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A B S T R A C T   

In this study, we propose a new method to improve the position measurement accuracy of the traditional infinite 
integral method (IIM) based on a quadrant detector (QD). First, the error source of the IIM is analysed in depth. 
Then, the influence of the detector size and gap width was considered to obtain a modified integration area. 
Thus, a new analytical expression was obtained. We performed several sets of simulations to test the validity of 
our proposed method, and the root-mean-square errors under different radii were all less than 5× 10− 5mm. The 
experimental results show that when compared to IIM and the calibrated infinite integral method (CIIM), our 
novel method reduces error by 98.1% and 85.3%, respectively. One of the advantages of this technique is its 
simplicity; it requires fewer parameters and does not require pre-calibration compared with the fitting method. 
Therefore, this technique has the potential to be employed in space laser communication systems, optical 
tweezers, and precision measurements.   

1. Introduction 

Research on the laser-illuminated object position or precise deter-
mination of the laser beam position has a long history [1]. Compared 
with position-sensitive detectors (PSD) and charge-coupled devices 
(CCD), quadrant detectors (QD) [2–4] offer the advantages of high po-
sition resolution, a simple processing circuit, small junction capacitance, 
and a short response time[5–9]. They are commonly used in laser 
tracking and positioning [10–12], free-space optical communications 
[13], laser-guided weapons[14], and optical tweezers[15]. Neverthe-
less, because of the gap (also known as the blind area) between quad-
rants and the intensity distribution of the beam, there is usually a 
complex nonlinear relationship between the detector output signal and 
the actual position of the spot centroid, which seems to be a common 
problem [16–17]. 

Many spot-positioning algorithms have been developed over the last 
few decades to overcome this problem. Narag et al. proposed a new 
expression for the response of a QD using convolution integrals [18]. To 
enhance linearity, Cui et al. developed a new solution equation [19,20]. 
Based on mathematical physics equations, Wujie et al. built a virtual 
movement scheme to achieve better measurement accuracy [21]. 

Moreover, numerous recent studies [22–24] have demonstrated that 
backpropagation (BP) neural networks are also a viable approach. 
However, these studies were relatively complex and time consuming. An 
alternative approach to the problem is the fitting method [25–28], the 
central issue of which is to use various types of functions to fit the 
nonlinear relationship. By ignoring the influence of the detector size and 
gap, IIM obtains the approximate position of the spot centroid in the 
form of an error function. However, IIM suffers from low accuracy [29]. 
Wu et al. further showed that by introducing an error compensation 
factor, the CIIM proposed using least-squares fitting can effectively 
improve the accuracy of the IIM [30–32]. However, these studies have 
certain drawbacks. First, a large amount of data needs to be collected in 
advance for calibration or training; second, they are multi-parameter, 
and the increasing number of calculations limits their application. 

This study examines some previous works and proposes a novel al-
gorithm capable of theoretically eliminating two kinds of errors origi-
nating from detector size and gap width. These errors are deeply 
analysed, and a new formula is proposed to compensate for the inherent 
defects of the IIM, resulting in better accuracy. Another advantage of 
this method is that there is no need for pre-calibration, which makes it 
more practical. 
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The rest of the paper is organised as follows. We start our paper by 
presenting the principle of the QD in Section 2.1. In Section 2.2, both IIM 
and CIIM are described, and the limitations of IIM are briefly discussed. 
A new method is proposed in Section 2.3. We also experimentally 
demonstrate the feasibility of the new method under different radii in 
Section 3. Finally, conclusions are presented in Section 4. 

2. Methodology 

2.1. Principle of the QD 

Our theory is based on the assumption that the spot energy distri-
bution of the laser can be approximated using a Gaussian distribution 
[33]: 

D(x, y) =
2P0

πω2 exp

(

− 2
(x − x0)

2
+ (y − y0)

2

ω2

)

, (1)  

where P0 is the total energy of the Gaussian beam, ω the radius of the 
spot, and (x0, y0) the position of the spot centroid. 

A QD is a device made of four identical photodiodes separated by 

small gaps that cause a loss of light energy [34]. When illuminated, four 
units can output photocurrent independently, and the amplitude of the 
photocurrent in each unit IAi, IBi, ICi, IDi is proportional to the spot energy 
incident on the unit [4]: 

Ii∝
∫∫

Si

D(x, y)dxdy(i = A,B,C,D). (2) 

As shown in Fig. 1, when the spot centroid is at the centre of the QD, 
the amplitude of the output photocurrent of the four units is equal. As 
the spot centroid deviates from the centre, the balance is broken. The 
position of the spot centroid can be determined according to this 
principle. 

The detection process for the spot position of the QD can be 
abstracted and simplified into a diagram (Fig. 2). First, the solution 
values of the x-axis and y-axis are calculated according to rules f : 

EX = fX(IA, IB, IC, ID) =
(IA + ID) − (IB + IC)

IA + IB + IC + ID
, (3)  

EY = fY(IA, IB, IC, ID) =
(IA + IB) − (IC + ID)

IA + IB + IC + ID
. (4) 

It can be seen that the solution value (EX,EY) is a normalised value, 
which represents the offset degree of the spot relative to the centre of the 
QD. However, this does not mean that the position of the spot centroid is 
the value of the solution:

(
x0, y0

)
∕= (EX,EY). In fact, an S-shaped non- 

linear relationship exists between the solution value and actual posi-
tion [35]. To obtain the approximation of the spot centroid 

(
x′

0, y
′

0
)
, the 

spot position detection method h must be used. In addition, because the 
energy density distribution of the spot and the shape of the detector are 
symmetrical, the position relationship between the x- and y-axes is in-
dependent of each other. Thus, only the situation in the x-axis direction 
will be discussed later. 

2.2. Infinite integral method (IIM) 

As the laser is incident on the QD (the detector size is R and the gap 
width is d), the relationship between the solution value and the actual 
position of the spot centroid can be obtained as follows:  

where A = R, B = d/2. This is typically a complex problem with a 
transcendental equation that cannot be solved directly. 

This problem is usually overcome by considering the detector size in 
(5) as infinity (R→∞) and ignoring the influence of the gap (d→0), as 
follows: 

EX ≈

∫∞
− ∞

∫∞
0 D(x, y)dxdy −

∫∞
− ∞

∫ 0
− ∞ D(x, y)dxdy

∫∞
− ∞

∫∞
− ∞ D(x, y)dxdy

= erf
( ̅̅̅

2
√

ω x0’
)

, (6)  

erf (x) =
2̅
̅̅
π

√

∫ x

0
e− t2 dt.

Finally, by taking the inverse function on both sides of the equal sign 
in (6), the IIM expression can be derived as follows: 

x0’ ≈
erf − 1(EX)⋅ω

̅̅̅
2

√ . (7) 

Unfortunately, when the spot centroid gradually moves away from 
the origin of the detector, the accuracy of IIM decreases significantly 
[29]. Assuming a spot with a radius of 0.85 mm is incident on the de-
tector, the spot centroid moves in a fixed range[-0.5 mm,0.5 mm], the d 
is changed from 0 mm to 0.1 mm, and R is changed from 1 mm to 2 mm, 
and the root-mean-square error of the IIM is simulated by MATLAB 
2022a, which is shown in Fig. 3 (the axes are normalised to the spot 
radius). 

Based on the previous analysis, it can be concluded that the error 
should be proportional to d and inversely proportional to R, but some 
interesting phenomenon occurred: as d approached zero (d→0), the 
error was inversely proportional to R, which was in line with our ex-
pectations. However, as d increased, the situation began to reverse. This 
is due to the fact that the error caused by the d gradually plays a leading 
role. If the R is large enough, the error increases with the d, which is 
consistent with the results of previous studies. As R approaches the spot 
radius (R→ω), the proportion of the error caused by R increases, and the 
total error first decreases and then increases as the d increases. As dis-
cussed, R and d play a major role in IIM error. Thus, these two factors 

Fig. 1. Spot position detection of the QD.  

EX =

( ∫ A
− A

∫ A
B D(x, y)dxdy −

∫ B
− B

∫ A
B D(x, y)dxdy

)
−
( ∫ A

− A

∫ − B
− A D(x, y)dxdy −

∫ B
− B

∫ − B
− A D(x, y)dxdy

)

( ∫ A
− A

∫ A
B D(x, y)dxdy −

∫ B
− B

∫ A
B D(x, y)dxdy

)
+
( ∫ A

− A

∫ − B
− A D(x, y)dxdy −

∫ B
− B

∫ − B
− A D(x, y)dxdy

)， (5)   
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deserve further attention. 
The objective of the calibrated infinite integration method (CIIM) 

[32] is to further reduce the error of IIM, and an error compensation 
factor η = f(ω,R, d) is introduced in consideration of the error effects of 
the detector diameter and the gap size. The estimation of the beam 
position can be rewritten as follows: 

x0
′

=
erf − 1(EX)

̅̅̅
2

√ ⋅ω⋅η(ω,R, d), (8)  

where η(ω,R, d) introduces factors R and d that are not considered in the 
IIM. Because R and d are fixed in practical applications, the last two 
parameters can be combined into one, redefined as the effective beam 
radius ωe = ω⋅η(ω,R,d), then: 

x0
′

=
erf − 1(EX)

̅̅̅
2

√ ⋅ωe. (9) 

With the least square method, N sets of experimental data 
EXn (n = 1⋯N) were used for pre-calibration to obtain the optimal ωe: 

ωe =

∑N
n=1m(EXn )⋅xn
∑N

n=1m2(EXn )
,m(x) =

erf − 1(x)
̅̅̅
2

√ . (10) 

Obviously, CIIM requires a large amount of collected data in 
advance, which is impossible in some applications. In brief, there is an 
urgent need for a method with high precision, fewer parameters, and no 
need for pre-calibration. 

2.3. Improved infinite integral method (IIIM) 

To rectify these problems, the error source of the IIM was analysed in 
depth. Taking the calculation of the photocurrent of the two units on the 
right half as an example, the real value should be 

IR = IA + ID =

∫ R

− R

∫ R

d/2
D(x, y)dxdy −

∫ d/2

− d/2

∫ R

d/2
D(x, y)dxdy. (11) 

Using the IIM, we have: 

Fig. 2. Diagram of QD spot position detection.  

Fig. 3. The relationship between the root-mean-square error of the IIM with d/ 
w and R/w. 

Fig. 4. (a)Diagram of the integration area of IIIM, the blue/red integration areas are redundant compared with the actual situation. (b)Comparison of the light 
energy of the red/blue areas (R=1mm, spot centroid moves in a fixed range[-0.5 mm,0.5 mm]). The region is coloured blue where the light energy of the blue area 
exceeds that of the red area; the remaining region is coloured red. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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IR = IA + ID ≈

∫ ∞

0

∫ ∞

0
D(x, y)dxdy +

∫ 0

− ∞

∫ ∞

0
D(x, y)dxdy

=

∫ ∞

− ∞

∫ ∞

0
D(x, y)dxdy. (12) 

To facilitate this demonstration, we analysed only the right half of 
the detector. As shown in Fig. 4(a), the error of the IIM originates from 
its integration area: the blue/red areas are redundant, which also means 
that the light energy calculated by the IIM is greater than the real value. 

Fig. 4(b) compares the light energy of the red/blue area with the 
changes in d/R and w/R. In most cases, the energy in the blue area 
exceeded that in the red area. If we remove the redundant blue area from 
the integral area of IIM, the following equation is obtained: 

IR ≈

∫ ∞

− ∞

∫ ∞

0
D(x, y)dxdy −

∫ ∞

− ∞

∫ d/2

0
D(x, y)dxdy −

∫ ∞

− ∞

∫ ∞

R
D(x, y)dxdy  

=

∫ ∞

− ∞

∫ R

d/2
D(x, y)dxdy = erf

[ ̅̅̅
2

√
(x0 − d/2)

ω

]

− erf
[ ̅̅̅

2
√

(x0 − R)
ω

]

. (13) 

Similarly: 

IL = IB + IC ≈ erf
[ ̅̅̅

2
√

(x0 + R)
ω

]

− erf
[ ̅̅̅

2
√

(x0 + d/2)
ω

]

. (14) 

Therefore, the new solution value can be expressed as: 

EX = T(x0,ω, d)

=
erf
[ ̅̅

2
√

(x0 − d/2)
ω

]
− erf

[ ̅̅
2

√
(x0 − R)
ω

]
− erf

[ ̅̅
2

√
(x0+R)
ω

]
+ erf

[ ̅̅
2

√
(x0+d/2)

ω

]

erf
[ ̅̅

2
√

(x0 − d/2)
ω

]
− erf

[ ̅̅
2

√
(x0 − R)
ω

]
+ erf

[ ̅̅
2

√
(x0+R)
ω

]
− erf

[ ̅̅
2

√
(x0+d/2)

ω

].

(15) 

When (ω, d) are determined,T(x0,ω, d)→T(x0). The analytical for-
mula of the IIIM is obtained: 

x’
0 = T − 1(EX) = G(EX). (16) 

The maximum error δxMAX and root-mean-square error δxRMSE are 
adopted to evaluate the new method. δxMAX is the maximum value of |δi|, 
which represents the extreme value of error in the detection range. 

δxMAX = MAX(|δi| ) = MAX(|x0i − x0i
′

| ). (17)  

δxRMSE is the root-mean-square error (RMSE), which is used to measure 
the deviation between the observed and actual values in the entire 
detection range: 

δxRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N
∑N

i=1
δi

2

√

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N
∑N

i=1
(x0i − x0i

′
)

2

√

. (18)  

Fig. 5(a) shows the errors of the three methods when w = 0.85mm,R =

1mm,d = 0.3mm. The δxRMSE of IIM, CIIM and IIIM are 5.12× 10− 2mm, 
4.20 × 10− 3mm and 1.60 × 10− 5mm respectively. Although the error of 
the CIIM is greatly reduced, there is still a certain gap compared with the 
IIIM. 

In order to test the robustness of IIIM at different spot radii, the 
radius of the beam is changed from 0.75 mm to 1.05 mm. From the 
simulation results shown in Fig. 5(b), key findings emerge: Among the 
three methods, IIIM has the smallest δxRMSE, which is less than 5.0 ×

10− 5mm under different spot radii. Moreover, IIIM exhibits a minimum 
error when w = 0.85mm. We speculate that this might be due to the 
following reasons. Because a Gaussian beam with a smaller radius has a 
more concentrated energy distribution, most of the light energy falls into 
the gap (part of the red area), which leads to a decrease in accuracy. For 
a Gaussian beam with a radius much greater than approximately half the 
detector size, the main source of the error is the large amount of light 
energy falling outside (another part of the red area). As a result, the 
Gaussian beam with a radius of approximately 0.85 mm is less affected 
by the gap, while avoiding a large amount of energy loss outside. 

Table 1 compares the δxMAX values of the three methods for different 
spot radii. Among the three methods, IIIM has the smallest δxMAX, which 

Fig. 5. (a)The simulation curves of positioning errors using three different methods (w = 0.85mm). (b)Comparison of δxRMSE between three different methods 
in simulation. 

Table 1 
Comparison of δxMAX of three methods at different radii in simulation.  

Method ω/mm 

0.75 0.85 0.95 1.05 

IIM 0.1114mm 8.42×

10− 2mm 
3.85×

10− 2mm 
1.82×

10− 2mm 
CIIM 1.49×

10− 2mm 
1.19×

10− 2mm 
6.80×

10− 3mm 
5.60×

10− 3mm 
IIIM 4.17×

10− 4mm 
8.22×

10− 4mm 
5.47×

10− 4mm 
4.31×

10− 4mm  
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is less than 1 × 10− 3mm under different spot radii. 
Furthermore, the δxRMSE of IIM/CIIM/IIIM was simulated with 

different combinations of d, R, and ω (Fig. 6). It is evident that the δxRMSE 
of IIIM is significantly lower than that of the other two methods under 
different conditions. 

In brief, the IIIM presented in this paper has a better performance 
both in terms of δxMAX and δxRMSE, and it also shows good robustness. The 
correctness of the IIIM was verified by the simulation results. 

3. Experiment 

3.1. Experiment setup 

A displacement test platform, as shown in Fig. 7, was set up to verify 
the improvement in measurement accuracy of the IIIM. The light source 
was an 850 nm fibre laser (DL-850–030-T, SFOLT), whose optical power 
was continuously adjustable. The Gaussian beams emitted by the laser 
were changed into parallel beams by collimating and shaping lens 
groups and then focused on a QD array (mod1-25d, OTRON, R = 1 mm, 
and d = 0.3 mm) by a coupling lens (focal length:120 mm, self-made). As 
shown in Fig. 8, the detector was installed on a customised amplification 
circuit board (OPA2177, Analogue Devices) at a magnification of 106. It 
is important to note that because the research object of this study is QD, 
only four specific units are used. To achieve a high-precision 

displacement in the x-axis direction, the amplification circuit board is 
mounted on a one-dimensional displacement platform (n-644.3a, PI, 
positioning accuracy: 2 nm). The data acquisition module was a 16- 
channel simultaneous sampling data acquisition system equipped with 
two 16-bit SAR ADCs (AD7606,Analog Devices) and FPGA 
(EP4CE30F23C8). 

The experimental procedure is as follows. First, the 850 nm laser is 
collimated and focused on the QD array through a coupling lens to form 
a spot with a radius of 0.85 mm. The spot was then moved from 0 mm to 
0.5 mm at intervals of 0.005 mm using the one-dimensional nano-pre-
cision micro-displacement platform. The photocurrent was amplified 
and transmitted to a PC. The experiment was conducted in a dark room 
to reduce the influence of background noise. To verify the applicability 
of the new model at different radii, we varied the radius from 0.75 mm 
to 1.05 mm and repeated the above steps. 

3.2. Results and analysis 

Here, we compare the results of the proposed method with those of 
traditional methods in Fig. 9(a). The δxMAX of IIIM is 2.50× 10− 3mm, 
which is 97.0% lower than that of IIM (8.38× 10− 2mm) and 80.8% 
lower than that of CIIM (1.30× 10− 2mm). Moreover, the δxRMSE of IIIM 
was 1.00× 10− 3mm, which is approximately 1/50 of that of IIM (5.18×

10− 2mm) and 1/6 of that of CIIM (6.80× 10− 3mm). 
As shown in Fig. 9(b), the accuracy of IIIM, which is higher than that 

of IIM and CIIM, shows good stability at various radii. The overall trend 
of the IIIM agreed well with the simulation results (Fig. 5(b)), whose 
δxRMSE at different relative beam radii were all less than 6× 10− 3mm. 
Table 2 shows a comparison of the δxMAX values of the three methods for 
different beam radii. Among the three methods, the IIIM showed the 
smallest δxMAX for different beam radii. 

The preceding analysis and discussion show that there is a disparity 
between the experimental and simulation results, which may be 
ascribed to ambient noise and will be the topic of our subsequent study. 
Nonetheless, the IIIM shows better accuracy in both δxRMSE and δxMAX, 
and it also exhibits a more stable measurement accuracy for different 
incident beam radii. The correctness of the IIIM was verified by the 
experimental results. It is worth noting that the new method not only has 
high accuracy but also does not need to be calibrated in advance. 

4. Conclusion 

In summary, a different approach to the traditional IIM problem is 
presented in this paper. By analysing the error source of the traditional 
IIM, a method to further improve its accuracy is found; that is, the light 
energy obtained by the detector is modified by removing the redundant 
integral area to compensate for the influence of the gap width and de-

Fig. 6. Comparison of the δxRMSE between three methods in simulation.  

Fig. 7. Physical map of displacement test platform.  
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tector size. When compared with fitting methods such as CIIM, IIIM has 
greatly improved accuracy and does not require pre-calibration because 
the error is corrected at the principle level. It is suitable for practical 
applications in which pre-calibration cannot be used. According to the 
experimental results, IIIM showed stability in both δxRMSE (all less than 
6× 10− 3mm) and δxMAX (all less than 2× 10− 2mm) for different beam 
radii. In view of the above advantages, the IIIM is expected to be applied 
in the engineering practice of spot position measurements. 
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