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Three-Dimensional Forward Modeling of Ground
Wire Source Transient Electromagnetic Data Using
the Meshless Generalized Finite Difference Method

Tianjiao Li, Ming Zhang , and Jun Lin

Abstract— The transient electromagnetic (TEM) method is a
geophysical exploration method commonly used in the detection
of subsurface structures. Underground conductivity information
at different depths can be obtained by interpreting the observed
time-varying TEM data. Three-dimensional forward modeling
is important for studying TEM responses and is also essential
for inversion. The calculation accuracy of mesh-based forward
modeling methods, such as the finite volume method (FVM) and
finite-element method (FEM), is greatly affected by the quality of
the mesh. In this article, a TEM forward modeling method based
on a meshless generalized finite difference method (GFDM) is
proposed. It is based on the Taylor expansion and weighted least
squares fitting. In the GFDM, a partial derivative of the unknown
parameter in the governing equation is expressed as a linear
combination of the function values of support points. Numerical
integration is not required during the forward modeling process,
which simplifies the program implementation and increases the
numerical calculation efficiency. In this article, a 3-D GFDM
forward modeling method for simulating ground wire source
TEM data is investigated; a corresponding program is developed,
and the correctness of the code is verified through several 3-D
models. By comparing the forward modeling results of this
method with those of the FEM, it is verified that the GFDM offers
higher computational speed and lower memory requirements.

Index Terms— 3-D forward modeling, generalized finite differ-
ence method (GFDM), transient electromagnetic (TEM) method,
wire source.

I. INTRODUCTION

THE transient electromagnetic (TEM) method energizes
electrically conducting earth using a line source or a loop

of wire and measures the TEM responses over many receiver
sites to obtain subsurface electrical resistivity [1], [2], [3].
It has advantages of relatively good measurement efficiency
and relatively low survey costs. Because of this, it has been
widely used in many geophysical prospecting scenarios, such
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as investigating underground geological structures and explor-
ing mineral and groundwater sources [4], [5], [6], [7], [8].

Accurate and efficient 3-D forward modeling is the basis
for electromagnetic response characteristic analysis and is
also a prerequisite for inversion interpretation [9], [10]. The
integral equation method, finite difference method (FDM),
finite volume method (FVM), and finite-element method
(FEM) have successively become mainstream methods for
the forward modeling of EM data [9], [11], [18], [19]. The
integral equation method was favored in earlier days because
it only required the calculation of a field in a small vol-
ume anomaly domain, and the memory requirements were
low [12], [13], [14]. With the increase in memory and pro-
cessing speed of computers, the FDM, FEM, and FVM have
been followed with interest in recent decades. Therein, the
FDM is a method that uses discrete difference operators based
on a Taylor series to approximate the continuous differential
operators in a partial differential equation. When using the
FDM, the solution domain is generally divided into a staggered
grid, and the unknowns of magnetic field components and
electric field components are placed at the center of cell faces
and in the middle of cell edges, respectively [9], [16], [15].
Although the FDM can be used in 3-D electromagnetic for-
ward modeling, there are limitations in the forward modeling
of complex realistic geological models. In recent years, the
FVM and the FEM have drawn more attention because of their
flexibility in unstructured mesh generation [17], [18]. By using
an unstructured mesh, local refinement can be easily carried
out, which results in fewer numbers of freedoms to be solved.
Less computing time is therefore consumed, and less computer
memory usage is required [19], [20]. To make the best use of
the unstructured mesh, open-source software programs, such
as TetGen and FacetModeller, have been developed and are
available for free, which also advances the development of the
FVM and FDM [21], [22], [23]. These attractive features lead
to their important role in the forward modeling of arbitrary
real-life 3-D models [24], [25].

At present, total field forward modeling algorithms and sec-
ondary field forward modeling algorithms predominate for 3-D
forward simulations of controlled source electromagnetic field
data, both of which have their own advantages. The advantage
of the total field forward modeling algorithm is that it directly
calculates the total field response of the electromagnetic field
at any position without the need to consider the primary
field of the background model; hence, it is highly applicable
to complex models. However, as the electromagnetic field
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response near the source varies drastically, a smaller mesh is
required to simulate this variation more accurately. This results
in many freedoms and high consumption of computational
time and memory [26], [27], [28], [29]. In contrast, although
the secondary field algorithm needs to find a proper back-
ground model and calculate the responses of such a model,
it does not require refining the mesh near the source, hence
resulting in less freedom and computational time [30], [31].

The boundary condition is a significant factor that influ-
ences the numerical accuracy of electromagnetic data forward
modeling. The Dirichlet boundary condition, which assumes
a zero value of the electric or magnetic field at the outer
boundaries, can be applied if the boundaries are sufficiently
far away from the area of interest. The perfectly matched
layer (PML) boundary condition, which uses a few absorbing
layers around the area of interest to depress the artificial
boundary effect, is another option. By using it, the compu-
tation domain can be restricted to the target region, which
can shorten the computation time and reduce the memory
requirement [32], [33], [34], [35], [36].

The abovementioned forward modeling methods, such as
the FEM and FVM, are mesh-based methods, and the quality
of the mesh, e.g., the shape of the cell, has a significant
influence on the computational accuracy. In recent years,
the application of a meshless method to geophysical electro-
magnetic forward modeling has been investigated. By using
meshless methods, the computational domain is generated into
a set of unconnected points rather than meshes. Meshless
local petrov-galerkin method (MLPG), radial point interpo-
lation method (RPIM), and radial basis function (RBF)-based
methods are typical meshless methods that can be used to
solve electromagnetic problems [37], [38], [39]. In this article,
we investigate another type of meshless method, i.e., the
meshless generalized FDM (GFDM), which is a strong-form-
based meshless method [40], [41], [42]. It introduces the
concept of point clusters and expresses the function values
at the central point by a linear combination of the function
values of the support points and that of the central point. One
of the advantages of the GFDM over mesh-based methods (i.e.,
FD, FV, and FE methods) is that the discretization of points
is more straightforward and more robust than the generation
of quality meshes. This helps overcome the aforementioned
challenges in the representation of models with overly complex
geometry when using mesh-based methods. In addition, as a
connection between points is not needed, adding or deleting
some points will not affect the rest, which makes it easy and
more efficient to conduct adaptive refinement of the discretiza-
tion than using the mesh-based methods. It also provides the
basis for adaptive inversion. Furthermore, since the GFDM
solves the strong-form partial differential equations, the basis
function and numerical integration are not needed, and it
can therefore effectively prevent the interpolation difficulties
caused by mesh distortion in regions with complex geometry.
This can also make the derivative calculation more accurate
and efficient, as losing accuracy and increasing computation
time during the integration computation procedure can be
avoided. Moreover, the coefficient matrix generated by the
GFDM is a sparse matrix similar to that in the FEM; hence,

the GFDM linear equation system for the TEM problem can
be easily and quickly solved by either direct or iterative
solvers. In this article, the system is solved using a direct
solver [27], [30], [31].

Because of the abovementioned advantages, the GFDM has
been applied to the forward modeling of several engineering
problems, but its application to a 3-D wire source TEM
problem by solving the E-field equations has not yet been
widely reported [44], [45]. The limitation of this application
lies in the following two main problems that need to be solved.

For the TEM problem considered in this article, as an
electrical wire source is applied, the source term in the
linear equation system needs to be mathematically handled.
When solving the problem using the FEM and FVM, this is
generally conducted by treating the density of the current as a
pseudo-δ function. However, such handling is not applicable
in the GFDM. The reasons are given as follows. In the FEM
and FVM, the spatial integral of the pseudo-δ function is
determined, which results in a constant value. In the GFDM,
the integral is not needed, and the direct use of such a pseudo-
δ function would result in an infinite value that is unusable
in the numerical calculation. To solve the abovementioned
problem, we deduced the GFDM linear equation system based
on the secondary E-field of the wire source TEM problem. The
derivation details of the equation are given in Section II.

Another problem is that the GFDM approximation of the
unknown function constructed for the TEM problem is of
high-order continuity (the derivation details of the GFDM
approximation are given in Sections III and IV), which is in
violation of the discontinuous normal component requirement
for the E-field at the interface. Unlike the FE method, in which
the discontinuity of conductivity is explicitly present in the
mesh, in the GFDM, the discontinuities are not presented in the
cloud of points. Therefore, it is challenging for the GFDM to
reproduce the discontinuity. To solve this problem, we imposed
inner interface conditions and conducted special conductivity
assignments for the interface points. The details are introduced
in Section V.

In this article, a 3-D forward simulation method of ground
wire source TEM data based on the GFDM is studied, and a
corresponding program is developed. Forward modeling and
analysis of the TEM response of typical 3-D models are carried
out, and the calculation results are compared with those of the
FEM. We also investigate the computational efficiency and
memory usage of the GFDM by comparing these parameters
with those of the FEM under the same discretization (i.e., the
distribution of the points of the GFDM is the same as the
distribution of mesh vertices in the FEM).

II. SECONDARY E-FIELD EQUATIONS FOR THE TEM
PROBLEM

In this article, we considered a TEM configuration with a
grounded wire source. The schematic of the 3-D geoelectric
model is shown in Fig. 1.

The Maxwell equations in the time domain [10], [12], [15]
are given by

∇ × E = −µ0
∂ H
∂t

(1)

Authorized licensed use limited to: Changchun Inst of Optics Fine Mechanics & Physics. Downloaded on May 13,2024 at 07:10:40 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: THREE-DIMENSIONAL FORWARD MODELING OF GROUND WIRE SOURCE TEM DATA USING 2002913

Fig. 1. Schematic of the principle of time-domain electromagnetic detection.

∇ × H = σ E + J s (2)

where E denotes the electric field, H denotes the magnetic
field, t denotes the time, σ denotes the dielectric conductivity,
µ0 denotes the permeability of the vacuum, and CCC denotes
the source current density. Taking the rotation at both ends of
(1) yields the following equation:

∇ × ∇ × E = −µ0
∂∇ × H

∂t
. (3)

By substituting (2) into (3), the curl–curl equation of the total
electric field in the time domain can be obtained

∇ × ∇ × E = −µ0
∂(σ E + Js)

∂t
. (4)

For a 3-D Earth model, the total electric field E can be
expressed as the sum of the primary and secondary E-fields,
and the actual conductivity σ can be expressed as the sum of
the background and anomalous conductivities as follows:

E = E P + ES (5)
σ = σP + σS (6)

where E P denotes the primary electric field, ES denotes the
secondary electric field, σP denotes the background conduc-
tivity, and σS denotes the anomalous conductivity.

Equations (5) and (6) are substituted into (4) to yield

∇ × ∇ × (E P + ES) = −µ0
∂(σP + σS)(E P + ES)

∂t

− µ0
∂ J S

∂t
. (7)

Similar to (4), the curl–curl equation of the primary field
can be expressed as

∇ × ∇ × E P = −µ0
∂σP E P

∂t
− µ0

∂ J S

∂t
. (8)

Subtracting (8) from (7), the curl–curl equation of the
secondary electric field is obtained

∇ × ∇ × ES + µ0σ
∂ ES

∂t
= −µ0σS

∂ E p

∂t
. (9)

Equation (9) is the final equation to be solved in this article.
In (9), E P is the primary electric field corresponding to the
background model, which can be obtained by the analytical
solution of the homogeneous half-space Earth model. ES is
the secondary electric field corresponding to the 3-D Earth
model. Ultimately, the total electric field can be obtained by
the sum of the solved secondary electric field and the primary
electric field using (5), and the TEM response ∂µ0 H/∂t can
be calculated by the rotation of the total electric field using (1).

Fig. 2. Layout schematic of the 3-D GFDM point allocation.

III. METHODOLOGIES OF THE GFDM

According to the basic theory of the GFDM, which
is based on the moving least squares method and the
Taylor expansion, a point cloud (regular or irregularly
distributed) in the computational domain should be first
discretized by scattering arbitrary points in the solution
domain [40], [41], [42], [43], [44], [45]. For each given central
point (xi , yi , zi ), the nearest m points from the central point
are found to form a subdomain within a specified distance d,
as shown in Fig. 2.

Suppose that si (xi , yi , zi ) is the function value of the central
point (xi , yi , zi ), which is represented by the red star in
Fig. 2, and si

j ( j = 1, 2, 3, . . . , m) is the function value
of the support points (x j , y j , z j ) within the point cluster,
which are represented by the black stars in Fig. 2 (m is the
total number of support points inside the subdomain). The
second-order Taylor expansion at the central point (xi , yi , zi )

can be expressed by

si
j = si + hi j

∂si

∂x
+ ki j

∂si

∂y
+ li j

∂si

∂z
+

h2
i j

2
∂2si

∂x2

+
k2

i j

2
∂2si

∂y2 +
l2
i j

2
∂2si

∂z2

+ hi j ki j
∂2si

∂x∂y
+ hi j li j

∂2si

∂x∂z
+ ki j li j

∂2si

∂y∂z

+ O
(
ρ2)( j = 1, 2, 3, . . . , m) (10)

where hi j = x j − xi , ki j = y j − yi , li j = z j − zi , and
ρ = (h2

i j + h2
i j + l2

i j )
1/2.

The following residual function is defined using the moving
least squares principle:

R(s) =

m∑
j=1

[
si − si

j + hi j
∂si

∂x
+ ki j

∂si

∂y
+ li j

∂si

∂z
+

h2
i j

2
∂2si

∂x2

+
k2

i j

2
∂2si

∂y2 +
l2
i j

2
∂2si

∂z2 + hi j ki j
∂2si

∂x∂y

+ hi j li j
∂2si

∂x∂z
+ ki j li j

∂2si

∂y∂z

]2

ω2(di j
)

(11)

where ω(di j ), which is given by the following equation,
denotes the weighting function of each support point and di j

denotes the distance between the central point (xi , yi , zi ) and
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the support point (x j , y j , z j ) [38]

ω
(
di j

)
=

 1 − 6
(

di j

dm

)2

+ 8
(

di j

dm

)3

− 3
(

di j

dm

)4

di j ≤ dm

0 di j > dm

(12)

where dm denotes the distance between the central point
(xi , yi , zi ) and the farthest support point within the point
cluster.

To some extent, the weighting function reflects the influence
of the function values at different support points on the
function value at the central point; the closer the distance
between the support point and the central point, the greater
the value of the weighting function is.

Taking the minimal value of the residual function (11), the
partial derivative of R(s) with respect to each order partial
derivative term Ds should be equal to zero

∂ R(s)
∂ Ds

= 0 (13)

where

Ds =

{
∂si

∂x
,
∂si

∂y
,
∂si

∂z
,
∂2si

∂x2 ,
∂2si

∂y2 ,
∂2si

∂z2 ,
∂2si

∂x∂y
,

∂2si

∂x∂z
,

∂2si

∂y∂z

}T

.

Combining (10)–(13), the following equation can be obtained:

ADs = b (14)

where εi j = {hi j , ki j , li j , (h2
i j/2), (k2

i j/2), (l2
i j/2), hi j ki j , ki j li j ,

ki j li j }
T , A =

∑m
j=1 ω2(di j )εi jε

T
i j , and b =∑m

j=1 ω2(di j )εi j (si
j − si ).

By solving (14), the explicit expression for each order of
partial derivative in Ds can be denoted as a linear combination
of the function values of the support points and that of the
central point

Ds = A−1b = A−1b = A−1
m∑

j=1

ω2(di j )εi j (si
j − si )

= ei si +

m∑
j=1

ei
j s

i
j (15)

where ei = −
∑m

j=1 A−1εi jω
2(di j ) and ei

j = A−1εi jω
2(di j ).

IV. GENERALIZED FINITE DIFFERENCE ANALYSIS OF THE
ELECTROMAGNETIC PROBLEM

By replacing the partial derivative terms in (9) with the
corresponding terms of the explicit expression of Ds in (15)
and applying the discrete differential format for (∂ ES/∂t) =

(sn+1
i − sn

i /1t) and (∂ E P/∂t) = (pn+1
i − pn

i /1t), the GFDM
equations for the TEM problem are given as

aei si +

m∑
j=1

aei
j s

i
j + µ0σ

sn+1
i − sn

i

1t
= −µ0σS

pn+1
i − pn

i

1t

(16)

where a is the introduced vector given by a =

(0, 0, 0, 1, 1, 1, 0, 0, 0). sn
i and sn+1

i are the function values

Fig. 3. Schematic of the two independent mesh-free subdomains (i.e.,
subdomains 1 and 2) at two sides of the interface. The conductivities for
the points in regions 1 and 2 are recorded as σ1 and σ2, respectively.

to be solved (i.e., the secondary electric field) for the central
point at moments tn and tn+1, respectively. pn

i and pn+1
i are

the known primary electric field values for the central point
at moments tn and tn+1, respectively, which can be calculated
by the analytical solution.

By reorganizing, (16) can be rewritten in the iterative form
as

sn+1
i = sn

i +

aei si +

m∑
j=1

aei
j s

i
j

 1t
µ0σ

−
σS

σ
pn+1

i +
σS

σ
pn

i .

(17)

Considering all points inside the computational domain and
those on the boundary, the following set of linear equation
systems is obtained:

C N×N xN×1 = f N×1 (18)

where C is the final coefficient matrix with a dimension of N×

N (N is the total number of unknowns in the computational
domain), and it is a sparse matrix with at most m + 1 (m
is much smaller than N ) nonzero elements in each row. x is
the function value vector to be solved. f is the right-hand side
term, i.e., the source term, the value of which is known.

V. BOUNDARY CONDITIONS AND CONDUCTIVITY
ASSIGNMENT FOR INTERFACE POINTS

A. Outer Boundary Conditions

A convenience of using the secondary electric field equation
is that the secondary field on the outer boundary of the model
(denoted by the symbol 0) can be approximated as zero when
the boundary is far enough away from the target study area.
Based on this, the following outer boundary conditions, i.e.,
the Dirichlet boundary conditions, are used:

n × Es
∣∣
0

= 0 . (19)

B. Inner Interface Conditions and Conductivity Assignment
for Interface Points

To ensure the discontinuity of the normal component of the
E-field at interfaces, two independent mesh-free subdomains
(subdomains 1 and 2), one each at the two sides of an
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interface, are constructed. This means that the linear equation
corresponding to the points on the interface should be deduced
and derived twice: once for each subdomain. The conductivity
of the points on the interface should also be assigned twice
separately. At each assignment, the value of conductivity is
set the same as that on the points inside the corresponding
subdomain. A schematic of this concept is shown in Fig. 3.
Although this results in an increased number of equations in
the system to be solved (the increase in number depends on
the number of points on the inner interfaces), it is an effective
way to reproduce the discontinuous property. Using the above
process, the discontinuity also imposes the tangential compo-
nent of the E-fields and the normal current density, which is
not expected. To solve this problem, the continuity conditions
at interfaces are directly and enforcedly incorporated into the
linear equation system by the following equations:

E1
T = E2

T

and

σ 1 E1
N = σ 2 E2

N

where E1
T and E2

T and E1
N and E2

N represent the tangential
components of the E-field for subdomains 1 and 2 and the
normal components of the E-field for subdomains 1 and 2,
respectively; and σ 1 and σ 2 represent the conductivities of
subdomains 1 and 2, respectively.

VI. EXAMPLES

To verify the correctness of the GFDM algorithm and the
developed 3-D forward modeling program, two groups of
typical 3-D Earth models, i.e., double-block land TEM models
and topography semi-airborne TEM models, are considered.
The TEM response (i.e., d B z/dt) of the above models is
calculated using the developed GFDM program, and the results
are compared with the equivalent responses computed using
other methods.

As the 3-D forward modeling of the TEM responses based
on the GFDM is carried out by adopting the secondary electric
field equation, the prerequisite for an accurate simulation of
the secondary electric field is the precise calculation of the
primary electric field. In this article, the primary electric field
is computed using a program developed on the MATLAB
platform according to the analytical solution of a homogeneous
Earth model [46]. To verify the correctness of the primary
electric field [i.e., the source term in the right-hand term of
(9) and (18)], the analytical solution of the TEM responses
(d B z/dt) for the background model (i.e., the homogeneous
half-space Earth model) of the 3-D Earth models considered in
this article is first calculated and compared with the equivalent
FEM numerical solution for the same model.

A. Verification of the Correctness of the Analytical Solution
of the TEM Response for the Homogeneous Half-Space
Earth Model

The parameters of the homogeneous half-space Earth model
are set as follows: the conductivity is 0.01 S/m and the model
size is 60 × 60 × 40 km (x × y × z). The wire source

Fig. 4. Schematic of the homogeneous half-space model.

is placed along the x-direction, with a length of 1 km and
a current of 40 A. The center of the source is located at the
origin. A schematic of the configuration of the model is shown
in Fig. 4.

As the TEM response spreads downward with the extension
of time and gradually decays with time, the TEM responses
(i.e., d B z/dt) for different time channels can reflect the
distribution of the underground resistivity at different depths.
Based on this, the analytical solution of the model for four
typical time channels, i.e., 10−4, 10−3, 10−2, and 10−1s, are
considered; the responses at the ground surface are calculated,
and they are compared with the equivalent FEM numerical
solution for the same model. The results are shown in Fig. 5.

The reason for choosing d B z/dt as the TEM response to
be compared and analyzed in this example (as well as in
the following 3-D Earth model example) is that the previous
works in the literature showed that for the type of model
configuration considered in this article, d B z/dt can better
indicate the underground abnormal bodies than the d Bx/dt
and d B y/dt responses. This is manifested in the larger value
of the relative anomaly of the d B z/dt responses (the relative
anomaly is calculated from the ratio of the secondary-induced
electromotive force to the total-induced electromotive
force) [47].

By comparing the analytical solutions and the numerical FE
solutions for the abovementioned four time channels shown in
Fig. 5, it can be seen that the TEM responses (i.e., d B z/dt) for
the homogeneous half-space Earth model calculated using the
two methods coincide well with each other, which verifies the
correctness of the computation of the primary TEM responses.
It can also be observed that the amplitude of d B z/dt gradually
decays with the extension of the shutdown time, which is
consistent with the physical properties of the TEM responses.
This again verifies that the program is able to reproduce
the varying characteristics of the primary TEM response.
As the primary TEM response is calculated from the rotation
of the primary electric field using (1), the correctness of the
primary electric field (i.e., the source term) is naturally and
indirectly verified.

B. Verification of the Correctness of the Numerical Solution
of the Land TEM Response for the 3-D Double-Block Models

The three typical 3-D double-block models considered here
are Model 1 with two conductive blocks, Model 2 with two

Authorized licensed use limited to: Changchun Inst of Optics Fine Mechanics & Physics. Downloaded on May 13,2024 at 07:10:40 UTC from IEEE Xplore.  Restrictions apply. 



2002913 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 61, 2023

Fig. 5. Comparison between the analytical solution and the numerical FEM solution of the TEM response (d Bz/dt) for the homogeneous half-space Earth
model at the ground surface. (a)–(d) and (e)–(h) First and second rows represent the analytical solution and the numerical FEM solution for the homogeneous
half-space Earth model, respectively. The first to fourth columns show the TEM response for the time channels of 10−4, 10−3, 10−2, and 10−1 s, respectively.
The color bar is applied to each row of the panels and indicates the value of log10d Bz/dt . The logarithmic value of d Bz/dt is utilized because the magnitude
of the TEM response varies greatly with spatial location, and it can span several orders of magnitude. This property makes it difficult to visualize the changing
characteristics of the TEM response using a linear scale, so we show the responses on a logarithmic scale to better present the variation. The utilization of
the logarithmic scale is also extended to Figs. 7, 9, 11, and 13.

Fig. 6. Schematic of Model 1. (a) 3-D view of Model 1. (b) Plan view of Model 1. (c) Section view of Model 1. The red line in (a) represents the wire
source.

resistive blocks, and Model 3 with one conductive and one
resistive block. The parameters of Model 1 are given as
follows: the resistivity of both blocks is 1 �m, their size
is 500 × 1000 × 600 m (x × y × z), and the centers are
located at (−750, 6500, −600 m) and (750, 6500, −600 m).
All other parameters are the same as those of the homogeneous
half-space Earth model shown in Fig. 4. The parameters of
Models 2 and 3 are the same as those of Model 1 except
for the resistivity of the blocks. In Model 2, the resistivity of
both blocks is 10 000 �m. In Model 3, the resistivity of the
conductive block is 1 �m, and that of the resistive block is
10 000 �m. The schematics of the 3-D double-block models
are shown in Figs. 6, 8, and 10. To verify the correctness of the
3-D GFDM forward modeling algorithm and the accuracy of
the computation of the developed program, the TEM response
(i.e., d B z/dt) of the above three models is calculated using
the developed GFDM program, and the results are compared
with the equivalent responses computed using the FEM. The
comparison of the responses computed using the two methods
for the three models is shown in Figs. 7, 9, and 11. The

TEM response of the homogeneous half-space Earth model
is also shown in these figures for comparison to highlight
the characteristics of the anomalous response caused by the
abnormal body (i.e., the blocks).

The following three characteristics can be observed from
the combined analysis of Figs. 7, 9, and 11.

First, the GFDM solution of the TEM response is highly
consistent with the corresponding FEM solution for all three
models. The average relative error and the maximum relative
error between the two methods are 3.4% and 5.6%, respec-
tively. The correctness of the proposed GFDM algorithm, the
accuracy of the computation of the developed program, and the
availability of their application in the 3-D forward modeling
of the TEM response are therefore verified.

Second, by comparing the TEM response of the 3-D double-
block model and that of the homogeneous half-space Earth
model correspondingly, it can be seen that the response
near the resistive and conductive blocks shows positive and
negative anomalies, respectively. The locations of the anoma-
lies reflected by the response are consistent with the actual

Authorized licensed use limited to: Changchun Inst of Optics Fine Mechanics & Physics. Downloaded on May 13,2024 at 07:10:40 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: THREE-DIMENSIONAL FORWARD MODELING OF GROUND WIRE SOURCE TEM DATA USING 2002913

Fig. 7. Comparison of the GFDM and FEM solutions of the TEM response (d Bz/dt) in the z = 0 plane for Model 1. (a)–(d) First row shows the analytical
solution of the homogeneous half-space Earth model. (e)–(h) and (i)–(l) Second and third rows show the GFDM solution and the FEM solution of Model 1,
respectively. The first to fourth columns show the responses for the time channels 10−4, 10−3, 10−2, and 10−1 s, respectively. The blue dashed rectangular
box represents the actual location of the two conductive blocks in Model 1. The color bar is applied to each row of the panels and indicates the value of
log10(d Bz/dt)).

Fig. 8. Schematic of Model 2. (a) 3-D view of Model 2. (b) Plan view of Model 2. (c) Section view of Model 2. The red line in (a) represents the wire
source.

locations of the anomalies in the given model. Furthermore,
by comparing the anomalous response of the conductive and
resistive blocks, it can be seen that the TEM response is more
sensitive to conductive anomalies. These characteristics all
coincide with the property of the TEM response.

Third, by comparing the responses of different time chan-
nels for each model, the existence of anomalies cannot be
effectively reflected by the response of the time channel 10−4

s, but the responses of time channels 10−3, 10−2, and 10−1

s can clearly indicate the existence of the anomalies and
accurately suggest their location and property (i.e., conductive
or resistive). This is because the anomalies in the considered
models are buried relatively deeply, and the survey points
are arranged in a relatively long distance from the source.
According to the smoke ring theory, the TEM response spreads
downward and far away with the extension of time. At an early

time (i.e., 10−4 s), the response has not yet spread to the lateral
location and depth of the anomalies, so the response does
not contain the anomalous response caused by the anomalies.
With the continuous extension of time, the response spreads
further and deeper. When it arrives at the location that covers
the anomalies, the anomaly caused by the anomalies would
be contained in the measured responses, which is the reason
why the positive and negative anomalies in the area where the
anomaly is located can be clearly seen in the TEM response
of the other three time channels (i.e., later time). The above
results further demonstrate that the GFDM algorithm proposed
and the program developed in this article can accurately, stably,
and effectively reproduce the characteristics of the 3-D TEM
responses of different time channels and different locations.

We also investigate the property of the coefficient matrix of
the GFDM, and the positions of the nonzero elements of the
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Fig. 9. Comparison of the GFDM and FEM solutions of the TEM response (d Bz/dt) in the z = 0 plane for Model 2. (a)–(d) Analytical solution of
the homogeneous half-space Earth model. (e)–(h) GFDM solution and (i)–(l) FEM solution of Model 2, respectively. The first to fourth columns show the
responses for the time channels 10−4, 10−3, 10−2, and 10−1 s, respectively. The red dashed rectangular box represents the actual location of the two resistive
blocks in Model 2. The color bar is applied to each row of the panels and indicates the value of log10(d Bz/dt).

Fig. 10. Schematic of Model 3. (a) 3-D view of Model 3. (b) Plan view of Model 3. (c) Section view of Model 3. The red line in (a) represents the wire
source.

coefficient matrix of the GFDM and the FEM are shown in
Fig. 12. The computation speed and memory consumption of
the GFDM are also evaluated by comparing these parameters
with those of the FEM. To enhance the comparability, the
positions of the discretized points for the GFDM in this article
are the same as the positions of the vertices of the mesh
generated for the FEM. Under such a discretization strategy,
it was found that the total number of nonzero elements of the
coefficient matrix of the GFDM is significantly less than that
of the FEM. Correspondingly, the computation speed is higher,
and the memory requirement is lower. In particular, taking the
computational parameters of Model 1 (for the time channel of
10−4 s) as an example, the total number of nonzero elements
of the coefficient matrix of the GFDM, which is derived from
the discretization considered here and the weighting function,

is 690 876. The corresponding computation time is 67.45 s,
and the memory consumption is 11.56 GB. In comparison,
the total number of nonzero elements of the coefficient matrix
of the FEM, which is derived from the same discretization
but considering the integral of the production of the function
and the edge basis functions, is 1 401 476. The corresponding
computation time is 99.31 s, and the memory consumption is
14.56 GB. The above results illustrate that under comparable
computational accuracy, the GFDM possesses advantages in
terms of computational time and memory consumption. Such
advantages will be more prominent in the forward modeling of
responses of more complex models (e.g., models with complex
topography or targets with complex shapes).

The above forward modeling and comparison mainly focus
on the analysis of the lateral distribution characteristics of
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Fig. 11. Comparison of the GFDM and FEM solutions of the TEM response (d Bz/dt) in the z = 0 plane for Model 3. (a)–(d) Analytical solution of
the homogeneous half-space Earth model. (e)–(h) GFDM solution and (i)–(l) FEM solution of Model 3, respectively. The first to fourth columns show the
responses for the time channels 10−4, 10−3, 10−2, and 10−1 s, respectively. The blue and red dashed rectangular box represents the actual location of the
conductive and the resistive block in Model 3, respectively. The color bar is applied to each row of the panels and indicates the value of log10(d Bz/dt).

Fig. 12. Schematic of the positions of the nonzero elements in the coefficient matrix of (a) GFDM and (b) FEM. The x-axis and y-axis coordinates of the
blue dots represent the number of rows and columns of the nonzero elements in the coefficient matrix.

Fig. 13. Pseudo-sections of the TEM response along the line y = 6500 m at the ground surface. (a)–(d) TEM response of the homogeneous half-space Earth
model, Model 1, Model 2, and Model 3, respectively. The black and white dashed rectangular boxes represent the resistive and conductive blocks, respectively.

the TEM response at the ground surface. To more com-
prehensively analyze various characteristics of the response
with time, the TEM response of numerous 400 time chan-

nels (a time range varying from 10−5 to 10−1 s, which is
uniformly distributed in log space, is considered) along the
line y = 6500 m (which is located directly above the center
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Fig. 14. Schematic of Models 4 and 5. (a) 3-D view of Model 4. (b) Plan view of Model 4. (c) Section view of Model 4. (d) 3-D view of Model 5. (e) Plan
view of Model 5. (f) Section view of Model 5. The red line in (a) and (d) represents the wire source.

of the anomaly at the ground surface) is calculated, and
pseudo-sections are drawn. The results are shown in Fig. 13.
Since the time t corresponds to the diffusion depth z according
to smoke ring theory, the xt plane can also be understood
as the xz plane, i.e., the longitudinal plane; hence, such a
figure can also be used to analyze various characteristics
of the response with the longitudinal position of anomalies
(i.e., depth).

In Fig. 13, it can be seen that in the spatial dimension (i.e.,
the x-axis), the anomalous position coincides with the horizon-
tal position where the actual anomalous body is in the given
model. In the time dimension (i.e., the t-axis), the anomalies
presented are more concentrated and obvious in the time range
of 10−3–10−2 s. According to the smoke ring theory, the diffu-
sion depth corresponding to the above time range is consistent
with the longitudinal position of the actual anomalies in the
given model. This verifies that the TEM response calculated by
the GFDM method proposed in this article can not only reveal
the property and the horizontal position of the anomalies but
also accurately indicate their longitudinal position through the
responses of different time channels.

C. Verification of the Correctness of the Numerical Solution
of the Semi-Airborne TEM Response for 3-D Models With
Both Topography and Targets

To verify the correctness of the numerical solution of the
TEM response for more complex models, we considered a
semi-airborne model (i.e., Model 4) with concave topography
and a model (i.e., Model 5) with convex topography. The
diagrams of Models 4 and 5 are shown in Fig. 14. The param-
eters of the topography are given as follows: the resistivity of
the convex topography is set to 100 �m, the resistivity of

the concave topography is set to 108 �m, the size of both
is (3000, 2000, 100 m), and the centers are located at (0,
6500, 50 m) and (0, 6500, −50 m). The parameters of the
targets and the parameters of the source in Models 4 and
5 are set the same as those in Model 1. The TEM response
of Model 4 on the z = 100 m observation plane and that
of Model 5 on the z = 200 m plane are calculated using
the GFDM, and the results are compared with the equivalent
FEM solutions. The comparison of the responses is shown in
Fig. 15. The responses computed using the two methods show
good agreement with each other. This verifies the feasibility
and accuracy of the GFDM algorithm and program on the
application of modeling the TEM response of more complex
Earth models.

In addition, by comparing the TEM response of Models
4 and 5 with that of Model 1, it can be found that the
response value near the convex topography shows a decreasing
tendency, and the response value near the concave topography
shows an increasing tendency. This verifies the ability of
the GFDM algorithm and program to reproduce the anomaly
caused by the topography. In addition, by comparing the
TEM response of different time channels, it is seen that
the anomaly caused by the topography, both concave and
convex, is more obvious at early times than at late times. This
is because the early time response contains more informa-
tion on abnormal bodies at shallow depths, and the convex
and concave topographies can be treated as shallow con-
ductive abnormal bodies extending from the surface upward
to the air and resistive abnormal bodies downward to the
underground, respectively. This indicates that the late-time
TEM response is more capable of mitigating the effect of
topography.

Authorized licensed use limited to: Changchun Inst of Optics Fine Mechanics & Physics. Downloaded on May 13,2024 at 07:10:40 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: THREE-DIMENSIONAL FORWARD MODELING OF GROUND WIRE SOURCE TEM DATA USING 2002913

Fig. 15. Comparison of the GFDM and FEM solutions of the semi-airborne TEM response (d Bz/dt) on the z = 100 m plane for Model 4 and on the z =

200 m plane for Model 5. (a)–(d) and (e)–(h) First and second rows show the GFDM solution and the FEM solution of Model 4, respectively. (i)–(l) and
(m)–(p) Third and fourth rows show the GFDM solution and the FEM solution of Model 5, respectively. The first to fourth columns show the responses for
the time channels 10−4, 10−3, 10−2, and 10−1 s, respectively. The white and black dashed rectangular boxes represent the actual locations of the topography
and the targets in Models 4 and 5, respectively. The color bar is applied to each row of the panels and indicates the value of log10(d Bz/dt).

VII. CONCLUSION

The 3-D forward modeling of ground wire source TEM data
based on the GFDM is proposed in this article, and a corre-
sponding program is developed on the MATLAB platform.
One of the main features of the GFDM that differs from the
FEM in the forward modeling process is that mesh generation
is not needed; instead, the computational region is discretized
by a point cloud, which allows the points to distribute freely to
fit the arbitrary shape of the complex models, which is helpful
in ensuring the computational accuracy of the simulation of
the TEM responses for realistic 3-D Earth models. In addition,
as the basis function and integral are not needed in the GFDM
as they are in the FEM, this simplifies the overall procedure of
the forward modeling, improves computational efficiency and
reduces memory consumption. This is fully illustrated in the
comparison of the computational parameters (i.e., the positions
and numbers of nonzero elements in the coefficient matrix,
the computation time, and the memory consumption) of the
GFDM and the FEM.

The abovementioned features are a major advantage of
the GFDM method. However, these features also lead to a

problem: unlike the FEM, the source term on the right-hand
side of the linear equation system, which contains the deriva-
tive of the pseudo-δ function with respect to time, is spatially
integrated inside the local element of the mesh, and such
an integral results in a constant value (i.e., the product of
the length of the wire source and current flowing through it)
according to the property of the pseudo-δ function. However,
in the GFDM, this kind of source term equivalence cannot
be applied directly in the forward modeling of the GFDM,
because without the integral, handling the source term in this
way would result in an infinite value, which cannot be handled
numerically. In this article, this problem is solved by deriving
a secondary field equation for the GFDM, which replaces the
source term with the time derivative of the primary electric
field (which can be easily calculated by the analytical solution)
of the background Earth model (homogenous half-space Earth
model) to avoid using the pseudo-δ function and confronting
an infinite value.

The secondary field linear equation system of the GFDM
determines that the accurate simulation of the primary electric
field (i.e., the source term) at any point inside the computa-
tional domain is a prerequisite for the accurate calculation
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of the TEM response. Therefore, we first program a code
to calculate the analytical solution of the primary electric
field of a homogeneous half-space Earth model and compare
the analytical solution with the equivalent numerical FEM
solution. The consistency of the two results verifies the accu-
racy of the source term. On this basis, several 3-D models
are considered, and the TEM responses of these models are
calculated using the developed GFDM program. By comparing
the forward modeling results of the GFDM with those of the
FEM, it is verified that the GFDM algorithm proposed herein
can accurately compute the TEM response of 3-D models with
higher efficiency and lower memory requirements. Thus, the
effectiveness and advantages of the proposed GFDM algorithm
and the developed program are demonstrated. In future work,
the application of the GFDM to the forward modeling of TEM
data for more realistic and complex Earth models will be
investigated.
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