clearly
present a complete sweeping process. See Visualization 5 for the full video.
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Fig. 11. Experimental results for Scene #3. (a) The setup used to generate dynamic
Scene #3, which consists of a USAF target, an objective lens, and an optical chopper. (b)
The time-stamped representative reconstructed frames, which record a complete sweeping
process.

6. Conclusion and discussion

In this paper, we propose a compressed spatio-temporal imaging framework implemented by
combining TDI sensors and coded exposure. Since no additional optical coding element and
subsequent calibration are required, it has a more compact and robust hardware structure,
compared to other existing high-speed imaging modalities. By exploiting the intra-line charge
transfer mechanism, we achieve a super-resolution in both temporal and spatial domains, thus
multiplying the frame rate to millions of frames-per-second. In addition, based on the forward
model with post-tunable coefficients and the reconstruction strategies derived from it, we realize a
flexible voxels post-interpretation, which can flexibly specify the spatial and temporal resolution
for the target concerned. Subsequently, the effectiveness of the proposed system, as well as
its capability of flexible voxels post-interpretation, was demonstrated in numerical simulations.
Furthermore, we built a proof-of-concept setup with a spatial resolution of 192× 192, and a frame
rate of up to 100,000 frames-per-second. Note that the latter does not represent the upper limit
of the imaging framework described in this paper. In experiments, its adaptability to transient
scenes with various characteristics was verified.

In the future work, we will focus on the improvement in pixel count and frame rate. To fully
utilize the large pixel count of TDI cameras, based on the proof-of-concept setup, its resolution of
4640× 256 can be remapped to an incident scene of 1536× 768 by the image-transmitting optical
fiber, thus producing images with formats that conform with conventional photography. And it
can be further multiplied by the intra-line TDI operation. On the other hand, since the charge
transfer rate in TDI sensors is in nanoseconds, the line rate is mainly limited by the electronic
readout and quantization operation, as well as data transmission bandwidth, which is currently
clamped at hundreds of kilohertz. These advances in TDI cameras can be anticipated for a higher
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frame rate in the near future. Additionally, the deep learning framework is also preferred to
improve the quality of reconstruction and provide real-time acquisition.

For applications, based on a simplified and robust framework, it provides a cost-effective
alternative to high-speed imaging. Especially, with the prominent advantages of prolonged time
window and flexible voxels post-interpretation, the proposed system will be suitable for imaging
random, non-repetitive, or long-term events.
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