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ABSTRACT Multi-satellite joint regional coverage aims to select the optimal combination of satellite
resources to acquire the image information of the specified area. Meanwhile, more than three objectives are
usually considered simultaneously during this process. Therefore, it is a typical many-objective optimization
problem that is NP-hard. Most existing many-objective optimization algorithms cannot preserve extreme
solutions due to the failure of Pareto dominance. In this paper, through introducing the idea of S-CDAS
into the traditional NSGA-III, an improved many-objective evolutionary algorithm named NSGA-III for
extreme solutions preservation (ESP-NSGA-III) is proposed with problem-specific genetic operations to
generate regional coverage schemes. A comparative study is conducted with other six state-of-the-art many-
objective evolutionary algorithms. Hypervolume (HV) and pure diversity (PD) metrics are used to evaluate
the performance of algorithms. The simulation results show that ESP-NSGA-III has good comprehensive
performance and improves the diversity of original algorithms. The maximum difference of the coverage rate
between ESP-NSGA-III and other six algorithms is 0.2576 so that satisfactory regional coverage scheme can
be obtained by ESP-NSGA-III. Our proposed methods are not only applicable to regional coverage tasks,
but also have important reference significance for solving other real-world problems.

INDEX TERMS Many-objective optimization, multi-satellite joint, NSGA-III, regional coverage, S-CDAS.

I. INTRODUCTION
Earth observation satellites (EOSes) dynamically monitor
and analyze the natural environment, economic crops, traffic
conditions, and sudden disasters, etc. by acquiring images
of specified areas on the Earth’s surface [1]. However, it is
hard to achieve full coverage of large region by single satel-
lite due to the size of the field of view (FOV). With the
continuous increase of the number of satellites on orbit,
multi-satellite joint mode provides us with opportunities for
rapid large regional coverage. The regional coverage process
aims to select the optimal combination of satellites from
all available satellite resources so that they can acquire the
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area images to the utmost extent in a cooperative man-
ner while satisfying various constraints. Consequently, the
problem of multi-satellite joint regional coverage is a typ-
ical combinatorial optimization problem, which has been
proven to be NP-hard [2]. To solve this large-scale planning
problem within reasonable computational time, heuristic and
meta-heuristic algorithms such as tabu search [3], greedy
search [4], ant colony optimization [5], [6], genetic algorithm
[7], [8] and so on are more suitable than the exact methods.

Due to the realistic demand, meanwhile, regional coverage
tasks always have to optimize multiple objectives simul-
taneously, such as total profit, image quality, timeliness,
cost and so on. Therefore, multi-objective evolutionary algo-
rithms (MOEAs) have been widely explored by researchers
in recent years. Aiming at multi-satellite planning for
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large-region image acquisition, Chen et al. [9] established
an optimization model with two objectives of maximum tar-
get region coverage and minimum satellite resource utiliza-
tion, and employed non-dominated sorting genetic algorithm
(NSGA-II) [10] for model solving. With the goal of maxi-
mizing the total profit, minimizing the number of strips, and
minimizing the overlap of strips, Xu et al. [11] transformed
the regional coverage problem into a set covering problem
(SCP), established a mathematical model, and then used the
NSGA-II algorithm to generate the optimal planning scheme.
In the context of disaster emergency response, Niu et al.
[12] established a multi-satellite joint coverage model with
the objectives of maximum coverage rate, minimum imag-
ing completion time, minimum average spatial resolution,
and minimum average slewing angle. Then NSGA-II was
employed to obtain the optimal solution of satellite planning.
Li et al. [13] established amathematical model withminimum
the number of strips, minimum the overlap ratio of strips,
maximum coverage rate, and minimum task completion time
as four objectives, and selected the Two-Archive2 algorithm
[14] to formulate a regional coverage planning scheme.

Although the above studies have achieved certain results,
few objectives are considered and the algorithms used are
relatively simple. Usually, multi-objective optimization prob-
lems (MOPs) with more than three objectives are referred
to as many-objective optimization problems (MaOPs) [15].
The performance of traditional MOEAs, such as NSGA-II,
deteriorates seriously when handling MaOPs. The main rea-
son is that the selection pressure based on Pareto dominance
degrades severely with the number of objectives increas-
ing. A large number of algorithms have been proposed for
MaOPs. NSGA-III [16], the improved version of NSGA-II,
is one of the most representative algorithms. In NSGA-III,
reference-points basedmethod is adopted to replace crowding
distance, which reduces the impact of Pareto dominance by
increasing diversity. However, since the Pareto dominance is
not changed, the phenomenon of dominance resistance will
still appear with the continuous iteration of the algorithm.
As a result, all candidate solutions will be distributed on the
same Pareto front (PF) at an iteration, which makes them
incomparable. This condition has serious negative effects
when dealing with practical problems. Taking regional cover-
age tasks as an example, coverage rate is the most important
objective inmost instances, and clients hope to optimize other
objectives under the premise of maximizing coverage rate.
However, the failure of Pareto dominance makes candidate
solutions can only be selected by the niche-preservation oper-
ation, resulting in a certain probability that the solution with
the maximum coverage rate (extreme solution for short) can-
not be selected for the next iteration. This will not only reduce
the efficiency of genetic operations, but more importantly, the
algorithm cannot provide a satisfactory planning scheme for
clients.

To solve this issue, researchers have made a lot of efforts
on modifying the Pareto dominance to increase the degree
of distinction between two candidate solutions. Yuan et al.

[17] designed θ -dominance to replace the Pareto domi-
nance and proposed θ-NSGA-III, which can ensure both
convergence and diversity. Tian et al. [18] proposed a new
dominance relation, named strengthened dominance relation
(SDR), to balance convergence and diversity by developing
a niching technique based on the angles between the can-
didate solutions. On this basis, Gu et al. [19] modified the
measure of convergence of candidate solutions in SDR and
proposed DDR. He et al. [20] adopted the concept of fuzzy
logic to define a fuzzy Pareto domination relation, which can
continuously differentiate solutions into different degrees of
optimality beyond the classification of the original Pareto
dominance. Sato et al. [21] controlled the degree of expansion
or contraction of the dominance area of solutions (CDAS)
using a user-defined parameter S inducing a ranking of
solutions that is different to conventional Pareto dominance.
Because CDAS relies heavily on the parameter S, they further
modified CDAS and proposed S-CDAS [22] to self-control
dominance area for each solution. However, the starting point
of most researches is to improve the convergence or diversity
of the algorithm on test problems such as DTLZ [23] and
WFG [24]. More importantly, these algorithms are not suit-
able for dealing with practical problems as they cannot guar-
antee to preserve extreme solutions. Few algorithms, such
as S-CDAS, can preserve extreme solutions, but its diversity
are relatively poor [18]. Therefore, the purpose of this paper
is to propose a novel MOEA, which can preserve extreme
solutions and improve the diversity of the original algorithm,
to solve many-objective regional coverage problem.

The remainder of this paper is organized as follows. Sec-
tion II introduces the problem description and data resources,
including objectives, satellite information, and the process
of regional decomposition. Then the NSGA-III and S-CDAS
frameworks are briefly reviewed in Section III. The details
of the proposed algorithm and coding strategies are given in
Section IV. Finally, in Section V, experimental simulations
are conducted to validate the proposed algorithm. The simu-
lation results demonstrate that the ESP-NSGA-III has better
performance than the other algorithms.

II. PROBLEM DESCRIPTION AND DATA RESOURCES
A. PROBLEM DESCRIPTION
For the convenience of readers, the variable symbols and
explanations are first summarized in Table 1.

1) PROBLEM SETTING
According to the satellite conditions and practical applica-
tions, the following assumptions are adopted.

• The satellite lens can only swing left and right but not
forward and backward.

• Once an observation task is started, it cannot be inter-
rupted or cancelled until it is finished.

• At most one strip can be selected per transit per
satellite, i.e.,∑|Nij|

k=1
xijk ≤ 1, ∀i ∈ [1, |S|] , ∀j ∈ [1, |Oi|] (1)
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• The length of all strips is limited between the minimum
imaging length and maximum imaging length of the
corresponding satellite.

• The data transmission planning is not within the scope
of this study.

• Satellite storage capacity and electricity are infinite.

TABLE 1. Variable symbols and explanation.

2) OBJECTIVES
In this paper, five objectives are to be optimized simultane-
ously. The first objective is maximizing the coverage rate
(equivalent to maximizing the profit), which is the most
important one in our research. The second objective is min-
imizing the overlap ratio of selected strips and the third
objective is minimizing the number of selected strips. These
two objectives are to increase the utilization efficiency of the
satellites and reduce cost. The overlap ratio is defined as the
ratio of the strips’ overlap area within the target region to
the total coverage area. The fourth objective is minimizing
the average resolution and the fifth objective is minimiz-
ing the average swing angle. These two objectives are to
improve the image quality. For unification, the first objective
is transformed to a minimization problem. Five objectives are
formulated as follows:

• Maximize the coverage rate:

min 1 −
(
⋃|S|

i=1
⋃|Oi|

j=1
⋃|Nij|

k=1 xijkareaijk ) ∩ areaT

areaT
(2)

• Minimize the overlap ratio of selected strips:

min
(
∑|S|

i=1
∑|Oi|

j=1
∑|Nij|

k=1 overlap(xijk )) ∩ areaT

(
⋃|S|

i=1
⋃|Oi|

j=1
⋃|Nij|

k=1 xijkareaijk ) ∩ areaT
(3)

• Minimize the number of selected strips:

min ns = min
|S|∑
i=1

|Oi|∑
j=1

|Nij|∑
k=1

xijk (4)

• Minimize the average resolution:

min

∑|S|

i=1
∑|Oi|

j=1
∑|Nij|

k=1 xijkri

ns
(5)

• Minimize the average swing angle:

min

∑|S|

i=1
∑|Oi|

j=1
∑|Nij|

k=1 xijksaijk/SAi

ns
(6)

B. DATA RESOURCES
Three kinds of satellites (GF03B, KF01, and GF02) used
for simulation experiments are independently developed by
Chang Guang satellite technology CO., LTD and are in ser-
vice. Some parameters of the satellites are listed in Table 2.

Sichuan province, China is chosen as the target region to
be covered. Its area is about 485,000 km2, which is too big
to be observed by a single satellite, providing an opportunity
for multi-satellite joint coverage.

C. REGIONAL DECOMPOSITION
Considering the target region is far much larger than single
observation scope of any satellite, it is a common measure
to decompose the target into discrete strips. Fig.1 shows the
process of regional decomposition and strip selection. The
red line in Fig.1b is the ground track of one satellite, and
the green rectangular frame is the biggest observable range
of the satellite determined by its swath and maximum swing
angle. Since the swing angle is a continuous variable, one
satellite can actually create countless corresponding strips.
To make the problem computable, as shown in Fig.1c, the
range of swing angles are divided into a group of discrete
values with a step 1λ = 0.5km. This approach can obtain
a finite number of strips within each observing opportunity.
Finally, only one strip will be selected randomly from the
strips set to participate in the regional coverage task, as shown
in Fig.1d. As a result, a total of 20,344 strips were obtained
from all satellites and used as input of the proposed algorithm.

III. REVIEW OF METHODS
In this section, several basic definitions in MaOPs are first
given. Then the original NSGA-III and S-CDAS, which are
the basis of our proposed algorithm, are briefly introduced.

A. MANY-OBJECTIVE OPTIMIZATION CONCEPTS AND
DEFINITIONS
Aminimizedmany-objective optimization problem including
M (M > 3) objective functions is defined as follows:{
Minimize F (x) = (f1 (x) , f2 (x) , · · · , fi (x) , · · · , fM (x))
Subjectto x ∈ D

(7)

where x is a feasible candidate solution in the solution space
D, and fi (x) (i = 1, 2, · · · ,M ) is the i-th objective function
to be minimized. Generally, the Pareto dominance princi-
ple is widely used in MOPs and MaOPs for distinguishing
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TABLE 2. Some parameters of the satellites.

FIGURE 1. The process of regional decomposition and strip selection.

the quality of two candidate solutions x and y. Specifically,
if inequalities:{

∀i ∈ {1, 2, · · · ,M} : fi (x) ≤ fi (y) ∧

∃j ∈ {1, 2, · · · ,M} : fj (x) < fj (y)
(8)

are satisfied, candidate solution x is said to Pareto dominate y,
denoted as f (x)≺f (y) [25]. If x cannot be Pareto dominated by
all other solutions in D, x is said to be Pareto optimal. Hence,
the set of Pareto solutions (POS) is defined as:

POS = {x ∈ D|¬∃y ∈ D : f (x)≺f (y)} (9)

and the PF is defined as:

PF = f (x)|x ∈ POS (10)

B. NSGA-III
The basic framework of NSGA-III remains similar to that
of NSGA-II. The most notable improvements of NSGA-III
are the introduction of reference points and the environment
selection mechanism related to reference points. Firstly, Das
andDennis’s systematic approach [26] is usually employed to
construct structured reference points on a normalized hyper-
plane. Specifically, if p divisions are considered along each
objective, the total number of reference points (H ) in an
M -objective problem is given by:

H =

(
M + p− 1

p

)
(11)

The following steps are iterated until the termination crite-
rion is satisfied. At the t-th generation of NSGA-III, several
genetic operations such as selection, crossover, and mutation

are carried out on the current population Pt (of size N ) to
generate the offspring population Qt . Then Rt = Pt ∪ Qt
is obtained where the size of Rt is 2N . To select best N
individuals from Rt to create Pt+1 for next generation, the
nondominated sorting based on Pareto dominance is used,
which divides Rt into different levels (F1, F2, and so on).
Starting from F1, all individuals belonging to this level are
put into a new population St one at a time until the size of St
is equal to or larger than N for the first time. Supposing the
last level included is the l-th level, then individuals in StFl are
already selected for composing Pt+1 and individuals from the
level l+ 1 onward are removed. Individuals in Fl are fed into
the environment selection operation to select the remaining
N − |StFl | individuals to maintain diversity of solutions.
The environment selection operation consists of several

parts:
(1) The objective values of the individuals are normalized

using the ideal and extreme points so that they have an
identical range.
(2) The perpendicular distance between an individual in St

and a reference line (joining the origin with a reference point)
is computed. Each individual in St is then associated with a
reference point having the minimum perpendicular distance.
(3) Performing the niche-preservation operation. It is the

actual step of selecting individuals in environment selection
operation, which works as follows:

• The niche count ρj for the j-th reference point, defined
as the number of individuals in StFl that are associated
with the j-th reference point, is computed.

• Reference point set Jmin = {j: argminjρj having the
minimum ρj value is identified. If |Jmin| > 1, one
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reference point j̄ ∈ Jmin is chosen randomly. If the
level Fl does not have any individual associated with the
j̄-th reference point, the reference point is not considered
for the current generation, meanwhile, Jmin is recom-
puted and j̄ is reselected. Otherwise, the value of ρj̄ is
further considered. If ρj̄ ≥ 1, an individual in Fl that
is associated with the j̄-th reference point is randomly
selected into population Pt+1, and the value of ρj̄ is
incremented by one. If ρj̄ = 0, the individual having the
minimum perpendicular distance to the j̄-th reference
line is selected into population Pt+1 and the value of ρj̄
is also incremented by one.

• Niche-preservation operation is repeated until the size
of Pt+1 reaches N . More details about NSGA-III can be
found in the literature [16].

FIGURE 2. The schematic diagram of reclassification of solutions in F1 by
S-CDAS. Seven individuals (solid circles) are non-dominated each other in
original Pareto dominance, but after S-CDAS, yellow individuals become
dominated by x .

C. S-CDAS
S-CDAS modifies the dominance area of each individual
by referring to extreme solutions in the population, thereby
enhancing the probability of two individuals being compara-
ble on MaOPs. In this way, the algorithm can guarantee the
extreme solutions always in the top front. For a bi-objective
maximization problem, Fig.2 shows the schematic diagram
of the reclassification of several solutions in F1.

Specifically, S-CDAS reclassifies the solutions in each
front Fj(j = 1, 2, · · · ) derived from the original Pareto
dominance according to the following steps.
Step 1: Move the origin to O = (O1,O2, · · · ,OM ) in

objective space. Oi = f mini (i = 1, 2, · · · ,M ), where f mini
is the minimum value of the i-th objective function in Fj.
Step 2: Create a set of landmark vectors L =

{p1, p2, · · · , pM , where pi = (O1,O2, · · · , f maxi −

δ, · · · ,OM ). f maxi is the maximum value of the i-th objective
function and δ is a tiny constant value.
Step 3: Repeat the following steps for all solutions in Fj:
Step 3.1: For a solution x, calculate ϕ (x) =

(ϕ1 (x) , ϕ2 (x) , · · · , ϕM (x)) by (12). ϕi (x) is the angle
determined by x and the landmark vector pi in the
i-th objective function.

ϕi (x) = sin−1(
r(x) · sin (ωi (x))

li(x)
) (12)

where r(x) is the norm of F(x), ωi(x) is the declination
angle between F(x) and fi(x), and li(x) is Euclidean distance
between x and the landmark vector pi.
Step 3.2: Modify objective values of all other solutions

y ∈ Fj by the following equation:

f ′
i (y) =

r(y) · sin (ωi (y) + ϕi (x))
sin (ϕi (x))

(13)

Step 4: Compare the modified F′ (x) and all other F′ (y).
If F′ (x) < F′ (y), the solution y is said to be dominated
by x, and the rank of y is incremented by one. Smaller rank
corresponds to higher front, and larger rank corresponds to
lower front.When the loop ends, new dominance relations are
obtained for all individuals in the current population. More
details about S-CDAS can refer to literature [22].

FIGURE 3. The flowchart of proposed ESP-NSGA-III.

IV. FRAMEWORK OF THE PROPOSED ALGORITHM
A. THE PROPOSED ESP-NSGA-III
The principle of the algorithm is to ensure that extreme
solutions can be preserved in each iteration, and the diversity
of algorithm can be improved simultaneously. The flowchart
of ESP-NSGA-III consisting of two parts is shown in Fig.3.
Specifically, at the beginning of the iteration, original Pareto
non-dominated sorting is used to divide solutions into differ-
ent fronts. If the maximum front is greater than 1, it means
that extreme solutions must belong to the first front, which
guarantees that extreme solutions will be preserved and
involved to the next population. Therefore, the black part of
Fig.3 is the same with the original NSGA-III.
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FIGURE 4. The schematic diagram of encoding, crossover, and mutation operators. One blue frame is one individual in
population, and each row vector presents a satellite. (a) crossover operator. (b) mutation operator.

As the iteration continues and selection pressure decreases,
however, the maximum front is equal to 1 in a certain itera-
tion. In this case, Pareto dominance will no longer be effec-
tive, and S-CDAS dominance is directly performed on the
combined population Rt instead. Please note that the strat-
egy used here is a bit different from the original S-CDAS
that reclassifies the solutions in each existing front. After
S-CDAS non-dominated sorting, all individuals are divided
into two parts according to their front levels. The part1 are
n individuals with lower front that directly enter the new
population. The part2 are the remaining individuals that are
fed into environment selection operation to select the rest of
the new population. The purpose of this way is to take advan-
tage of the environment selection operation in NSGA-III to
increase the diversity of the algorithm. The determination of
hyperparameter n will be discussed in Section V.

B. PROBLEM CODING
Due to the specificity of the problem, binary encoding, which
is different from the original NSGA-III, is employed. The
schematic diagram is shown in Fig.4. Specifically, one satel-
lite with k strips is represented as a vector of length k . Each
element in the vector is either 1 or 0; 1 means that the
corresponding strip is selected, and 0 means that the strip is
not selected, so an all-0 vector means that the satellite is not
involved in the regional coverage task. Please note that dif-
ferent satellites have different numbers of strips, so one indi-
vidual is a matrix consisting of vectors of different lengths.

C. SELECTION
Niching based selection proposed in U-NSGA-III [27] is
used in our framework for two reasons. One is to ensure the
structural integrity of genetic algorithms, and the other is that

some studies have shown that the method can improve the
convergence of the algorithm to a certain degree [28], [29].
The details of the method can be found in [27].

D. CROSSOVER
Random multi-point crossover is used in the crossover oper-
ator, which is shown as Fig.4a. Specifically, if the random
number is less than the crossover probability, n (n is randomly
generated and less than 15) rows of two individuals are ran-
domly selected and exchanged each other.

E. MUTATION
Single-point mutation operator is employed and shown as
Fig.4b. For an individual, if the random number is less than
the mutation probability, five rows are randomly selected
firstly for mutation. For each row, if there exists an allele
value of 1, let the 1 be 0; otherwise, if all elements are 0,
a locus is randomly selected and a value of 1 is assigned to
this locus.

F. PERFORMANCE EVALUATION METRICS
Most real-world problems do not know the true PF distribu-
tion in advance, resulting in some metrics usually used for
classic test problems will no longer work well. In this paper,
therefore, HV [30] and PD [31] are selected to evaluate the
algorithm performance in practical problem. On one hand, the
HV value is used to evaluate the algorithm comprehensively.
The HV value of a given solution set is defined as the area
covered by it with respect to a set of predefined reference
points Z in the objective space. A larger HV value indicates
the better convergence as well as diversity of the points in
PF. On the other hand, PD is further used to illustrate that the
proposed algorithm can make up for the lack of diversity in
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TABLE 3. HV values of 7 algorithms over 40 runs.

the original methods. The larger the PD value is, the better the
diversity of the algorithm is. In addition, the paired-sample
t-test is adopted at a significant level of 0.05 to check if
the comparison results are statistically significant, especially
when the performance metric values of two approximative
fronts are very close to each other.

V. EXPERIMENTAL RESULTS AND DISCUSSION
A. PARAMETER SETTINGS
The parameters are set as follows. The size of pop-
ulation is 210. The maximum number of iterations is
500. The crossover probability is 0.8 and mutation prob-
ability is 0.1. To examine the performance of the pro-
posed approach, six state-of-the-art algorithms with the
same genetic operations are used for results compari-
son. They are NSGA-III, S-CDAS, Fuzzy-NSGA-II, Fuzzy-
NSGA-III, SDR-NSGA-II, and SDR-NSGA-III. PlatEMO
[32] is employed to implement the NSGA-III and SDR-
NSGA-II. All algorithms are executed 40 independent runs
with different initial populations to verify generalization and
different algorithms use the same initial population in each
run for convenience of comparison.

FIGURE 5. The trend of HV and PD values with the increase of
hyperparameter n.

B. THE PERFORMANCE OF ESP-NSGA-III
1) THE DETERMINATION OF HYPERPARAMETER N
The hyperparameter n presents the number of individuals in
part1 and needs to be determined in advance to guarantee the
performance of the algorithm. Therefore, the ESP-NSGA-III
was executed with six values of n from 100 to 200, and the
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TABLE 4. PD values of 7 algorithms over 40 runs.

HV and PD values corresponding to different n are recorded
in Fig.5. On one hand, as the number of individuals in part1
increases, the HV values do not show obvious law of change
and are concentrated between 0.25 and 0.55. The minimum
value is 0.2878 when n = 160 and the maximum value is
0.5203 when n = 180. On the other hand, we can see that
as n increases, PD values approximately present a downward
trend. When n is between 100 and 180, PD values fluctu-
ate slightly, but it decreases significantly when n = 200.
This phenomenon is consistent with our expectation, and the
reason may be that only 10 individuals are selected through
environment selection operation, which causes a decline in
algorithm diversity. By considering the HV and PD values
comprehensively, n = 180 is finally chosen for all experi-
ments to balance convergence and diversity.

Some existing MOEAs such as fuzzy-based methods and
CDAS are heavily parameters dependent, which seriously
affects the execution efficiency of algorithms. For example,
the parameter S in CDAS has to be found out experimen-
tally and when S <0.5, there is a tendency to deterio-
rate diversity of obtained solutions [22]. Compared with the

original methods, n is the only new parameter added to
ESP-NSGA-III. Fig.5 shows that the value of n can be chosen
in a big range without seriously affecting the performance of
the algorithm. In other words, the algorithm is insensitive to
the parameter n.

2) CONVERGENCE AND DIVERSITY ANALYSIS
The HV and PD values of seven algorithms over 40 indepen-
dent runs are presented in Table 3 and Table 4, respectively.
The numbers in brackets are ranks of ESP-NSGA-III among
seven algorithms for each run. We further test the null
hypothesis that there exists no significant difference between
HV and PD values from ESP-NSGA-III to other six algo-
rithms. The p-value, obtained by paired-sample t-test, is the
probability that the null hypothesis is true. In other words,
if the p-value is less than 0.05, we have the reason to
reject the null hypothesis and believe that the existing
difference is significant. ‘‘+’’, ‘‘−’’, and ‘‘≈’’ indicate
that the average of 40 runs is significantly better, signifi-
cantly worse and similar to that obtained by ESP-NSGA-III,
respectively.
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FIGURE 6. The violin plot to present the HV and PD values of 7 algorithms
on 40 independent runs.

From Table 3 it can be seen that over 40 runs, fuzzy-based
methods always get the worst HV values, and SDR-NSGA-III
always gets the best. In most runs (36/40), the proposed algo-
rithm can always rank in the top half of seven algorithms and
the biggest difference between it and SDR-NSGA-III is just
0.1 (the 34th run). From the average, the performance of ESP-
NSGA-III ranks the third and is significantly better than that
of NSGA-III and S-CDAS, which are the basic frameworks of
ESP-NSAG-III. It is worth noting that although the average
of SDR-NSGA-II is slightly better than that of our algorithm,
the statistical test result (p-value=0.4091) shows that there
is no noticeable difference among the HV values of these
two algorithms. This means that SDR-NSGA-II cannot be
guaranteed to get better solutions than ESP-NSGA-III in the
statistical sense.

In terms of diversity in Table 4, it can be seen that
ESP-NSGA-III significantly outperforms all other algorithms
and is the only one whose PD value exceeds 1e+07.
S-CDAS has the second lowest average PD values, illus-
trating that S-CDAS cannot maintain the diversity of algo-
rithms with the increase of objective dimension, which is
consistent with the previous studies [18], [19]. NSGA-III
gets good PD values due to the niche-preservation oper-
ation. However, ESP-NSGA-III has an obvious improve-
ment in diversity when compared to NSGA-III, which
can attribute to the introduction of extreme solutions.
The results show that in the high-dimensional objective
space, the diversity maintenance of NSGA-III is obviously
lacking [19].

A violin plot is also provided in Fig.6 for more intuitive
comparisons. The dark parts indicate the interval between the
first quartile (Q1) and the third quartile (Q3). From Fig.6
we can see that although the PD values of ESP-NSGA-III
are more scattered, the smallest value is still much larger
than that of other algorithms. In summary, ESP-NSGA-III
is an effective algorithm for solving MaOPs, which can
improve the diversity of original algorithms while ensuring
good convergence.

C. APPLICATION IN MANY-OBJECTIVE REGIONAL
COVERAGE TASK
In this section, ESP-NSGA-III was applied to many-objective
regional coverage task to check its ability to deal with practi-
cal problems.

1) THE EFFECT OF EXTREME SOLUTION PRESERVATION
COMPARED WITH SIX STATE-OF-THE-ART MOEAS
The ability to preserve extreme solutions is the biggest
improvement of ESP-NSGA-III compared with most other
MOEAs. For multi-satellite joint large regional coverage
problem, the algorithm is expected to always preserve the
individual with the maximum coverage rate in each gen-
eration. Fig.7 shows the comparison results of the maxi-
mum coverage rate change trend during the 500 iterations of
algorithms. Blue line presents the maximum coverage rate
obtained by ESP-NSGA-III. It can be seen that the curve
always maintains an upward trend, which proves that the
algorithm can indeed preserve the extreme solutions. In addi-
tion, the maximum coverage rate still increases after 447 iter-
ations, demonstrating that the genetic operations designed
in our algorithm work well and rarely let the algorithm fall
into local optimum. On the contrary, from the curve obtained
by NSGA-III (orange line in Fig.7a) it can be found that
when the number of iterations is small (first 40 iterations in
this paper), the curve presents an upward trend, because the
Pareto dominance has not expired at this time. As the algo-
rithm continues to iterate, however, all candidate solutions
are distributed on the same PF, leading to the disappearance
of extreme solutions in the population. Therefore, the curve
fluctuates up and down and the maximum coverage rate
is only 0.9117 after 500 iterations, which is much smaller
than 0.9980 obtained by ESP-NSGA-III. The same phe-
nomenon also occurs in fuzzy-based and SDR-based algo-
rithms, as shown in Fig.7(b)-(e). Although these algorithms
have been proven to achieve good convergence and diversity
on test problems, they are not suitable for practical problems
as they cannot obtain user-satisfactory solutions. S-CDAS is
another one that can preserve extreme solutions, as shown in
Fig.7(f). However, the convergence of the algorithm is much
worse than ESP-NSGA-III and the maximum coverage rate at
500th iteration is only 0.9547. Besides, the poor diversity of
S-CDAS cannot provide enough evolutionary space for solu-
tions, which also results in poor performance in maximum
coverage rate.

2) REGIONAL COVERAGE SCHEME COMPARED WITH SIX
STATE-OF-THE-ART MOEAS
In order to demonstrate that the proposed algorithm can gen-
erate a more reasonable regional coverage scheme, the result
is compared with the above six state-of-the-artMOEAs. After
500 iterations, each algorithm generates 210 solutions. For
the sake of fairness, the solution with the largest coverage
rate at the 500th iteration of each algorithm is chosen for
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FIGURE 7. Comparison results of the maximum coverage rate change trend.

FIGURE 8. Radar charts of the values of 5 objectives obtained by 7 MOEAs.

comparison. The values of five objectives obtained by dif-
ferent algorithms are shown in Fig.8 and are summarized in

Table 5. In radar charts, the coordinate intervals are [1, 0.7]
for coverage rate, [0, 0.5] for overlap ratio, [10], [29] for the
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TABLE 5. Comparison results of 5 objectives obtained by ESP-NSGA-III and other comparison algorithms.

number of strips, [1, 0.5] for average resolution, and [0, 0.5]
for average swing angle. The coverage rate is expected to be
as high as possible and the other four objectives are expected
to be as small as possible. Taking four algorithms (NSGA-III,
Fuzzy-NSGA-II, Fuzzy-NSGA-III, and SDR-NSGA-II) as
examples, from Fig.8 it can be found that their areas are
completely inside the area of ESP-NSGA-III, which means
four objectives except for coverage rate of these algorithms
are better than those of ESP-NSGA-III. This can also be
found in Table 5. The phenomenon is easy to explain. These
algorithms have been shown to be unable to preserve extreme
solutions during the training (Fig.7), so the coverage rate of
the final regional coverage scheme may be relatively low,
followed by smaller overlap ratio and the number of strips.
However, in practical applications, such schemes cannot meet
the demands of clients as they cannot acquire the most images
of the target area.

In summary, all simulation results show that the proposed
algorithm can not only obtain a regional coverage scheme
with satisfactory coverage rate by introducing the extreme
solution preservation mechanism, but also optimize the ratio-
nality of the scheme from other objective dimensions. This
demonstrates the excellent performance of the algorithm in
solving practical MaOPs. What’s more, like other MOEAs,
ESP-NSGA-III can provide different solutions to meet the
different task demands using a single run. For instance, when
a client wants the highest quality image while allowing a
slight sacrifice in coverage rate, we can directly choose a
corresponding scheme from the 210 solutions instead of
re-running the algorithm after changing the objective.

VI. CONCLUSION
In this paper, an improved MOEA named ESP-NSGA-III
is proposed to address many-objective regional coverage
problem. Problem-specific genetic operations are designed,
and traditional Pareto dominance are modified to preserve
extreme solutions. Six state-of-the-art MOEAs are used to
prove the effectiveness of the proposed algorithm. Compar-
ison results show that ESP-NSGA-III has the best diversity
with regard to PD and good comprehensive performance
with regard to HV. Real-world simulation results demonstrate
that the algorithm can preserve the extreme solutions so
that satisfactory regional coverage schemes can be gener-
ated. The maximum difference of the coverage rate between
ESP-NSGA-III and other six algorithms is 0.2576. Most

importantly, ESP-NSGA-III is not only applicable to regional
coverage tasks, but also have important reference significance
for solving other real-world problems.

In future studies, we will compare the ESP-NSGA-III with
other types of MOEAs on more benchmark problems and
practical applications. Real encoding genetic operations with
simulated binary crossover (SBX) and polynomial mutation
can also be explored to compare the performance with binary
encoding. In addition, there is still room for improvement in
the HV value of the proposed algorithm.
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