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An Efficient Hybrid Multi-Station TDOA and
Single-Station AOA Localization Method

Xu Kang , Dejiang Wang , Yu Shao, Mingyang Ma, and Tao Zhang

Abstract— Multi-station passive localization algorithms based
on hybrid Time Difference of Arrival (TDOA) and Angle of
Arrival (AOA) have been thoroughly studied. But it usually
requires each station to obtain the AOA of the source and relies
on the precise station position. These conditions are generally
not satisfied in practical applications. In addition, the geometry
between the source and these stations also affects the localization
accuracy. This paper studies the passive source localization
problem based on multi-station TDOA and single-station AOA
measurements. First, we propose a closed-form solution source
localization method based on multi-station TDOA and single-
station AOA measurements, which requires only the reference
station used to calculate TDOA to be able to observe the
AOA measurements of the source. It solves the problem of
hybrid localization of different numbers of TDOA and AOA
measurements. Theoretical analysis proves that the performance
of the proposed method can reach the Cramer-Rao Lower
Bound (CRLB) under small noise conditions. Then, we model the
relationship between the position of each station relative to the
source and the localization accuracy. Through the D-optimality
criterion, we obtain the optimal geometry between multiple
stations and the source Simulation results confirm the validity of
these theories.

Index Terms— Localization, time difference of arrival, angle of
arrival, closed-form solution, Cramer-Rao lower bound, station
position error, optimal geometry.

I. INTRODUCTION

SOURCE localization is a fundamental problem in passive
detection systems such as radar, sonar, wireless sensor net-

works, and communication systems. The localization process
is performed by taking different types of measurements about
the source from stations at known positions and then solving
for the source position using a localization algorithm. In the
past decades, various source localization methods have been
proposed based on different types of measurements, such
as time of arrival (TOA) [1], [2], time difference of arrival
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(TDOA) [3], [4], [5], angle of arrival (AOA) [6], [7], etc. and
their combinations [8], [9], [10], [11], [12].

TDOA-based localization methods are often called hyper-
boloid localization, which estimates the source location
through the intersection of several hyperboloids. AOA-based
localization methods are often referred to as cross localization,
which estimates the position of the source through the inter-
section of several rays. Localization methods based on their
combinations estimate source locations through intersections
between different hyperboloids and rays. The problem of
source localization is often tough because the direct rela-
tionship between TDOA and AOA measurements and source
location is non-linear and non-convex [13], [14]. Maximum
Likelihood Estimation (MLE) is a general approach to this
localization problem. MLE is asymptotically unbiased, and
its performance can reach Cramer-Rao Lower Bound (CRLB)
accuracy under Gaussian distributed noise conditions. How-
ever, MLE requires high-precision initial values for iterative
computation, otherwise local convergence tends to occur.
Therefore, we prefer to use source position estimation algo-
rithms with closed-form solutions.

Closed-form solutions can effectively reduce computational
complexity. References [3] and [15] studied TDOA local-
ization algorithms with closed-form solutions. Reference [3]
obtains a closed-form solution through nonlinear parameter
transformation, whose performance can reach CRLB accuracy
within a small error range under Gaussian noise conditions.
Reference [15] compared two closed-form algorithms, spher-
ical interpolation and spherical intersection and proved that
the spherical intersection method is more suitable for passive
localization. However, these methods may generate ghost
points when the number of stations is small.

Much research has been done on passive localization using
AOA [7], [16], [17]. In three-dimensional (3D) space, mul-
tiple pairs of azimuth and pitch angles are generally used
for triangulation, which can determine the source position
in the form of a closed solution. Under the condition of
small noise obeying the zero-mean Gaussian independent and
identically distributed (IID), its localization performance can
reach CRLB. To further improve localization accuracy and
robustness, many studies [10], [18], [19], [20], [21] proposed
localization algorithms based on hybrid TDOA and AOA
measurements. Reference [18] proposes a source localization
method based on hybrid TDOA and AOA, which is more accu-
rate than using TDOA and AOA alone. In [10], a constrained
optimization method utilizing geometric constraints is applied
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to hybrid TDOA-AOA localization, which is more robust than
linear least squares.

Hybrid TDOA and AOA measurements can reduce the
minimum number of stations required to localize the source.
At least four stations are required to locate the source position
in 3D space by TDOA. Based on the hybrid TDOA and
AOA only two stations are required. In addition, it can reduce
the number of stations required to achieve the desired posi-
tioning performance. Reference [19] proposed a closed-form
localization method with hybrid TDOA and AOA measure-
ments, which solved the problem of source localization under
low probability of interception. Reference [21] introduced a
structured total least squares method to further reduce the
estimation bias of source locations.

In our research, the current localization algorithms based
on hybrid TDOA and AOA require that each station can
observe the AOA of the source. In fact, due to factors
such as multipath effects, non-line-of-sight propagation, etc.,
observation stations sometimes cannot use infrared sensors or
antenna arrays to obtain the AOA of the source. In addition,
the high cost of antenna array receivers and infrared sensors
diminishes the feasibility of mass use. These factors will cause
the above algorithm to invalid.

To address the above problems, we delve into the local-
ization model based on hybrid multi-station TDOA and
single-station AOA measurements. We propose a closed-form
solution localization algorithm by reconstructing the relation-
ship between the measurements and the source position. When
the station position error is also considered, we adopt a
similar derivation to propose a robust closed-form solution
positioning algorithm. Among them, we choose to use the
station that can measure the source AOA as the reference
station for calculating TDOA (unless otherwise stated below,
the reference station represents the station that can obtain the
source AOA). Under the condition of small noise obeying
Gaussian distribution, the theoretical analysis proves that the
performance of the above localization methods can reach
CRLB accuracy.

In addition to localization algorithms, the geometry between
the multi-stations and sources can also significantly affect the
performance of source position estimation. References [22],
[23], [24], [25], [26], and [27] study the optimal geometry
between homogeneous sensors (sensors of the same type), such
as TDOA, TOA, and AOA.

In practical applications, there are also different types of
sensors working together to form a heterogeneous sensor
network (HSN). By fusing information from different types of
sensors, source localization can be achieved more easily and
accurately. When hybrid TDOA and FDOA measurements are
used to locate unknown radiation sources, [28] analyzed the
effect of the geometry of the sensor relative to the source on
the localization performance. Reference [29] investigated the
optimal sensor placement problem for source localization by
deploying two different types of sensors in HSN.

However, in studies based on hybrid TDOA and AOA
measurement geometries, the background of study is generally
that each station can only obtain TDOA or AOA from the
source. In our investigation, the optimal geometry in the
localization scenario of hybrid multi-station TDOA and single-

station AOA measurements proposed in this paper has not been
studied yet, and it has great practical significance. We model
the relationship between the angular position of multi-station
relative source and the localization performance. Through the
D-optimality criterion, we give the optimal geometric config-
uration between the station and the source, which improves
the positioning accuracy.

The rest of this article is organized as follows. Section II
describes the localization scenario using multi-station TDOA
and single-station AOA measurements. In Section III, we pro-
pose the corresponding closed-form solution source position
estimator based on different noises and extend the usage
scenarios. Section IV analyzes the performance and compu-
tational complexity of the proposed estimator. In Section V,
we investigate the optimal geometric configuration of the
source and these stations and give partial explicit solutions.
Section VI verifies the theoretical results of the above sections
through the numerical results. Section VII concludes this
paper.

This paper uses bold uppercase letters and bold lowercase
letters to denote matrices and column vectors, respectively.
[A]i,j is the i-th row and j-th column element of matrix A.
‖a‖ is the Euclidean norm and ρa = a/ ‖a‖ is the unit vector
of a. diag(a) is a diagonal matrix consisting of the elements
of a, blkdiag(A, . . . ,B) is a block diagonal matrix consisting
of A, . . . ,B. det(A) and Tr(A) represent the determinant
and trace of A, respectively. I and O are identity and zero
matrices, and their subscripts indicate the matrix size. 1N and
0N are length N vectors of unity and zero. (∗) is the true
value of the variable. (∗̃) and (∗̂) represents the observed and
estimated value of the variable (∗), respectively.

II. LOCALIZATION SCENARIO

Fig. 1 depicts a scenario where multiple stations are used
to locate sources in 3D space. The stations with known
position si = [sx,i, sy,i, sz,i]

T ∈ R
3, i = 0, 1, 2, . . . , N receive

the reflected signal from the source with unknown position
u = [ux, uy, uz]

T ∈ R
3. A centralized pairing method is

adopted between stations, and the measurements from all
stations are transmitted to the reference station s0. That is, all
stations are within the communication range of the reference
station. Furthermore, all stations and the source are in a non-
cooperative state.

The TDOA and AOA measurements received at each station
are related to the location of the source as follows:

ri,0 = ri − r0, i = 1, 2, . . . , N, (1)

α0 = arctan
(

uy − sy,0

ux − sx,0

)

β0 = arctan
(

uz − sz,0

l0

)
(2)

where ri,0 is the true range difference between the source
and the two observation stations, ri = ‖u− si‖ and r0 =
‖u − s0‖. Since the signal propagation speed is a constant,
the TDOA and the range difference of arrival (RDOA) can
be converted into each other and vice versa. In addition,
since the value of TDOA is relatively small compared to
AOA, when calculating the inverse or pseudo-inverse of the
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Fig. 1. Localization scenario.

matrix obtained from the measured values, the matrix may
be close to singular values. Here we choose RDOA instead
of TDOA to locate the source. arctan(∗) is the arctangent
function, and l0 = (ux − sx,0) cosα0 + (uy − sy,0) sin α0

denotes the distance from the reference station to the source
in the x-y plane where azimuth α0 ∈ (−π, π] and elevation
β0 ∈ [−π/2, π/2].

All measurements about the source are represented in vector
form:

m̃ = m + Δm. (3)

where m̃ indicates m disturbed by noise, and m =[
rT , ϕT

0

]T ∈ R
N+2 represents the measurements corre-

sponding to the real position of the source, where r =
[r1,0, r2,0, . . . , rN,0]

T and ϕ0 = [α0, β0]
T . The measurement

error vector Δm = [Δr1,0, . . . , ΔrN,0, Δα0, Δβ0] ∈ R
N+2

obeys the zero-mean Gaussian distribution and its covariance
matrix [30], [31], which assumes that TDOA and AOA mea-
surements are independent, is

Qm = blkdiag (Qr,Qϕ) , (4)

where Qr = σ2
r0

1N1T
N+diag

([
σ2

r1
, σ2

r2
, · · · , σ2

rN

]) ∈ R
N×N

and Qϕ = diag
([

σ2
α0

, σ2
β0

])
are the covariance matrices of

TDOA and AOA, respectively.
Our aim is to use the TDOA and AOA measurement

vector m̃ to estimate the unknown position u of the source
as accurately and quickly as possible. In the next section,
we propose localization methods with closed-form solutions
based on different noises.

Remark 1: The moment when each station receives the
reflected signal of the source does not coincide with the
moment when the detection signal arrives at the source. Since
the signal propagation speed is too fast, it is reasonable to take
the estimated value of the source position at the moment of
receiving the reflected signal at each station as the real position
of the source at this time.

III. LOCALIZATION METHOD

In this section, we derive a closed-form solution source posi-
tion estimator for various noise scenarios. We combine (1) and
(2) to linearize the TDOA and AOA measurements about the

source position by clever deformation, and then estimate the
source position using weighted least squares (WLS). We derive
the localization technique in the presence of both measurement
errors and station position errors and extend them to scenarios
where multiple AOA measurements exist.

A. The Closed-form Solution for Source Position

We first investigate the localization method of closed-form
solution in the presence of measurement errors. It is assumed
that the exact station location is known.

Rewriting the distance difference formula as ri,0 +
‖u − s0‖ = ‖u − si‖, and squaring both sides to get

r2
i,0 + ‖s0‖2 − ‖si‖2 = 2(s0 − si)

Tu + 2ri,0r0, (5)

which is a linear function with respect to r0 and u. r0 is
the unknown variable associated with u. Common methods
for solving such functions are two-step weighted least squares
(TSWLS) or semidefinite relaxation (SDR) with simultaneous
estimation of unknown parameters and auxiliary variables [32].
These methods have relatively high computational complexity.
In this paper, we reconstruct the relationship between TDOA
measurements and the source position using the AOA obtained
from the reference station, and use the WLS method to obtain
the estimate of source in one step.

Using the AOA of the source observed at the reference
station, we have [19]

u − s0 = r0b, (6)

where b = [cosβ0 cosα0, cosβ0 sin α0, sin β0]
T ∈ R

3 is the
unit vector of the source relative to the reference station.

Multiplying both sides of (5) by at the same time to have

r2
i,0 + ‖s0‖2 − ‖si‖2 = 2(s0 − si)T u− 2ri,0bT r0b. (7)

Substituting (6) into (7) to get

r2
i,0 + ‖s0‖2 − ‖si‖2 − 2ri,0bT s0 = 2(s0 − si − ri,0b)Tu,

(8)

which has only one unknown vector u.
Stacking (8) for i = 1, 2, . . . , N and writing it as a matrix

form

hmr = Gmru, (9)

where hmr =

⎡
⎢⎣

r2
1,0 + ‖s0‖2 − ‖s1‖2 − 2r1,0bT s0

...
r2
N,0 + ‖s0‖2 − ‖sN‖2 − 2rN,0bT s0

⎤
⎥⎦ ∈

R
N , Gmr = 2

⎡
⎢⎣

(s0 − s1 − r1,0b)T

...
(s0 − sN − rN,0b)T

⎤
⎥⎦ ∈ R

N×3.

Now we deform (2), taking the tangent function on both
sides of (2) at the same time, and denoting tan(∗) as
sin(∗)/ cos(∗), the cross product is obtained

hmϕ = Gmϕu, (10)

where hmϕ = γT
0 s0, Gmϕ = γT

0 , and γ0 =[
sin α0 − cosα0 0

sin β0 cosα0 sin β0 sin α0 − cosβ0

]T
∈ R

3×2
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Stacking (9) and (10) to get

hm = Gmu, (11)

where hm =
[
hT

mr,h
T
mϕ

]T ∈ R
N+2, Gm =[

GT
mr,G

T
mϕ

]T ∈ R
(N+2)×3.

(11) holds when hm and Gm are expressed in terms of true
measurements. However, in practice, the measurements are
always disturbed by noise. In this case, h̃m and G̃m denote the
regressors subject to noise interference. Through the first-order
Taylor expansion, we get the pseudo-linear equality

h̃m − G̃mu � εm, (12)

where εm = TΔm ∈ R
N+2 is the error term of

the regression equation, T = blkdiag (Tr,Tϕ), Tr =
2diag ([r1, r2, . . . , rN ]), and Tϕ = diag ([r0 cosβ0, r0]).

From (12) we can get the WLS estimate of u as

ûm = arg min
(
h̃m − G̃mu

)T

W
(
h̃m − G̃mu

)
= (G̃T

mWG̃m)−1G̃T
mWh̃m, (13)

where W =
(
E
[
εmεT

m

])−1 =
(
TQmTT

)−1
.

Remark 2: The weighting matrix W is unknown because
it depends on the true position u of the source. In this
regard, we can first replace W with the identity matrix or
let W = Qm

−1 to obtain the initial position estimate of the
source [33], then use the initial position estimate to calculate
a more accurate weighting matrix W, and finally obtain the
final solution by (13). Since the algorithm performance is
insensitive to the approximation of the weight matrix, one
or two iterations are sufficient to obtain an accurate position
estimate of the source. If the condition number or rank of the
estimated matrix is poor and we do not repeat, its solution
degenerates to an ordinary least squares estimator (OLSE).

Remark 3: If matrix Gm is full rank and matrix T is
invertible, the proposed method in this paper will get a unique
solution. According to the definition of matrix Gm and T,
it is required that s0 − si − ri,0b �= 0. That is, the source
can appear in the middle of the line connecting stations, but
not on the same side of the line connecting all the stations.
The probability of this happening is almost 0, and it can be
considered impossible.

B. Presence of Station Position Errors

In subsection A, our proposed source localization method
requires precise station positions. Unfortunately, the station
position is always disturbed by noise, and ignoring the station
position error can result in a significant degradation in posi-
tioning performance [34]. We extend the closed-form solution
for source locations to scenarios where station location errors
exist.

The measurement error is uncorrelated with the station
position error. We can derive the first-order noise term when
only the measurement noise or the station position error
exists, respectively, and then combine them to obtain a robust
closed-form solution for the localization method when both
errors exist.

We use s̃i to denote the station position disturbed by noise

s̃i = si + Δsi, i = 0, 1, 2, . . . , N, (14)

where Δs =
[
ΔsT

0 , ΔsT
1 , . . . , ΔsT

N

]T ∈ R
3N+3 is the sta-

tion position error vector with zero mean Gaussian IID, its
covariance matrix is

Qs = blkdiag (S0,S1, · · · ,SN ) ∈ R
(3N+3)×(3N+3), (15)

where Si = diag
([

σ2
si,x

, σ2
si,y

, σ2
si,z

])
.

Substituting (14) into (9) and (10) to get[
h̃sr

]
i
−
[
G̃sru

]
i

= −2riρ
T
u−s0Δs0 + 2(u− si)T Δsi,

(16)

h̃sϕ − G̃sϕu = γT
0 Δs0. (17)

Stacking (16) for i = 1, 2, . . . , N and (17) in matrix form

h̃s − G̃su = BΔs, (18)

where the subscript s indicates that it is only affected
by the station position error, B =

[
BT

r ,BT
ϕ

]T
, Br =

2 [Bra,Brb], Bra = −[r1, · · · , rN ]T ⊗ ρT
u−s0 , Brb =

blkdiag
([

r1ρ
T
u−s1 , r2ρ

T
u−s2 , . . . , rNρT

u−sN

]) ∈ R
N×3N , and

Bϕ =
[
γT
0 ,O2×3N

]
.

Considering both the measurement error and station position
error, the equations (11) and (18) are combined, we get

h̃ − G̃u = TΔm + BΔs, (19)

where h̃ and G̃u denote hm and Gm, respectively, which are
affected by these two errors.

From (19) we can get the weighted least squares estimate
of u as

ûb = (G̃TΣG̃)−1G̃TΣh̃, (20)

where Σ =
(
E
[
(TΔm + BΔs)(TΔm + BΔs)T

])−1

=(
TQmTT + BQsBT

)−1
.

The Remark in this subsection refer to Remark 2 and
Remark 3.

C. MLE

MLE is a common method for solving nonlinear and non-
convex problems. It is asymptotically unbiased, but sensitive
to initial values and has high computational complexity. When
the noise powers are large, MLE will have the threshold
effect [32]. Therefore, it is used as a comparison for the
estimated performance of the proposed algorithm in this paper.

Below we briefly describe the estimation procedure of
MLE. The maximum likelihood function is equivalent to the
minimum cost function. From (3), the cost function is

J (u) = (m̃ − m (u))TQ−1
m (m̃ − m (u)) , (21)

where m (u) is the measurement vector represented by the
unknown variable u. The minimization solution of the cost
function (21) is usually obtained by the Gauss-Newton itera-
tive method.

First, we take the true source position u as the initial
iteration value u0, pseudo-linearize m (u), and then find the
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gradient of J (u) and make it zero. The iterative process is as
follows [35]:

uk+1 = uk +
(∇T

muQ−1
m ∇mu

)−1∇T
muQ

−1
m

(
m̃ − m

(
uk
))

,

(22)

where uk represents the value after k iterations, the number
of iterations is related to the desired precision. ∇mu is the
Jacobian of m (u) with respect to u, where ∇mu is defined
in (26).

We choose the true source position as the initial value of
the iteration (which is impossible in practice) to prevent it
from falling into a local optimum and to reduce the number
of iterations. When station position error exists, the maximum
likelihood estimates the source and station positions simulta-
neously. The process is similar to the above and will not be
described here.

D. Presence of Multiple AOA

In order to enhance the localization performance, it is common
to increase the number of AOA sensors in radar systems and
wireless sensor networks. Based on the localization scenario
in Section II, it is assumed that each station can observe the
AOA vector, ϕi = [αi, βi]

T fori = 1, 2, · · · , N , of the source.
Similar to (2), the values of azimuth and pitch are:

αi = arctan
(

uy − sy,i

ux − sx,i

)

βi = arctan
(

uz − sz,i

(ux − sx,i) cosαi + (uy − sy,i) sinαi

)
.

(23)

From (8), only AOA measurement from the reference station
is used in the linearization process of TDOA measurements
concerning the source position. Therefore, we can deconstruct
the measurements from other stations into AOA and TDOA
and calculate them separately. In Section III-A, we have
achieved the target localization using the AOA from the
reference station and these TDOA measurements. For the
remaining AOA measurement, we adopt the same processing
method as the reference station. Obviously, it’s easy to get the
WLS estimate of u from all the measurements is

ûn = (G̃T
nΣnG̃n)−1G̃T

nΣnh̃n. (24)

The definitions of matrix G̃n, Σn and vector h̃n are given in
Appendix A.

This localization technique can be applied to any number
of stations carrying TDOA, AOA and their combination, when
the reference station used to calculate the TDOA is able to
observe the AOA measurement of the source. That is, the
proposed method has strong robustness.

IV. PERFORMANCE ANALYSIS

In this section, we analyze the performance of the proposed
method in terms of the mean square error (MSE) of the the-
oretical covariance matrix and the computational complexity
of the algorithm.

The CRLB sets a bound on the variance of the unbiased
estimate and is commonly used here to evaluate the perfor-
mance of the unbiased estimators. In the previous section,
we proposed closed-form source position estimators under dif-
ferent error conditions. To verify their performance, we com-
pared the covariance matrix of the estimated solution with its
corresponding CRLB. Then, we compare the computational
complexity of the proposed closed-form solution localization
method with MLE.

A. CRLB

First, we derive the CRLB under different noise conditions.
For notational simplicity, we will use ∇ab to denote the partial
derivative of the vector a with respect to the vector b at the
true value, as

∇ab
def ∂a

∂bT
. (25)

The measurement vector m is a function of the unknown
parameter u, and the measurement error obeys a zero-mean
Gaussian distribution. When only the measurement error is
considered, the CRLB of u is [36]

CRLBm(u) =
(∇T

muQm
−1∇mu

)−1
, (26)

where ∇mu =
[∇T

ru,∇T
ϕu

]T
, ∇ru =

[(ρu−s1 − ρu−s0), . . . , (ρu−sN − ρu−s0)]
T ∈ R

N×3, ∇ϕu =
1
r0

[
sin α0/ cosβ0 − cosα0/ cosβ0 0
sinβ0 cosα0 sin β0 sin α0 − cosβ0

]
∈ R

2×3.

Similarly, when considering both measurement noises and
station position errors, the CRLB of the parameter vector
θ =
[
uT , sT

]T
is [36]

CRLBb (θ) =
[∇T

muQ
−1
m ∇mu ∇T

muQ
−1
m ∇ms

∇T
msQ

−1
m ∇mu ∇T

msQ
−1
m ∇ms + Q−1

s

]−1

,

(27)

where ∇ms =
[∇T

rs,∇T
ϕs

]T
, ∇rs =

[
ρT
u−s0 ⊗ 1N ,Rs

] ∈
R

N×3(N+1), Rs = −blkdiag
(
ρT
u−s1 , ρ

T
u−s2 , · · · , ρT

u−sN

)
,

∇ϕs = [∇ϕu,O2×3N ] ∈ R
2×3(N+1).

The CRLB of u is the upper left 3×3 part of the matrix of
the above formula. Using the block matrix inversion formula
to obtain

CRLBb(u)−1 = ∇T
muQ−1

m ∇mu −∇T
muQ

−1
m ∇ms

× (∇T
msQ

−1
m ∇ms + Q−1

s

)−1∇T
msQ

−1
m ∇mu.

(28)

B. Performance of The Proposed Method

In the process of calculating the weighting matrix, we ignore
the second-order and above high-order measurement noise
terms. The pseudo-linear equality for (12) and (19) is feasible
when the following small error conditions are satisfied C1)
Δri,0/ri,0 � 0 for i = 0, 1, . . . , N , C2) Δα0 = α̃0 − α0 ≈ 0,

C3) Δβ0 = β̃0 − β0 ≈ 0, C4)
∥∥∥diag(si)

−1Δsi
∥∥∥ � 0 for

i = 0, 1, . . . , N .
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Since u can be written in the form of
(G̃T

mWG̃m)−1G̃T
mWG̃mu, through (12) and (13), we can

get the estimated bias of u as

Δum = ûm − u = (G̃T
mWG̃m)−1G̃T

mWεm, (29)

Δum follows a zero-mean Gaussian distribution, and its
covariance matrix is

covm(u) = E
[
ΔumΔuT

m

]
= (G̃T

mWG̃m)−1

� (Gm
TWGm)−1. (30)

Substituting W =
(
TQmTT

)−1
, (30) becomes

covm(u) =
[
(T−1Gm)

T
Q−1

m T−1Gm

]−1

. (31)

Similar to (29), estimation bias of the source position u is:

Δub = ûb − u = (G̃T ΣG̃)−1G̃TΣ (TΔm + BΔs) ,

(32)

the covariance matrix for the bias is

covb(u) = E
[
ΔubΔuT

b

]
= (G̃T ΣG̃)−1 � (GT ΣG)−1

=
(
GT
(
TQmTT + BQsBT

)−1
G
)−1

. (33)

Through some algebraic operations, Appendix B proves that
(31) and (33) are equivalent to (26) and (28), respectively.
In other words, under conditions (C1)–(C4) and over the small
error region, the performance of our proposed closed-form
solution localization method can reach CRLB.

C. Computational Complexity

Next, we evaluated the computational complexity of the pro-
posed WLS algorithm and compared it with OLSE and MLE,
where WLS and MLE require initial solutions. Remark 2
mentions that WLS is not sensitive to the initial value and can
be replaced by an OLSE solution. MLE is very dependent on
the initial value. We choose the real source position as the
initial value to ensure positioning performance and reduce the
number of iterations.

The computational complexity of MLE depends on the
number of iterations. For a nonlinear problem with m equa-
tions and n unknown variables, the computational complexity
of each iteration (m 
 n) of the Gauss-Newton method is
O
(
km3
)
, where k is the number of iterations [36]. In the

positioning scenario in Section III-A, the computational com-
plexity of MLE is approximately equal to

O
(
k(N + 2)3

)
. (34)

In the same positioning scenario, the computational
complexity of the weighted least squares algorithm is
O
(
2m2n + mn2 + mn + n3 + n2

)
[37]. For (13) and (20),

their computational complexity is

O
(
6
(
N2 + 4N + 14

))
. (35)

When m > 2n, the upper bound on the computational
complexity of the WLS algorithm is O

(
m3
)
. Obviously, the

computational complexity of the proposed WLS estimator is
lower than that of MLE.

When the station position error exists, MLE needs to
estimate not only the source position but also the station
position. It generates high computational complexity. At the
same time, iteration makes its computational complexity much
higher than WLS, hence we will not analyze it in detail
here.

V. OPTIMAL GEOMETRY

The positioning accuracy depends not only on the measure-
ment noise, but also on the geometry between the source and
the stations. Better positioning accuracy can be obtained by
optimizing the placement configuration. To complete the study
and further improve the localization accuracy, in this section,
we derive the optimal geometry between the station and the
source that maximizes source localization accuracy.

Typically, the A-optimality, D-optimality, and E-optimality
criteria are used to determine the optimal geometric layout.
These criteria are functions of different forms represented by
eigenvalues of the CRLB matrix, and they are well compared
in [38]. An important advantage of D-optimality is that it
is invariant under scale changes in the parameters and lin-
ear transformations of the output, whereas A-optimality and
E-optimality are affected by these transformations [39]. Here,
we choose to use the D-optimality criterion: the product
of eigenvalues is minimized. It is equivalent to maximize
the determinant of information matrix., Our aim is to find
the geometry configurations that satisfy the D-optimality
criterion.

For ease of analysis, we consider the scenario where N + 1
stations locate the source in the 2-D plane, where only s0
is the reference station. Without loss of generality, we set
the source to be the origin of the coordinates as shown in
Fig. 2. Setting the angular position of the i-th station relative
to the source as λi, λi ∈ [0◦, 360◦) , ∀i = 0, 1, 2, · · · , N . The
optimal geometry is denoted by λi.

(26) gives the Fisher information matrix (FIM) of the source
position estimation in the 2D plane as

FIM = ∇′
ru

T Qr
−1∇′

ru + ∇′
ϕu

T Qϕ0

−1∇′
ϕu. (36)

The Jacobian matrix and its components in (26), rep-
resented by the angular position λi, are simplified as
∇′

ru =
[
(ρ′u−s1 − ρ′u−s0), . . . , (ρ

′
u−sN − ρ′u−s0)

]T
, ρ′u−si

=
[cosλi, sin λi]

T and ∇′
ϕu = 1

r0
[sin λ0,− cosλ0]. Therefore,

substituting (36) and simplifying to get

A =
[

A11 A12

A21 A22

]
, (37)

where A11 =
N∑

i=0

cos2λi

σ2
ri

− 1
Nσr

(
N∑

i=0

cos λi

σ2
ri

)2

+ sin2λ0
r2
0σ2

α0
, A22 =

N∑
i=0

sin2λi

σ2
ri

− 1
Nσr

(
N∑

i=0

sin λi

σ2
ri

)2

+ cos2λ0
r2
0σ2

α0
, A12 = A21 =

N∑
i=0

cos λi sin λi

σ2
ri

− 1
Nσr

N∑
i=0

cos λi

σ2
ri

N∑
i=0

sin λi

σ2
ri

− cos λ0 sin λ0
r2
0σ2

α0
, and

Nσr =
N∑

i=0

1
σ2

ri

.
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Fig. 2. Angular position of each station relative to the source.

If the geometric configuration of the source and stations
rotates counterclockwise around the source in the 2D plane,
the new FIM is

A′ = R(δ)T AR (δ) , (38)

where R (δ) =
[

cos δ − sin δ
sin δ cos δ

]
is the rotation matrix.

According to Cauchy-Binet formula, we get

det (A′) = det (A) . (39)

In other words, we conclude that the determinant of FIM
is invariant for rotation in the 2D plane. For the convenience
of calculation, we set the angular position of the reference
station to be λ0 = 0◦. The determinant of FIM expands to
get

det (A)
= A11A22 − A2

12

=

⎡
⎣ N∑

i=0

cos2λi

σ2
ri

− 1
Nσr

(
N∑

i=0

cosλi

σ2
ri

)2
⎤
⎦

×
⎡
⎣ N∑

i=0

sin2λi

σ2
ri

− 1
Nσr

(
N∑

i=0

sin λi

σ2
ri

)2

+
1

r2
0σ

2
α0

⎤
⎦

−
(

N∑
i=0

cosλi sinλi

σ2
ri

− 1
Nσr

N∑
i=0

cosλi

σ2
ri

N∑
i=0

sin λi

σ2
ri

)2

≤
⎡
⎣ N∑

i=0

cos2λi

σ2
ri

− 1
Nσr

(
N∑

i=0

cosλi

σ2
ri

)2
⎤
⎦

×
[

N∑
i=0

sin2λi

σ2
ri

+
1

r2
0σ

2
α0

]
. (40)

The equation holds when the angular position of each station
satisfies the following conditions

N∑
i=0

cosλi sinλi

σ2
ri

= 0

N∑
i=0

sinλi

σ2
ri

= 0. (41)

To obtain an explicit solution, we consider the special case
of equal measurement noise variances, i.e.: σ2

r0
= σ2

r1
= · · · =

σ2
rN

= σ2
r , σα0 = σϕ.

(40) can be simplified as

det (A)

≤ 1
σ4

r

⎡
⎣ N∑

i=0

cos2λi −
(

N∑
i=0

cosλi

)2/
(N + 1)

⎤
⎦

×
[

N∑
i=0

sin2λi

]

+
1

r2
0σ

2
ϕσ2

r

⎡
⎣ N∑

i=0

cos2λi −
(

N∑
i=0

cosλi

)2/
(N + 1)

⎤
⎦ .

(42)

(42) consists of two parts, but the optimal geometric config-
urations of the two parts are different. The optimal geometric
configuration of the first half and the second half are uniform
angle array (UAA), λi = 2πi/(N + 1) + λ0, i = 0, 1, · · · , N ,

and λi =
[
1 − (−1)i

]
π/2+λ0, i = 0, 1, · · · , N , respectively.

It is difficult to obtain the general solution of the optimal
layout because it is also affected by parameters σr , σϕ, and
r0. In Appendix C we derive the following conclusions about
the optimal geometric configuration.

Conclusion 1: When two stations (N = 1) cooperatively
locate, the optimal geometry is such that station s1 is located
on the extension line of the reference station pointing to the
source, i.e. λ1 = π+λ0. The distance between the source and
the reference station should also be as small as possible when
objective conditions allow, the same below.

Conclusion 2: When three stations (N = 2) cooper-
atively locate and r0 ≤ σr

2σϕ
, the optimal geomet-

ric configuration is that three stations are collinear and
the source is located between stations, i.e. (λ1, λ2) ∈
{(π + λ0, π + λ0) , (λ0, π + λ0)}. If r0 > σr

2σϕ
, the optimal

geometric layout is λ1 = cos−1a+λ0 and λ2 = 2π−cos−1a+
λ0, where a = 1/4 −

√
9/16 + σ2

r

/(
4r2

0σ
2
ϕ

)
.

If the number of stations participating in localization is
greater than four, it is quite complicated to analyze the optimal
sensor configuration under the localization model of this paper,
and there is no intuitive solution for this situation. When
the values of parameters σr, σϕ and r0 are determined,
we can express the optimal geometric configuration prob-
lem (40) as an optimization problem with constraints. One
method is the gradient search method which uses unknown
variables for initial value guessing but may fall into the local
optimum. Another method uses a search algorithm, such as
particle swarm optimization, but its computational complexity
increases rapidly with the increase in the number of stations,
which is not suitable for multi-station localization.

Remark 4: The relationship between the error ellipse
probable and the determinant of the FIM is SEEP =
π
/√

det(FIM) [38]. According to (40), the determinant of
FIM is negatively correlated with the measurement noise
variance but positively correlated with the number of stations.

Authorized licensed use limited to: Changchun Inst of Optics Fine Mechanics & Physics. Downloaded on April 22,2024 at 07:04:39 UTC from IEEE Xplore.  Restrictions apply. 



5664 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 22, NO. 8, AUGUST 2023

TABLE I

POSITIONS OF THE STATIONS IN SIMULATIONS (M)

We can improve the source location accuracy by increasing
the number of stations or using higher precision sensors.

VI. SIMULATION

In this section, we evaluate the performance of the proposed
method and the conclusion of the optimal geometric configu-
ration through Monte Carlo numerical simulation experiments.
The simulation results are displayed in the form of root mean
square error (RMSE) and estimated bias, where RMSE(u) =√∑L

i=1 ‖ûi − u‖2
/L and bias(u) =

√∥∥∥∑L
i=1 ûi/L − u

∥∥∥2,

where u is the true source position and ûi is the estimated
value obtained from the i-th simulation. L = 5000 is the
number of Monte Carlo experiments.

A. Localization Performance Varies With Noise

The performance of the localization technique proposed in
this paper is analyzed in terms of both measurement noise
and station position error. The TDOA measurement noise,
AOA measurement noise and station position error are inde-
pendent. The variances of measurement noise and station
position errors in covariance matrices Qr, Qϕ and Qs satisfy∑N

i=0 σ2
ri

/
(N + 1) = σ2

r ,
∑N

i=0

(
σ2

αi
+ σ2

βi

)/
(N + 1) =

2σ2
ϕ and

∑N
i=0

(
σ2

si,x
+ σ2

si,y
+ σ2

si,z

)/
(N + 1) = 3σ2

s ,
respectively, where σr, σϕ and σs are scaling constants [17].

Representing the axes on a logarithmic scale covers a larger
dynamic range for better visualization. The range of the AOA
measurement noise level σϕ is from -10 to 20, corresponding
to 1/e deg and e2 deg and that of σr is from -10 to 50,
corresponding to 1/em and e5m. The range of the station
position error level σs is also from -10 to 50, corresponding
to 1/em and e5m.

First, we verify the localization performance and compu-
tational complexity of the proposed algorithm through sim-
ulation experiments. The CRLB root, OLSE and IMLE are
used as benchmark for performance evaluation, where IMLE
denotes the MLE initialized with the true source position.

Scenario 1: We use these stations in Table I to locate source
uo = [1000, 1000, 1000]Tm, where the first station is the
reference station. The remaining stations can only be used
to calculate TDOA.

Fig. 3 shows the performance of the proposed method as
σr varies. When σr is small, both our proposed method and
IMLE outperform OLSE and can achieve CRLB accuracy.
The bias of the solution of our proposed method is quite
minor relative to RMSE, which is approximately an unbi-
ased estimate. Compared with (a), the error in the first half
of (b) comes from the position error σs = 5m. The RMSE of
the proposed method increases gradually with the increase of

Fig. 3. Performance of the source localization as σr increases, where
σϕ = 1◦; (a) σs = 0m; (b) σs = 5m.

TABLE II

THE AVERAGE RUNNING TIME OF THE CONSIDERED ALGORITHMS

noise. When σr ≈ 90m, there is a threshold effect in IMLE.
It is probably due to the fact that the observation error surface
near the true source location is irregular and susceptible to
noise interference. However, our proposed algorithm still has
good performance at this time.

Fig. 4 illustrates the performance of the proposed method
as σϕ varies. Similar to Fig. 3, when the noise is small, the
proposed method outperforms OLSE and can achieve CRLB
accuracy, and is approximately an unbiased estimate. But we
find that changes in σϕ have little effect on the proposed
method and the corresponding CRLB. This is because the
number of TDOA measurements is much larger than AOA
measurements, which has a greater impact on the estimation
results.

When the station position error does not exist, we roughly
estimate the computational complexity of these algorithms
through Intel Core-i7 CPU runtime, as shown in Table II.
As mentioned in Remark 2, the proposed method requires
one or two iterations to obtain the exact weighting matrix,
resulting in its computational complexity being slightly higher
than OLSE, but still much lower than IMLE. Notably, the
average number of IMLE iterations is 11.2.

Scenario 2: The parameter settings for source and station
are the same as in Scenario 1. We set the standard deviation
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Fig. 4. Performance of the source localization as σϕ increases, where σr =
10m; (a) σs = 0m; (b) σs = 5m.

Fig. 5. Performance of the source localization as σs increases, where σr =
10m and σϕ = 1◦.

of the measurement noise as σr = 10m and σϕ = 1◦, and
then analyzed the influence of station position error on the
localization performance.

Fig. 5 shows the performance of the proposed method as σs

varies. The trend of performance evolution is consistent with
Fig. 3-(b). In particular, when σs ≈ 55m, the IMLE appears
threshold effect. Since σr only affects the weighting matrix
of TDOA, while σs determines the weighting matrix of both
TDOA and AOA.

Scenario 3: Setting the station positions and noise distribu-
tion are the same as Scenario 1. However, some of the stations
carry different types of sensors, where stations s6 and s7 are
loaded with only AOA sensors and are not used to calculate
TDOA.

Under different noise conditions, the proposed localiza-
tion method is compared with the algorithms based on
various measurements, i.e. (i) MPR-TDOA: the TDOA

Fig. 6. Localization performance of different algorithms as σr increases,
where σϕ = 1◦; (a) σs = 0m; (b) σs = 5m.

closed-form solution based on the modified polar represen-
tation [40]; (ii) PLE-AOA: the AOA pseudolinear estima-
tor [17]; and (iii) WLS-hybrid (TDOA-AOA): the weighted
least squares algorithm based on hybrid TDOA and AOA
measurements [19].

The three algorithms use various measurements,
CRLB-AOA, CRLB-TDOA and CRLB-hybrid TDOA-AOA
represent the lower bounds of localization performance
based on AOA, TDOA and their mixture, respectively.
Section III-D describes the robustness of our algorithm.
Similarly, the WLS-hybrid can also be used in hybrid
measurement scenarios where AOA measurements are
added [19]. MPR-TDOA and PLE-AOA are not compatible
with measurements from heterogeneous sensors.

Furthermore, the estimation biases of these algorithms are
negligible relative to their RMSEs and will not be discussed
here. We use the method in Section III-B to expand the impact
of station position errors on the localization performance of
these algorithms.

The proposed method proposed can take advantage of all the
measurements in Scenario 3 and therefore has a lower CRLB.
With the increase of TDOA noise, MPR-TDOA gradually
deviates from the corresponding CRLB, and PLE-AOA is not
affected as show in Fig.6. The WLS-hybrid can utilize few
TDOA compared to AOA, so the localization performance is
similar to PLE-AOA. When the TDOA noise is very high, the
AOA measurement guarantees the positioning performance of
WLS-hybrid and our closed-form estimator. When the station
position error is σs = 5m, the RMSE of our algorithm is
smaller under small TDOA noise.
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Fig. 7. Localization performance of different algorithms as σϕ increases,
where σr = 10m; (a) σs = 0m; (b) σs = 5m.

Fig. 8. Localization performance of different algorithms as σs increases,
where σr = 10m and σϕ = 1◦.

As the AOA noise increases, the simulation results in
Fig. 7 are similar to those in Fig. 6. The RMSE of PLE-AOA
and WLS-hybrid increases gradually while MPR-TDOA
remains unchanged. The proposed method can make full use
of TDOA measurements to reduce the influence of AOA noise.

Then, we investigate the effect of station position error
on these algorithms, as Fig. 8. With the increase of σs,
MPR-TDOA and PLE-AOA deviate from the corresponding
CRLB. WLS-hybrid and our algorithm always achieve CRLB
accuracy very well. In other words, the hybrid measurement
model is more resistant to station position error.

The results of Scenario 3 demonstrate that the proposed
algorithm in this paper has strong robustness and can be used
for complex location scenarios consisting of heterogeneous
sensors. The measurements used by different algorithms are
distinct. It is not reasonable to compare their performance

Fig. 9. Localization performance of different algorithms using the same
measurements when σs = 5m, where (a) σr = 10m; (b) σϕ = 1◦.

directly. Next, we compare the location performance of the two
algorithms under the hybrid TDOA and AOA measurement
applicable to the WLS hybrid.

Scenario 4: Only the first three stations in Scenario 3
participate in localization, where each station is configured
with the same sensors as the reference station. Comparing the
impact of different noises on the performance of the proposed
localization method and WLS-hybrid.

Fig. 9 describes the localization performance trend of the
two hybrid measurement algorithms with a single noise. Since
the number of AOA measurements is three times that of
TDOA, the positioning performance of the two algorithms
is insensitive to TDOA noise and varies only slightly with
TDOA noise. With the increase of AOA noise, WLS-hybrid
estimation performance deviates from CRLB, and the perfor-
mance of the proposed algorithm can always reach CRLB
accuracy well. Our algorithm does not introduce the coupling
between AOA measurements during the linearization of TDOA
measurements with respect to the source position, so it is more
resistant to noise.

B. Optimal Geometry

In this subsection, we will verify the conclusion and validity
of the optimal geometry.

Scenario 5: We use three stations s0 = [r0, 0]T , s1 =
[r1 cosλ1, r1 sin λ1]T and s2 = [r2 cosλ2, r2 sin λ2]T to
locate the source u = [0, 0]T . s0 is the reference station. ro,
r1 and r2 represent the distance between the source and these
stations. Fixing the standard deviation σϕ = 0.1◦ and σr = 1m
of measurement noise.
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Fig. 10. Contour of det (A) corresponding to the angular positions λ1

and λ2, where (a) r0 = 200m;(b) r0 = 500m. Red ‘o’ indicates the
maximum.

According to Conclusions 2 and 3, the critical value of the
distance between the reference station and the source is about
r0 ≈ 286m. Below, we will verify the conclusion in two cases,
r0 = 200m and r0 = 500m. The localization performance
depends on the angle positions λ1 and λ2 of the two stations,
while r1 and r2 are not affected.

We evaluate the results of the optimal geometry through an
exhaustive numerical search and use the proposed algorithm to
prove the effectiveness of the optimal geometry. Substituting
the parameter values into Conclusion 2, it is easy to obtain
that the angular positions of the stations under the optimal
geometric configuration are λ1 = 133.9326◦ and λ2 =
226.0674◦.

Through two exhaustive methods with step size 1◦, the
contour of det (A) corresponding to the different angu-
lar positions are shown in Fig.10. The optimal geomet-
ric configurations of r0 = 200m and r0 = 500m are
obtained as (λ1, λ2) ∈ {(180◦, 180◦) , (180◦, 0) , (0, 180◦)}
and (λ1, λ2) ∈ {(134◦, 226◦) , (226◦, 134◦)}, respectively,
which is the same as Conclusion 2.

The geometric configuration of the determinant maximum
of the FIM is not exactly equivalent to the trace minimum
of CRLB [26]. We calculate the trace of CRLB in two cases
by the same exhaustive search method, as shown in Fig.11.
The optimal geometry is slightly distinction from D-optimality
criterion. The discrepancies between the objective functions
lead to subtle differences in the conclusions. The achievable
1/tr (CRLB) is within 99% of the best value of the optimal
geometric configuration for λ1 within 128 to 155 degree and

Fig. 11. Contour of tr (CRLB) corresponding to the angular positions
λ1 and λ2, where (a) r0 = 200m;(b) r0 = 500m. Red ‘o’ indicates the
maximum.

Fig. 12. Schematic diagram of the original and optimal geometric configu-
rations in 2D plane.

λ2 within 205 to 232 degree [41]. That means our conclusions
are valid.

Finally, the optimal geometric configurations it derives can-
not be directly proved to be valid for the proposed algorithm.

Based on Scenario 4, setting the z-component of each
station position as zero to get the 2D localization scenario.
Then, fixing the position of the source and reference sta-
tions. The distance between the reference station and the
source is r0 ≈ 922m. According to Conclusion 2, the
corresponding optimal layout is λ0 = 0◦, λ1 = 124.1804◦

and λ2 = 235.8196◦. At this point, the angular positions
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TABLE III

LOCALIZATION PERFORMANCE OF DIFFERENT
GEOMETRIC CONFIGURATIONS IN 2D PLANE

of the optimal geometric configuration are equivalent to the
azimuth of the source relative to each station in the 2D plane
as α0 = 40.6013◦, α1 = 164.7831◦, and α2 = −83.5805◦.
The optimal geometric configuration is obtained without
changing the stations-source spacings and moving these sta-
tions to the corresponding position. The original and optimal
geometrical configurations are shown in Fig.12. Table III
describes the positioning performance of the two geometric
configurations.

Clearly, the results in Table III show that good geometry
can greatly improve positioning performance. It is practical
to precisely locate the target by changing the geometric
configuration without changing the hardware conditions.

VII. CONCLUSION

In the presence of different types of noise, we propose
different closed-form solution source localization methods
based on hybrid multi-station TDOA and single-station AOA.
Theoretical analysis shows that when the noise satisfies con-
ditions C1-C4, these localization methods proposed in this
paper can achieve CRLB accuracy. Compared with OLSE,
although it has slightly higher computational complexity,
it has higher localization accuracy. Compared with IMLE,
it has the advantages of low computational complexity and
strong stability, and does not require precise initial values.
It is demonstrated that our algorithm has stronger robustness
than MPR-TDOA, PLE-AOA, and WLS-hybrid by apply-
ing them in complex localization scenarios. Using the same
measurements, our algorithm is more resistant to noise than
WLS-hybrid.

To further improve localization accuracy, we investigate
the geometry between the source and the stations. Through
theoretical analysis, we give the corresponding explicit solu-
tions for the optimal geometric layout when two or three
stations are positioned in concert. The solution for the optimal
geometrical configuration when four and more stations are
positioned is also given. Simulation experiments demonstrate
that the theoretical conclusions are correct and the optimal
geometric configuration is effective to improve the positioning
performance.

In this paper, we investigate the optimal geometric config-
uration for 2D positioning scenarios such as the sea surface.
It is quite different from 3D. However, the difficulty of solving
the optimal geometric configuration increases dramatically
from 2D planes to 3D space, because the number of vari-
ables doubles and their coupling is very complicated. In the
future, our work will focus on the generalized solution of
3D optimal geometric configurations in heterogeneous sensor
networks.

APPENDIX A

The definitions of each parameter in the weighted least
squares estimation formula (24) are as follows:

h̃n =
[
h̃T , h̃T

nϕ

]T
∈ R

(3N+2)×1, h̃nϕ =[̃
sT
0 γ̃1, s̃T

0 γ̃2, · · · , s̃T
0 γ̃N

]T ∈ R
2N×1, G̃n =[

G̃T , G̃nϕ

]T
∈ R

(3N+2)×3, G̃nϕ =
[
γ̃T
1 , γ̃T

2 , · · · , γ̃T
N

]T
,

γ̃i =
[

sin α̃i − cos α̃i 0
sin β̃i cos α̃i sin β̃i sin α̃i − cos β̃i

]T
, Σn =(

TnQmnT
T
n + BnQsBT

n

)−1
, Bn =

[
BT

r ,BT
ϕn

]T ∈
R

(3N+2)×(3N+3), Tn = blkdiag (Tr,Tϕn) ∈
R

(3N+2)×(3N+2), Qmn = blkdiag(Qr,Qϕn),
Bϕn = blkdiag

(
γT
0 , γT

1 , · · · , γT
N

) ∈ R
(2N+2)×(3N+3),

Tϕn = diag ([r0 cosβ, r0, · · · , rN cosβ, rN ]), Qϕn =
diag

([
σ2

α0
, σ2

β0
, · · · , σ2

αN
, σ2

βN

])
.

APPENDIX B

In this Appendix, we will demonstrate that the localization
performance of the proposed method can reach CRLB accu-
racy under small noise conditions.

According to the definitions of matrices Gm in (11), T in
(12) and ∇mu in (26), it is easy to get

T−1Gm=
[
T−1

r 0
0 T−1

ϕ

] [
Gmr

Gmϕ

]
=
[

T−1
r Gmr

T−1
ϕ Gmϕ

]
= ∇mu.

(43)

From (31) and (26), it is easy to obtain

covm(u) = CRLBm(u). (44)

When both measurement error and station position error
exist, the covariance matrix of source position estimation is
inversely calculated to obtain

covb(u)−1

= GT
(
TQmTT + BQsBT

)−1
G

= GTT−T
(
Qm + T−1BQsBTT−T

)−1
T−1G

= GTT−T Q−1
m T−1G − GTT−T Q−1

m T−1B

× (Q−1
s + BTT−T Q−1

m T−1B
)−1× BTT−T Q−1

m T−1G.

(45)

According to the definitions of matrices T in (12), B in
(18) and ∇ms in (27), it is easy to get

T−1B =
[
T−1

r 0
0 T−1

ϕ

] [
Br

Bϕ

]
=
[

T−1
r Br

T−1
ϕ Bϕ

]
= −∇ms. (46)

Since G = Gm, it follows that T−1G = ∇mu.
Similarly, from (28) and (33), it is easy to obtain

covb(u) = CRLBb(u). (47)

The proposed solution achieves CRLB accuracy in the small
error region satisfying conditions (C1)-(C4).
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APPENDIX C
OPTIMAL GEOMETRY FOR N = 1 AND N = 2

When N = 1, the optimal geometric configurations of
the two parts of (42) are consistent. The maximum value
of det (A) is 2

r2
0σ2

ϕσ2
r

, when the angular position of the two
stations satisfy λ1 = π + λ0.

In addition, r0 should be as small as possible since det (A)
is negatively correlated to the distance from the source to the
reference station. The same is true below.

When N = 2, the optimal geometric configurations of the
two parts of (42) are inconsistent. According to the constraints
in (41), the angular positions of stations 1 and 2 satisfy
λ1 + λ2 = 2π and sin λi = 0, i = 1, 2.

If the angular positions are sinλi = 0, i = 1, 2, from(42),
the objective function becomes

max
λi,i=1,2,...,N

1
3r2

0σ
2
ϕσ2

r

⎡
⎣3 2∑

i=0

cos2λi −
(

2∑
i=0

cosλi

)2
⎤
⎦

s.t. sinλi = 0, i = 0, 1, 2. (48)

It is easy to get the angular positions of optimal geometric
λ1 = π + λ0, λ2 = λ0 ( λ1 and λ2 are interchangeable when
the noise distribution is the same).

If λ1 + λ2 = 2π, we let cosλ1 = cosλ2 = a, a ∈ [−1, 1].
From (42), the objective function becomes

max
a

4(1 − a)3 (1 + a)
3σ4

r

+
2(1 − a)2

3r2
0σ

2
ϕσ2

r

. (49)

Analyzing its derivative, we get the following conclusions:
When ro ≤ σr/2σϕ, a = −1 maximizes (49), and the optimal
geometry is λ1 = λ2 = π + λ0. When r0 > σr/2σϕ, a =
1/4−

√
9/16 + σ2

r

/(
4r2

0σ
2
ϕ

)
maximizes (49), and the angular

positions of the stations are λ1 = cos−1a + λ0, λ2 = 2π −
cos−1a + λ0.
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