
Neurocomputing 551 (2023) 126484
Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier .com/locate /neucom
Ice hockey puck tracking through broadcast video
https://doi.org/10.1016/j.neucom.2023.126484
0925-2312/� 2023 Elsevier B.V. All rights reserved.

⇑ Corresponding author at: Centre for Intelligent Multidimensional Data Analysis
Limited, Hong Kong, China.

E-mail addresses: muyu@innocimda.com (Muyu Li), huhenan18@mails.ucas.ac.
cn (Henan Hu), h.yan@cityu.edu.hk (Hong Yan).
Muyu Li a,b,⇑, Henan Hu b,c,d, Hong Yan a,b

aCentre for Intelligent Multidimensional Data Analysis Limited, Hong Kong, China
bDepartment of Electrical Engineering, City University of Hong Kong, Hong Kong, China
cChangchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, Jilin, China
dUniversity of Chinese Academy of Sciences, Beijing 100049, China
a r t i c l e i n f o

Article history:
Received 22 February 2022
Accepted 21 June 2023
Available online 24 June 2023
Communicated by Zidong Wang

Keywords:
Ice hockey puck
Detection
Tracking
Correlation filter
a b s t r a c t

Ice-hockey puck tracking is a non-trivial task in hockey video analysis as it highlights the puck in the
video for broadcasting, tactical play analysis, or referee assisting. However, difficulties, such as high
speed, low texture features in images and constantly changing shape, make well-developed object tracker
fail to track the puck. This paper introduces a real-time online-learning ice hockey puck detection and
tracking system solely depending on video input to tackle this problem. The proposed approach catego-
rizes pucks into free-moving and control-moving states, using a combination of contour fitting, correla-
tion filter, and motion estimation techniques to detect and track them. A thorough analysis is performed
focusing on the tracking scenario using broadcast video. To our knowledge, this is the first approach
addressing detection and tracking nearly invisible high-speed pucks when shooting actions take place.
Experiments with a comparison between a previous work targeting puck tracking show promising results
in detection and tracking the ice hockey puck through broadcast video.

� 2023 Elsevier B.V. All rights reserved.
1. Introduction

1.1. Motivation

Video analysis systems have spawned much research in the last
several decades, and with the emergence of highly developed
object detection and tracking algorithms, real-time video analysis
system has become possible for many applications. For ball games,
the focus point is mainly on the location of the ball, since players
on the court, the audience in the stadium, and the cameraman
for broadcasting concentrate on it.

Automatic ball detection and tracking system have many com-
mercial applications. From the on-court referees’ point of view, this
technique is crucial to determine violations or a goal. Broadcasting
companies benefit by using such technology to automatically
select the gaze region to follow an ongoing play during a live
stream. Both tasks are currently performed by humans (referees
or cameramen), thus automating the process could significantly
avoid manual error and increase accuracy.

Motivated by the above, this paper is committed to developing
an approach to automatically track the puck from a single broad-
cast video. The approach will be able to detect and track the puck
regardless of the condition of the puck and retrieve the puck after
severe occlusion by players or logos. The proposed approach has
two advantages compared to existing techniques: 1) The approach
is able to track ice hockey pucks with low texture features, which
the existing method, popular single target trackers, fails to do.
Prove that it’s possible to incorporate well-developed trackers in
ice hockey game analysis. 2) The approach firstly addresses a pre-
viously avoided problem of tracking nearly invisible pucks after
shooting actions in existing methods to our best knowledge.
1.2. Challenges

Lots of previous work addressed detecting and tracking balls,
yet most of them target soccer balls [1,2], basketballs [3,4], table
tennis balls [5], tennis balls [6], etc. Only very few works aim to
track the ice hockey puck [7] due to the following difficulties as
shown in Fig. 1: (1) Pucks moving at high speed, (2) Lots of similar
interference in the rink, (3) Rapidly changing size and shape
according to the frame rate of the camera, (4) Low-resolution
images, (5) Constantly occluded by players or logos, (6) Illumina-
tion changes due to the camera motion.

As for the tracking task itself, the great performance of state-of-
the-art trackers depends on rich features extracted by handcraft
techniques or even deep convolution neural networks. However,
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Fig. 1. Hard Cases of Puck Tracking.
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when dealing with cases like tracking ice hockey pucks, the
extreme lack of appearance features almost determines the failure
of state-of-the-art trackers. Thus, how to successfully track ice
hockey pucks in broadcast videos still remains a big challenge
despite the rapid development of single object tracking.
1.3. Previous Work

Most of the approaches about detecting and tracking the ball
can be classified into three aspects: feature-based, model-based
and motion-based. Feature-based approaches take advantage of
color histogram, geometry, HoG (Histogram of Oriented Gradient)
[8], or other handcraft features [9–11]. Model-based approaches
use semantic representations or domain knowledge [12–14], while
motion-based approaches incorporate the trajectory of balls to dis-
criminate them from other interference or background[1,5,15,16].
All of the approaches mentioned above try to highlight the ball
from the rest of the images. Different sports require different sets
of techniques or even a combination of several methods.

As far as ice hockey is concerned, the most common complaint
by referees on the court and the audience behind TVs is pucks not
being followed accurately. In 1997, the first attempt [17] was pro-
posed to highlight pucks for better visualization by designing an
electronic puck with infrared sensors placed inside along with an
infrared detection system. The approach was not further in use
because of complaints by players about the worse feel of an elec-
tronic puck than a regular puck, and the complex requirement of
equipping the rink.

Different from methods by implementing sensors inside the
puck or around the rink, [7] proposed the first image processing
method to detect and track ice-hockey pucks. However, the puck,
in their literature, is considered in a zoomed-in broadcast video,
in which the puck subtended around 200 pixels and 30–50 times
smaller in the regular broadcast viewpoint. The proposed method
implemented a background subtraction algorithm and a velocity
estimation technique to associate detections across frames. How-
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ever, they only addressed cases when the puck is slow and evident,
and discarded circumstances in which the puck is hazy and almost
invisible after a shooting action.
1.4. Contributions

This paper introduces a real-time approach solely based on
image processing techniques to detect and track ice hockey pucks
in broadcast video, incorporating a combination of contour fitting,
correlation filter and motion estimation method. The contribution
of this paper is twofold. First, this paper presents a solution for
tracking low-texture ice hockey pucks using the state-of-the-art
online learning correlation filter tracker, combined with weighted
constraints by shape similarity and re-identification. Second, this
paper presents a template-based online learning re-identification
phase for tracking nearly invisible high-speed pucks after shooting
actions. To our best knowledge, this is the first approach to address
this kind of extreme cases. Thorough experiments on the ice
hockey game scenarios and our proposed method show promising
results in detecting and tracking ice hockey pucks through broad-
cast live streams.
2. Related Work

Ball Tracking. Some previous works have addressed the detec-
tion and tracking of the ball. However, most of them focus on
sports with relatively large ones, e.g. [10,5,1,2,6,3,18]. Reasoning
from plays on the court, [19,20,4] improved tracking performance
by combining ball detections with player locations and ball posses-
sion data. In [21], an approach is proposed to increase the reliabil-
ity of tracking by introducing physical constraints. Later on, many
solutions [21,22] use multiple calibrated cameras to track positions
of the ball in 3D space, in order to bypass the problems caused by
occlusions from players.

Ice Hockey Puck Tracking. For ice hockey, tracking pucks with
high speed (can reach a speed of 160 km/h after being hit by a
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player) and small size through a broadcast stream is quite chal-
lenging. Furthermore, some common difficulties in tracking meth-
ods, such as occlusion, illumination variation, and camera motion,
may further impede puck tracking. In recent years, deep learning
has been introduced into the task of detecting and tracking pucks.
The work [7] proposed a method that addressed puck detection
and tracking in a zoomed-in broadcast video. The puck occupies
as much as 150–250 pixels, which is commonly 20 times in a reg-
ular live stream match. The method uses background subtraction
to separate the puck and a velocity estimation method to link
detections from consecutive frames, but performs well only for
short intervals. In work [23], authors propose to recognize tactics
of both teams in an ice hockey game addressing puck tracking
and use the deep learning-based regression method to locate the
puck. They focus on broadcast videos with wide-range capture
devices and locating the puck with cascade stages containing play-
ers detection, optical flow, and a puck regression. The model is rel-
atively complex and thus runs inference at around 6 fps which is
hard to implement in a broadcast manner. Further in the work
[24], a PuckNet is proposed to estimate the location of the puck
by leveraging hockey event annotations and corresponding broad-
cast video. A heatmap of the corresponding puck in several consec-
utive frames is generated using purely Convolutional neural
networks architecture. However, the PuckNet adopts CNN to
directly capture global semantic, texture, and temporal features,
which is not efficient. Also, it can be implemented in an offline
manner due to the need for hockey event annotations. Later in
[25], a temporal modelling video branch along with a player detec-
tion branch is introduced to enhance the attention of the puck
based on the locations of players. The network runs at a frame rate
of 5 fps and is trained end-to-end with multi-task learning where
also play-by-play event annotations are embedded to avoid the
influence of occlusion. Another work in [26] introduces modelling
spatial and temporal information together with a 3D-CNN archi-
tecture. The cost of memory and time is extremely high, with a
run time of 2.7 s per frame as reported in their work. Also, the tem-
poral processing stage needs additional four frames ahead which
means that real-time implementation is not possible even with
the development of computational power. Deep-learning based
methods are trained on a specific dataset with a certain pattern
of objects and usually fail when facing the problem of motion blur.
However, motion blur is the main theme of puck tracking during a
game since the speed of the puck is relatively high.

Datasets. Dataset of Ice Hockey Puck tracking is a big issue due
to the requirements of a large amount of frame-by-frame puck
annotations. Most recent works [24–26,23] generate their own
datasets with several sequences of ice hockey videos and evaluate
the performance. The only mentioned public available dataset of
puck tracking is claimed in the work of [26], but it is still unable
to reach since no public link is provided. From our point of view,
real-time ice hockey puck tracking is essential for broadcasting,
on-court referee assisting, and also on-the-spot coaching. Deep
learning methods yield great success in image processing with
powerful feature extraction ability but fail to perform well in
real-time puck tracking. The reasons are obvious in the following
aspects: (1) the puck, the only object that matters in puck tracking,
is extremely small in the video frame and thus contains weak con-
text features; (2) motion blur, one of the most influential interfer-
ence, is beyond solved by deep-learning models since they usually
rely on the image features and trained with the inherent pattern of
specific datasets; (3) the interference in the field of view usually
occupies a large portion of the video and confuse the deep net-
works; (4) severely lacking datasets with puck annotations leads
to inadequate training for all the deep learning models; (5) infer-
ence with deep-learning based models are time-consuming and
impossible in a real-time fashion. Based on the above discussions,
3

we proposed to tackle the motion blur and the real-time puck
tracking problem in a relatively traditional way with a hand-craft
localization strategy combined fast tracker and carefully fusion of
structure based feature selection. A slightly worse performance
of the fast tracker is tolerated in our method because of the remedy
ability of the re-identification strategy and thus leads to an effi-
cient performance with the speed-accuracy trade-off.
3. Methodology

3.1. Prerequisite

Ice hockey puck in a broadcast video is constantly shape-
shifting. As a prerequisite, we classify the puck’s moving state into
two categories: controlled moving and free moving state. Con-
trolled moving (CM) state means the puck is being controlled by
a player and usually has a similar moving pattern with the player.
The trajectory under CM state is orderless and difficult to predict
from the previous locations. Another problem is when the puck
is controlled by a player, it may suffer from occlusion by hockey
sticks every now and then, which shares a similar color, and some-
times shape. As for free moving (FM) state, it is usually formed
after a shooting action by a player. If the frame rate is relatively
high, the puck is untouched and follows a constant velocity strat-
egy during the FM state. Players or referees on the court are not
in the surroundings for most of the cases, thus color segmentation
or edge detection is able to separate the puck from the ice rink
background, which possesses an obvious contrast of color. How-
ever, under FM state, the color of the puck changes paler and the
shape lengthens due to the motion blur.

3.2. Puck Tracking

The overview of our method is shown in Fig. 2. The proposed
puck detection and tracking approach targets the two states men-
tioned above and is able to deal with problems like shape-changing
and occlusion. The whole process consists of two phases, a plain
tracking phase to track the puck at a slow speed without heavy
interference and a re-identification phase to target extreme cir-
cumstances corresponding to CM and FM state. Considering the
color of official pucks is black and the ice surface is mainly white,
we adopt CN (color names) feature [27] combined with HoG [8] as
our main feature map for the plain tracking phase. With the con-
stant change of the shape, the structure feature is brought into
the picture as well.

3.2.1. Plain Tracking
Tracking the puck at a slow speed without heavy environmental

interference can be viewed as a simple single object tracking prob-
lem. Considering the need for real-time processing on video and
the lack of appearance features of pucks, we select the correlation
filter based approach as our baseline tracker due to its characteris-
tics of online training and rapid calculation. From the first frame of
the video, usually at the start of the game, the puck is located at the
center of the image. Based on this assumption, the first image
frame is thresholded by an initial gray-level threshold ainit , which
is the normalized threshold value of 0.55. ainit is a statistical value
acquired from an analysis of the first frames in a bunch of public
available online ice hockey match videos. Using a threshold of
ainit , the separation between the puck and the rink is robust even
with the different environmental settings, such as logos on the
ice or different illumination in the rink. Then the correlation filter
is initialized using the carefully cropped image patch containing
the puck. The plain tracking phase is then followed by a regular
correlation filter tracker procedure as ECO tracker [28]. Noticed



Fig. 2. Illustration of the proposed approach: For each time stamp, a cropped search area suggested from the previous location is fed into the tracker. A Failure Score (FS)
combined with scores from the correlation filter and structural similarity is measured to determine whether tracking is failed in the search area. Later a re-identification
phase is introduced to retrieve the puck from both controlled moving state and free moving state.

M. Li, H. Hu and H. Yan Neurocomputing 551 (2023) 126484
that the tracker is changeable and we will study the influence of
the different choices of trackers. The tracker discriminatively
learns a convolution filter based on a collection of K training sam-
ples fxkgK1 � v from previous tracking results, and each feature

layer f mk 2 RResm has an independent resolution Res1m. Specifically,
in our case, combined HoG (Histogram of Oriented Gradient) [8]
and CN (Color Names) feature maps [27] yield little difference in
performance compared with deep features extracted by CNN
[29], but operating on a much higher speed. This is because the
puck in an image frame does not hold rich texture or semantic
information, allowing color and edge features of the puck to play
the most important role in the feature space.

The learning process is conducted as the following steps, and
perform an update of the puck’s location. First, the feature map
is transferred into the continuous spatial domain
t 2 ½0; Tgunknown2023 by an interpolation model, with the opera-
tor Jm,2162023

JmfxmgðtÞ ¼
XResm�1

res¼0

xm½r�bmðt � T
Resm

rÞ ð1Þ

Here ba is an interpolation kernel with a period of T > 0;R
denotes the independent resolution of feature layer f k Then, the
entire interpolated feature map Jffg is formed by combining all
the interpolated feature layer Jaff ag. A factorized convolution oper-
ator is introduced to predict the detection scores Sdet of the puck as:

Sdet;P;f ffg ¼ Pf � Jfxg
¼

X
n;m

pm;nf
n � Jmfxmg

¼ f � PTJfxg
ð2Þ

The scores show the confidence of the puck’s location in each
corresponding image region of the feature map x 2 v. Where P is
aM � N matrix which represents the coefficient space. f n is a smal-

ler set of basis filters ðf 1; . . . ; f MÞ instead of learning one separate
filter for each feature channel m. f is constructed as a linear combi-
nation of the filter f n by a set of learned coefficients pm;n. This pro-
cess can be viewed as a lower dimensional method that leads to a
radical reduction of parameters. The filters are learned by minimiz-
ing the L2-norm in the Fourier domain to form a more tractable
optimization problem as follows,

Eðf ; PÞ ¼ kẑTPf̂ � ŷk2l2 þ
XN
n¼1

kŵ � f̂ nk2l2 þ kkPk2F ð3Þ
4

Where ŷj is the Fourier coefficients of labelled detection scores
of samples xk, which is originally set to a periodically repeated

Gaussian function. ẑm ¼ Xmb̂m is used to simplify notation as the
Fourier coefficients of the interpolated feature map z ¼ Jfxg. The
regularization integrates a spatial penalty to mitigate the draw-
backs of the periodic assumption, while enabling extended spatial
support [30]. The loss is a non-linear least squares problem, thus
[28] employ Gauss–Newton [31] and use the Conjugate Gradient
method to optimize it and complete the learning process of track-
ing. Given the above process, the tracker is able to perform an
update stage in a search area with 1.5 times the size of the original
image patch. With no catastrophic interference such as occlusion
or out-of-view problems, the plain tracking phase maintains an
acceptable robust performance.

Traditional correlation filter trackers like KCF [32], DCF [33], C-
COT [34], or ECO [28] focus on single object tracking where the
tracking scenario has an obvious distinction between foreground
and background, and are only able to retrieve objects after short-
term occlusion or even lost the tracking record. Under this premise,
trackers tend to fail when a similar object is nearby or occlusion
occurs. This problem is particularly fatal in our task due to the
low-texture of the puck in the image. Other objects in the sur-
roundings, such as the end of sticks waved by players, may share
a similar color and contour, which is possible to confuse the tracker
and cause failure or drift. In order to tackle this inconvenience, a
modified update strategy is proposed. Instead of updating on the
region with the highest score, another shape similarity score on
binary images is introduced to balance the influence of other sim-
ilar objects. An image patch from the first frame is served as a tem-
plate to calculate shape similarity between the location predicted
by a correlation filter and itself. The shape similarity score is mea-
sured by Hu-Moment Invariants [35], which are a set of 7 numbers
calculated by central moments that are invariant to image trans-
formations. Central moments using in Hu-Moment invariants are
calculated as follows:
gpq ¼
X
x

X
y

ðx� �xÞpðy� �yÞqIðx; yÞ ð4Þ

Where centroid ð�x; �yÞ can be acquired by �x ¼ M10
M00

; �y ¼ M01
M00

, and

M00;M01;M10 are moments calculated by formula
Mij ¼

P
x

P
yx

iyiIðx; yÞ. Then we measure 7 Hu-Moment Invariants
using centroid moments. In this paper, we adopted the first 6
moments to compare the shape similarity, since they have been
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proven to be invariant to translation, scale, rotation, and reflection.
By measuring 6 Hu-Moment Invariants, the similarity score Sss is
calculated using L1-distance as follows:

Sss ¼
X6
i¼0

Htemplate
i � HCF

i

��� ��� ð5Þ

After getting the shape similarity score between the template
and the image patch given by the correlation filter, a failure score
(FS) combined with weighted correlation filter and shape similarity
is introduced as follows:

FSðscf ; sssÞ ¼ 1
1þ eðscf�dcf Þccf �

1
1þ e�ðsss�dssÞcss

ð6Þ

Where FS is a weighted constraint combined with the shape
similarity score and the max confident score of the correlation fil-
ter result. A transformation of the sigmoid function is used to
smooth the threshold of each score and filter the score further
away from the threshold. dcf ¼ 0:2; dss ¼ 0:4 denote the empirical
parameter to determine whether the result from the correlation fil-
ter or shape similarity measure is valid or not, respectively. To deal
with extreme cases when either correlation filter or shape similar-
ity measure returns confident feedback while the other measure-
ment disagrees, a hard gap of dcf < 0:1; dss > 0:7 are set for both
thresholds. ccf ; css are the amplifying factor to weigh the influence
of correlation filter and shape similarity respectively. The higher
the FS means the tracking process is likely to fail. Any result with
a score above 0.8 indicates that the object is either being occluded
or hit by a player with a changed shape. For the puck under this cir-
cumstance, the correlation filter stops updating or adding patches
to the memory, saving the previous samples and handing them
over to the re-identification phase for further processing.

3.2.2. Re-identification (Re-ID)
Directly using popular single object trackers like correlation fil-

ter tracker may easily fail and lead to problems like drift or loss.
This kind of failure tends to pop up regularly even after being
weighted by a combined constraint of shape similarity. When the
correlation filter can not find a reliable result of the puck in a cer-
tain frame, a re-identification phase is proposed to handle the puck
retrieving task, under both CM state and FM state. The most deci-
sive factor in determining the state of the puck is speed. The lower
the speed means the shape and color are more likely unchanged
compared to a regular puck. On the other hand, the puck will
become hazy like a shadow, which is hard to locate by using the
image processing method conversely. Different methods regarding
different states are discussed in the following sections.

For most cases, puck tracking under CM state can be done
through the plain tracking phase only, since the moving speed is
related to the speed of the controlling player and obviously not fast
enough to cause motion blur under frame rate in a real-time video.
Most of the failure cases are caused by the occlusion of other play-
ers, which usually lasts for several frames resulting in disappear-
ance and reappearance at a location far away from the predicted
candidate region indicated by the previous trajectory. If the reap-
pearing location lies outside of the correlation filter’s search region
(1.5 times larger than the bounding box of the puck), the tracker
tends to drift to another similar object and fails to retrieve the puck
ever again.

As mentioned above, the puck’s moving speed under CM state is
rather slow, which means that the shape of the puck presented in
the image will not change significantly, but only rotate or change
its scale. In view of this assumption, to retrieve the puck after con-
stant occlusion, a re-identification approach, as shown in Fig. 3,
composed by an ellipse detection technique and a shape compar-
ison method is proposed to find puck candidates and select the
5

right one in an adaptive enlarged search area controlled by the
number of the puck’s lost frames. First, following the previous loca-
tions of the puck, a connected component analysis is conducted
within the search area and finds contours that share a similar
shape and scale with our puck. Then an ellipse fitting approach
[36], shown in Fig. 3, is adopted to find candidates with the shape
of the ellipse. For the next step of the re-id phase, we carefully
select the best match between candidates and the previous sample
of the puck using shape similarity calculated by Humoment invari-
ants, which is the same as we perform in the plain tracking phase.
Also, to tackle the problem of similar wrong candidates such as jer-
sey numbers or letters on the billboard, as shown in Fig. 4, a simple
player or background segmentation is proposed. Given a search
area in the gray-level domain, we first binarize the area using a
normalized threshold of 0.5, then perform a closing operation to
obtain the segmentation. We finally determine if the candidate lies
inside the segment by ray casting algorithm [37], and use Iin to
denote whether the candidate is within the segment or not. The
process is shown in Fig. 5 The overall CM Re-ID score SCMreid is cal-
culated as follows:

SCMreid ¼ 1
1þeðsss�dss Þcss � Iin

where Iin ¼ 0 if candidate is inside

1 if candidate is outside

� ð7Þ

If the best match candidate lies outside of any players or bill-
board and shares a similar shape of the template within a thresh-
old of dss ¼ 0:4, the re-identification score is near 1. Then the
candidate is attached to the previous tracklet of the puck and fed
to the tracker for continuous tracking.

As for FM state, the puck slides on the ice surface freely at a rel-
atively high speed. The geometric shape of the puck is always dis-
played like a long stick on the image frame as shown in Fig. 6.
Under this circumstance, the puck is extremely indistinguishable
on gray-level from the ice surface. After conducting a statistical
analysis on this particular circumstance, the best threshold to seg-
ment the puck from the background is 0.95. However, this unreli-
able threshold, to some extent, causes constant confusion between
the puck and the shadow of the player. To extract the puck with
hazy color and gray-level, we first detect the edge in the search
area, then find the puck candidates using ellipse detection. Since
the candidate is easily influenced by shadows, shape similarity is
not able to provide a solid result. We then calculate the SSIM
(Structural Similarity Index Measure) score between the candidate
and a pre-cropped stick-like sample. Another obvious clue is that
the direction of the stick-like candidate shares a similar angle with
the moving direction between the last known location of the puck
and the candidate. Hence, calculating the angle similarity from
both directions may eliminate wrong candidates easily. Consider-
ing both the SSIM score and the angle distance, we have the joint
score of re-identification for FM state as follows,

SFMreid ¼ 1
1þ e�ðsSSIM�dSSIMÞcSSIM

� 1
1þ eðDangle�dangleÞcangle ð8Þ

where SSIM score is calculated as follows,

SSIMðx; yÞ ¼ ð2lxly þ c1Þð2axy þ c2Þ
ðl2

x þ l2
y þ c1Þða2

x þ a2
y þ c2Þ ð9Þ

Where l;a is the average and the variance of each image patch

respectively. c1 ¼ ðk1LÞ2; c2 ¼ ðk2LÞ2 are variables to stabilize the
division with weak denominator, and k1 ¼ 0:01; k2 ¼ 0:03 by
default.

And angle distance is obtained by the formula,

Dangle ¼ ACandidate � ADirection

ADirection

����
���� ð10Þ



Fig. 3. Re-identification phase dealing with controlled moving state. To tackle the problem of occlusion and some difficult cases of rotation, we first adopt ellipse detection to
find objects with the shape similar to the puck. Then calculate Hu Moments between previously confirmed puck and the detected objects, and select the best match as the
final retrieval result.
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When the candidate itself and the moving pattern share similar
angles and the structure is alike with the template, the re-
identification score SFMreid will be near 1, then we reclaim the
stick-like candidate as the puck and continue tracking.

However, under the extreme circumstance of high speed, logos
on the ground could be a serious interference. Considering the
moving pattern of the puck is predictable and the trajectory under
this moving state can be seen as linear, we incorporate a Kalman
estimator [38] to help predict the location of the moving puck. It
is proven that if the puck is submerged in the shadow of a player,
the puck is likely to be controlled by the very player within a short
period of time. Hence, after 5–10 frames, for the puck to be stable
and return to its natural geometric shape, we applied the correla-
tion filter to find the puck with the previously learnt feature in the
enlarged search area provided by the Kalman estimator. And finally
complete the trajectory using the linear interpolation method to
finish the tracking procedure under FM state. The whole re-
identification phase on FM state is shown in Fig. 6.
4. Experiments and Discussions

To our knowledge, there are no public accessible datasets for
pucks detection or tracking. Thus, we select 2 integral videos from
ice-hockey game live streams, and carefully crop them into rela-
tively short video clips with puck visible in the image frame. We
then manually labelled the puck location for evaluation. Detailed
6

settings about data and evaluation metrics are elaborated in the
following sections. Also, the key processes of our proposed method
are listed in Algorithm1.

Algorithm1 Framework of the proposed method.

Output: ½F1; F2; � � � Fn�;0 <¼ n <¼ N Consecutive frames of
ice hockey broadcast video contains N frames.

Input: T Trajectory of the puck.
1: Initialization
2: while n <¼ N do
3: scf ¼ TrackerðFnÞ; sss ¼ ShapeSimilarityðFnÞ
4: if FSðscf ; sssÞ < 0:8 then
5: Attached to trajectory T.
6: else if FSðscf ; sssÞ > 0:8 then
7: State ¼ ðCM; FMÞ Separate current state to CM or FM

by speed.
8: if State ¼ CM then
9: Calculate SCMreid

10: if SCMreid > thresholdCM then
11: Attached to trajectory T .
12: end if
13: else if State ¼ FM then
14: Calculate SFMreid ¼ f ðsSSIM;DangleÞ
15: Attached to trajectory T.
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a (continued)

Algorithm1 Framework of the proposed method.

16: if SFMreid > thresholdFM then
17: Attached to trajectory T .
18: end if
19: end if
20: end if
21: end while
4.1. Data and Settings

The two selected videos contain 17163 frames, and 12104 of
them are images with pucks under either CM or FM state. We then
clip the two sequences into 20 small clips and categorize them into
3 groups from easy to hard, based on the level of difficulty. Clips
under CM state are categorized on the basis of occlusion rate, while
others under FM state are separated in accordance with the mov-
ing speed. Combined two different states, the two test sequences
are divided into 6 groups of video clips with gradually changing
difficulties. The overall number of ground truth pucks, frames
without pucks in both CM and FM state are shown in Table 1.

As for the evaluation of the performance, since the bounding
box of a puck is rather small and the overlap between the detected
and the groundtruth is usually near 100%, thus the widely used
single object tracking metrics like Average Pixel Error (APE) and
Fig. 4. Similar objects in the search area, su
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Average Overlap Rate (AOR) [39] is not fair for puck tracking task.
Hence, we adopt the traditional precision, recall and F1 score as
our evaluation metrics since the above metrics are capable of
reflecting the ability to find and maintain the trajectory of a mov-
ing puck. Specifically, TP means the correct tracking of the pucks,
FP contains both mis-detected ones when the correct annotation
should be no puck, and inaccurate detections when there actually
is a puck in the frame, FN means the missing detection of the puck,
and TN means the correct ones where no puck lies in the field of
view.
4.2. Run Time

Our proposed approach currently runs real-time at over 42fps
on a 3.60 GHz i7-7700 CPU, which proves the possibility of inte-
grating other fast segmentation or detection methods and remain-
ing real-time.
4.3. Gray-Level Thresholding

Gray-level thresholding plays a big role in both our two phases,
and serves as a pre-processing process. To find the best gray-level
thresholds for both phases, we calculate the number of detected
pucks out of 12104 labelled puck groundtruths in our 2 integral
ice-hockey game videos respectively, 9288 out of 12104 pucks
are under CM state and 2726 are under FM state. All the frames
with the puck under CM and FM state are cropped as our test data.
Then the data is separated into two subsets based on the current
ch as jerseys or letter on the billboard.



Fig. 5. Example of the simple segmentation process to determine if the candidate lies inside a player. Two candidates, one is the jersey number and the other is the ice skate,
are marked in red. The closing operation is used to find the segment of the player, later using the ray casing algorithm we can determine if both candidates lie inside the
player and save the results for further processing.

Fig. 6. Re-identification phase dealing with free moving state. To deal with extreme circumstances of fast-moving puck, we use edge detection with a carefully selected gray-
level threshold of 0.95 to find the hazy puck. As for logo-like and shadow interference, a Kalman estimator and the existing correlation filter tracker are introduced to find the
reasonable trajectory and the puck, respectively.

Table 1
Numbers of pucks under different states in the dataset.

State of Data Frames w/ Pucks Frames w/o Pucks Total Frame Number

All 12104 5059 17163
CM 9288 4805 14093
FM 2726 254 2980
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state of the puck. As shown in Fig. 7a, the normalized threshold
value is varied from 0 to 1, and the number of pucks successfully
separated from the background is shown on the vertical axis. From
Fig. 7a, a threshold value between 0.5 and 0.6 yields the best result
for CM state, the fluctuation in this region indicates the influence of
illumination variance. The peak value, 0.55, according to Fig. 7a,
which can separate 7854 of 9288 pucks from the background, is
selected to find the puck when the game start for tracking initial-
ization in the first frame. As for the FM state, gray-level threshold-
ing determines the possibility of locating the puck at high speed.
Due to the high moving speed, the puck is vague and the gray-
8

level is very close to the ice surface. However, according to
Fig. 7b, with a threshold of 0.95, 2322 of total 2726 pucks can be
separated from the background, and that’s a promising preliminary
result for the so-called ’invisible’ puck. With a threshold of 0.95,
incorporate with Kalman estimator and our correlation filter
tracker, the detected pucks can serve as semi-supervised labels
and provide cues for estimating locations to form a reasonable tra-
jectory. Detailed performance of puck tracking under extreme FM
state is demonstrated in the following study.
4.4. Overall Performance

We first compared our method with several previous methods
and show the result in Table 2. Then to better exhibit the perfor-
mance of our two phases, an ablation study of our proposed
approach is conducted. We first test the plain tracking phase on
our data and analyse the result. Then by adding different parts of
re-identification phase, we show the effectiveness of our approach
in dealing with hard cases under both CM and FM state. Also a
comparison between our proposed approach under CM state and



Table 2
Comparison with previous works. Best in bold and second best underlined.

Method GT TP FP FN TN Pcs. Rec. F1

[24] 9378 6547 2719 2521 2406 70.6% 72.2% 71.4%
[26] 9378 5473 3804 2991 1879 59.0% 64.7% 61.7%
[23] 9378 6583 2437 2399 2764 72.9% 73.3% 73.1%
[7] 9378 4367 4279 3976 1562 50.5% 52.3% 51.4%
[25] 9378 8053 920 1223 3987 89.7% 86.8% 88.2%
Ours(w/o FM) 9288 8437 1463 651 3542 85.2% 92.8% 88.9%

Ours(w/ FM) 12104 8599 1618 1515 3741 84.2% 85.0% 84.6%

Fig. 7. Number of pucks separated from background using different normalized gray-level threshold under both CM and FM state.
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other methods in puck detection and tracking is performed to
show the improvements. Finally, we conduct a statistical experi-
ment on tracking pucks under free moving state, which has never
been addressed in any of the previously published work.
4.4.1. Compared with Previous Works
We follow the experiment conducted in [7] to demonstrate our

improvements. Table 1 shows the tracking outcome using solely
plain tracking phase compared with adding Re-identification phase
under either CM state or FM state. Comparison cases are targeting
either CM or FM state cases, which contain 9288 and 2726 pucks
out of a total number of 12104 groundtruths in 17163 frames,
respectively. Plain tracking phase, which only contains the correla-
tion filter tracker, may easily shift to other similar objects like jer-
seys or sticks due to the extremely low texture of the puck, and
cause high false positives and low precision. Also adding to false neg-
ative cases, the plain tracking phase possesses no ability to track
the puck after a shooting action, as in FM state cases. Compared
with the plain tracking phase, most of the failure cases caused by
similar objects nearby like jersey numbers or sticks can be
addressed by adding our re-identification phase under CM state.
And thus significantly lower FP, FN and increase all the metrics.
Re-ID phase can opportunely suspend the shift of the object caused
by similar disturbances nearby and retrieve the puck after its re-
emerging in the scene. As for FM re-identification, cases are more
complicated and combined with multiple cues that may influence
the results such as speed, motion of cameras, illumination variants
and so on. To our best knowledge, there is no previous investiga-
tion on detection or tracking pucks after shooting actions. Thus
we conduct the experiment in the same way as before, out of
2726 samples, our approach is able to tackle some of the cases
and produces a F1 score of 77.6%. With the extreme circumstances
of FM state, similar objects that may cause the rise of FP are lim-
ited. Thus our experiment shows a promising result of precision.
However, shadows of players, logos on the ground, and the high
speed of the camera motion may still lead to failure in finding
the high-speed puck. This is also revealed by the relatively low re-
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call. A more detailed analysis will be performed in the following
sections.
4.4.2. Tracking under Controlled Moving State
A comparison of the detection rate between the proposed

approach and previous works is shown in Table 2, all the results
of previous works are re-implemented according to their papers
and evaluated on our dataset. Since all of the previous works con-
sidered pucks after shooting actions are invisible and didn’t
address cases under FM state, the comparison is only conducted
between them and our approach under CM state. The result is
shown in Table 2. When using the correlation filter as our base
tracker and adding a re-identification phase to tackle the failure
cases, detection and tracking performance can be improved with
a much larger scale of data. Moreover, by introducing our re-
identification phase under FM state, the proposed method is able
to tackle previous considered ’invisible’ pucks under FM state,
leading to an increase of TP with a slight decrease of F1 score.
The result indicates that our proposed method can improve the
puck tracking under CM state and track the puck in FM state addi-
tionally without hurting the performance.

From Table 3, by adding the re-identification phase, precision
increases significantly due to the reduction of FP. This indicates
that when the correlation filter tracker drifts because of the influ-
ence of similar objects nearby or partially, even fully occlusion, the
re-identification phase is able to stop the tracker from absorbing
negative samples, retrieving the puck after occlusion, and correct
the trajectory to continue the tracking process.

We further classify all the video clips under CM state into 3 dif-
ficulty levels, based on how often the puck is occluded. The three
difficulties are selected based on the degree of occlusion with
below 30%, 50% and above 70%. Then a comparative experiment
is carried out to determine the ability of the proposed approach
to deal with occlusion problems. Results are shown in Table 4,

For samples of easy or medium levels, the puck usually endures
the occlusion of sticks or body parts of players, the difference may
be the rate of occlusions during the video clip. When dealing with



Table 3
Overall Performance.

Method TP FP FN TN Pcs Rec F1

Plain Tracking 3423 3503 8481 1756 49.4% 28.7% 36.3%
PT + CM Reid 8437 1463 651 3542 85.2% 92.8% 88.9%
PT + FM Reid 1762 155 864 199 91.9% 67.1% 77.6%

Table 4
Ability of Re-ID to tackle different rate of occlusion.

Difficulty GT TP FP FN TN Pcs. Rec. F1

Easy 5273 4862 733 308 2038 86.9% 94.0% 90.3%
Medium 3449 3228 535 214 1249 85.7% 93.8% 89.6%
Hard 655 347 195 129 255 64.0% 72.9% 68.2%
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such kind of problems, our approach is able to retrieve the puck
after the short-term occlusion and maintain the tracking process.
All the metrics remain at a high level. However, for samples of hard
levels, more complex scenes with more players with faster moves
serve as a basic environment. Sometimes the possession of the
puck may transfer to the other team behind occlusion, which leads
to a problem of changing moving direction secretly and moving out
of the search area. This kind of problem can easily cause failure and
increase FP and FN, affecting precision and recall. Through the com-
parison result, our approach demonstrates the ability to tackle
usual occlusions with high-level metrics and shows the potential
of dealing with hard conditions with a recall of 72.9%.
Table 6
Effect of Different Tracker. Best in bold.

Tracker Pcs. Rec. F1

KCF[32] 75.7% 80.7% 78.0%
DCF[33] 78.4% 75.3% 76.8%
C-COT[34] 80.3% 84.2% 82.3%
ECO[28](Our Selection in paper) 84.2% 85.0% 84.6%
4.4.3. Tracking under Free Moving State
There are no prior published attempts to track the puck at high

speed, which is hazy and unclear. We therefore calculate metrics of
samples with different speed, and show puck examples with differ-
ent speed in Fig. 8. Different speed is classified with respect to the
average moving pixels in the video between consecutive1 5 frames.
For fast, medium, and slow speed, we select 5 pixels=frame, 10
pixels=frame, and 20 pixels=frame under a frame rate of 25 fps for
video sequences. As shown in Table 5, metrics of dealing with dif-
ferent speed indicate that pucks with medium speed are the hard-
est ones. Our Re-ID phase targeting different scenarios should hold
the responsibility of this. Re-ID under CM state is plausible to deal
Fig. 8. Examples of pucks

Table 5
Ability of Re-ID to find puck with different speed.

Speed(pixelsframe) GT TP FP FN

5 773 476 53 25
10 526 202 58 30
20 1427 1084 44 30
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with slow-speed pucks exhibiting rather a ball-like shape and dar-
ker color, while techniques used under FM state possess a strong
ability to find the puck under hazy color and stick-like shape. Both
mentioned above leave an awkward situation of pucks with med-
ium speed, where colors are neither clear nor hazy, and the shape
is hard to be categorized. To compensate for this situation, Kalman
estimator is introduced to predict the location when neither of the
techniques is able to find the puck. Also, Kalman estimator acts as a
remedy procedure on the hard case shown in Fig. 8c, where simple
gray-level thresholding is incapable of separating the puck from
lines on the ice surface. Correlation filter is used to complete the
trajectory where the puck sinks in the shadow of players. Com-
bined with detection results from ellipse fitting, Kalman estimator,
and the correlation filter, the evaluation result, shown in Table 5,
gives an acceptable outcome of detecting and tracking the hard-
to-find high-speed puck. Quantitative results prove that our re-
with different speed.

TN Pcs. Rec. F1

5 142 90.0% 65.1% 75.6%
2 33 77.7% 40.1% 52.9%
7 24 96.1% 77.9% 86.1%



Table 7
Effect of Different Parameter Settings for all the components.

State Parameters Pcs. Rec. F1

CM & FM dcf ¼ 0:2 dss ¼ 0:8 86.3% 78.4% 82.2%
dcf ¼ 0:4 dss ¼ 0:2 80.4% 86.2% 83.2%
dcf ¼ 0:2 dss ¼ 0:4 84.2% 85.0% 84.6%

CM dSSIM ¼ 0:2 82.0% 80.2% 81.1%
dSSIM ¼ 0:8 83.5% 85.0% 84.2%
dSSIM ¼ 0:4 85.2% 92.8% 88.9%

FM dSSIM ¼ 0:8 dangle ¼ 0:2 70.4% 45.9% 55.6%
dSSIM ¼ 0:2 dangle ¼ 0:8 75.2% 70.8% 72.9%
dSSIM ¼ 0:5 dangle ¼ 0:5 91.9% 67.1% 77.6%

CM & FM 1:5� 84.2% 85.0% 84.6%
2� 70.6% 90.5% 79.3%
3� 56.3% 92.6% 70.0%
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identification is able to locate and track the puck under extreme
circumstances of high speed.

4.5. Ablation Study

In this section, we evaluate the effectiveness of different param-
eter settings for all the components of our proposed method. An
ablation study of different tracker selections is carried out first in
Table 6. Then different parameter settings for our Failure Score,
Re-identification and also the search region are detailed evaluated
in Table 7.

4.5.1. Effect of Different Tracker Selection.
To evaluate the performance of our proposed method when

using different trackers, we select KCF [32], DCF [33], C-COT [34],
and ECO [28] as our base tracker. The results are shown in 6, only
the precision, recall, and F1 score are shown for clear comparison.
As shown by the result, the choice of the tracker does not hold a
decisive influence on the performance, with different correlation
trackers selected, the overall performance only changes relatively
small margin. And with the improvement of the tracker, the F1
score along with the precision and recall are increased, which
shows the potential of our method by embedding with a powerful
tracker.

4.5.2. Effect of Different Parameter Settings
We conduct experiments in Table 7 on four groups of parame-

ters in this section, weights selected in the Failure Score, weights
selection in extreme cases, settings of Re-ID score, and the size of
the search window. Demonstrated in the top of Table 7, when
enlarging the weight of the correlation filter and downgrading
the importance of shape-similarity, the FP increases and FN drops
and leads to changes of precision and recall, but eventually hurt
the performance of F1 score and vice versa. Then the middle of
Table 7 shows that dSSIM ¼ 0:4 yields the best results under CM
state for all the metrics and the weights for SSIM and the angle
of movement should be balanced since they share the similar
importance for estimating pucks under FM state. Finally, by enlarg-
ing the search window size for our method, more areas are intro-
duced to search the puck, and this leads to a decrease of FN and
an increase of FP. However, since much more interference will be
selected if the window is large, the overall F1 score will drop signif-
icantly. Hence, we select 1.5 times of current puck area as the
search window.

5. Conclusion, Limitations and Future Work

In this paper, we propose a real-time ice hockey puck detection
and tracking approach solely depending on image processing,
which consists of two phases, plain tracking and re-identification.
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We use a combination of correlation filter, contour fitting and
motion estimation approaches to detect and track pucks from both
controlled moving and free moving state. We provide a solution for
incorporating state-of-the-art trackers to track the low-texture ice
hockey pucks, and present a re-identification phase to track high-
speed pucks after shooting actions. This is the first attempt at try-
ing to locate and track pucks with shifted shapes caused by high
speed after shooting actions by a player to our best knowledge.
Thorough analysis and experiments are conducted to show that
our proposed approach can maintain a steady tracking process
and is able to deal with constantly existing severe occlusion and
reclaim the puck after its reappearance.

However, failure cases show that there are still challenges and
difficulties in detecting and tracking pucks. Using techniques such
as action recognition or scene understanding to analyze players’
movements may provide a reasonable search area to eliminate
the influence of players’ interactions and camera motion. Also,
given the fact that the puck in a broadcast video frame is relatively
small and contains monotonous colors, thus there are always sim-
ilar objects that may yield interference. Moreover, due to the pecu-
liarity of the ice hockey game, players crowding together, sudden
change of possession of the puck, even fly motion of the puck after
a powered hit by players, robust long-term identifying and track-
ing the puck solely depending on image processing is still
burdensome.

In addition, for better coping with the above problems, a more
complex analysis approach with scene understanding is possible
for future work. By using the action recognition technique, shoot-
ing actions can be analyzed. The technique can also determine
the possible direction and location of the puck in the next few
frames. By incorporating more cameras from different angles,
occlusions can be solved thoroughly. Furthermore, by projecting
the view angle of cameras to a bird’s-eye view, the trajectory of
the puck and all the players can be seen clearly. And introducing
trajectory estimation approaches may optimize the moving trend
of the puck and even predict future locations.
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