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Abstract: For purpose of improving the accuracy of in-orbit radiometric calibration of Chinese
Space-based Radiometric Benchmark (CSRB) reference payload on the reflected solar band and
reduce resource consumption, this paper proposed a freeform reflector radiometric calibration
light source system based on the beam shaping characteristics of the freeform surface. The
design method of initial structure discretization based on Chebyshev points was used to design
and solve the freeform surface, and the feasibility of the design method was verified by optical
simulation. The designed freeform surface is machined and tested, and the test results show
that the surface roughness root mean square (RMS) of the freeform reflector is 0.61 µm, which
indicates that the continuity of the machined surface is good. The optical characteristics of the
calibration light source system are measured, the results show that the irradiance uniformity and
radiance uniformity are better than 98% in the effective illumination area of 100 mm× 100 mm
on the target plane. The constructed freeform reflector calibration light source system can meet
the requirements of large area, high uniformity and light weight for onboard calibration of the
payload of the radiometric benchmark, improving the measurement accuracy of spectral radiance
on the reflected solar band.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Radiation calibration is an important step in the development of space optical remote sensing
load and an important prerequisite for obtaining high-quality remote sensing data [1]. The
calibration light source is an important part of the onboard radiometric calibration system, which
determines the consumption of space, load, energy, and other resources by the whole calibration
system to a large extent. At the same time, the characteristics of the target light source also
directly limit the accuracy of radiation calibration. At present, there are still some problems in
the radiometric calibration of space remote sensors, such as the inconsistency of radiometric
calibration values between different remote sensors, the incomparability of data and the low
accuracy of the radiometric calibration [2]. To this end, China put forward the concept of a
space radiation measurement reference satellite in 2006 and launched the Chinese Space-based
Radiometric Benchmark (CSRB) project [3,4]. The purpose of the project is to launch a
radiation reference satellite with self-calibration capability, use a new in-orbit calibration system
to cross-calibrate the in-orbit satellite, establish a high-precision space radiation reference, and
unify the onboard radiation scale, which coincides with the Traceable Radiometry Underpinning
Terrestrial-and Helio-Studies (TRUTHS) and the Climate Absolute Radiance and Refractivity
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Observatory (CLARREO) projects proposed by the National Physical Laboratory (NPL) and
National Aeronautics and Space Administration (NASA) respectively [5,6].

Under the support of CSRB, Changchun Institute of Optics, Fine Mechanics and Physics
(CIOMP), Chinese Academy of Sciences proposed an onboard radiometric calibration scheme
[7], which is traceable to the Space Cryogenic Absolute Radiometer (SCAR) [8], the purpose is
to establish an onboard radiance benchmark with an uncertainty of better than 1% on the reflected
solar band. The calibration system transfers the reference of SCAR to a Transmitted Radiometer
(TR) that can measure both radiant power and radiance [9]. And then the TR and the Earth-Moon
Imaging Spectrometer (EMIS) simultaneously observe the calibration light source to complete
the full-field and full-aperture radiation calibration. The primary role of the TR is to convert
from the spectral power responsivity traceable to the SCAR to the spectral radiance responsivity
and transfer it to the EMIS (the detailed traceability chain will be described in section 2.1). In the
calibration process, the target light source needs to fill the field of view and aperture of the EMIS
and TR, and therefore its size needs to be large enough. At the same time, due to the mismatch
between the observation area of the EMIS and TR, to achieve higher calibration accuracy, a very
strict requirement is put forward for the uniformity of the whole spectral calibration light source.
The existing onboard calibration light source system on reflected solar band usually takes the
sunlight or halogen tungsten lamp as the light source and uses the integrating sphere or diffuser
to homogenize the light to form a uniform target light source [10–13]. When the diffuser is used
to homogenize the light, the intensity and stability of the light will change with the change of the
incident light field angle, which is easy to introduce the response error of the detector caused
by the uneven incident angle and position of the incident light. Using the integrating sphere to
homogenize light can achieve high uniformity, but to cover the aperture of EMIS, the volume
and weight of the integrating sphere will be very large, which will be a huge consumption of
onboard resources. In addition, the off-axis parabolic mirror can obtain a large area extended
light source, but the optical path deflection and collimation will require multiple mirrors, which
will undoubtedly increase the complexity of the calibration system structure and cannot meet the
uniformity requirements. Therefore, due to the current situation that the onboard lighting system
cannot take into account both large area, high uniformity and simple structure, we urgently need
a new onboard calibration light source system to meet the requirement of radiation calibration
accuracy of the reference satellite.

With the development of freeform surfaces, the lighting output enters the era of “custom”.
The system precisely controls the light direction to reach the predetermined area, and the design
freedom is high [14–16]. This not only makes the spatial layout of the optical system more flexible
but also improves the energy utilization efficiency and simplifies the lighting system structure. In
addition, the size and uniformity of the outgoing spot of the freeform can be accurately controlled
by a reasonable surface design. The beam shaping ability of freeform surface brings a new idea
for the design of the onboard whole spectral calibration light source system, which enables us to
obtain large-size and high-uniformity target light source by using a single freeform surface.

In this paper, a direct discretization method of a freeform surface is proposed based on
existing design methods, and the design, simulation and analysis of the freeform reflector of
the SCAR-based calibration system are presented. Combining the homogenization ability of
the integrating sphere and diffuser and the beam shaping ability of the freeform reflector, a new
onboard calibration light source system is constructed. The system not only takes the energy,
load and space utilization onboard into account but also provides a large size calibration light
source with ultra-high uniformity. The rest of this paper is organized as follows. In Section 2, we
introduce the design concept of the calibration light source system and the freeform reflector and
present the design requirements of the light source system in combination with the SCAR-based
calibration scheme. In Section 3, we propose the design and solving method of the freeform
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surface. In Section 4, we design, simulate, manufactured and test the freeform calibration light
source system in detail. In Sections 5 and 6, we give the discussion and conclusion respectively.

2. Design concept

2.1. Freeform calibration light source system design concept

The light path of the whole spectral calibration light source (composed of halogen tungsten
lamp integrating sphere, freeform reflector and diffuser) of the SCAR-based radiation calibration
system is shown by the bold arrow in Fig. 1. The freeform calibration light source system adopts
an off-axis reflection lighting scheme, which avoids the influence of color difference introduced
by the transmission scheme on calibration. We effectively combined the homogenizing light
ability of the integrating sphere and the diffuser with the beam shaping ability of the freeform
surface, a small diameter integrating sphere with a halogen tungsten lamp is used to vertically
illuminate the diffuser by the freeform reflector as the whole spectral calibration light source.
The single-mirror lighting method can shorten the optical path effectively and simplify the
optical path structure to the greatest extent. The small-diameter integrating sphere can output
stronger spectral radiance with a low-power halogen tungsten lamp, which greatly improves the
energy utilization rate of the light source system. The off-axis reflection lighting path avoids
all the components in the calibration system, making the entire on-board layout very compact
and reducing the reflection of light in the system. Therefore, this scheme not only reduces the
impact of stray light on the calibration accuracy, but also improves the space utilization of the
SCAR-based radiation calibration system.

Fig. 1. Light path of the whole spectral calibration light source system of SCAR-based
radiation calibration.

As shown in Fig. 1, a multi-channel monochromatic light source was used to achieve the
multi-spectral power calibration of the Transfer Radiometer (TR) traced to SCAR. The multi-
channel monochromatic light source is connected via fibers to a collimating swing arm, which
can introduce the monochromatic light into TR and SCAR in turn (the fibers are not shown in
Fig. 1). The TR is used to achieve high-precision conversion and measurement from power
to radiance, and establish secondary reference. The uncertainty of radiance measurement is
better than 0.55% [9]. The multi-spectral radiance of the whole spectral light source can be
calibrated by the TR. Since the spectral curve of the halogen tungsten lamp in the whole spectral
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light source is smooth without mutation, the secondary reference can be converted into the
hyperspectral radiance reference by hyperspectral curve reconstruction. As shown by the thin
arrow in Fig. 1, TR and hyperspectral imaging system, the Earth-Moon Imaging Spectrometer
(EMIS), simultaneously observe the diffuser to achieve high precision radiometric calibration on
the reflected solar band. The placement of the diffuser ensures that EMIS and TR can observe the
diffuser in a symmetric direction of ±45°, which minimizes the difference between the reflectance
of the diffuser at different angles. However, because the observation area of EMIS and TR on
the diffuser are different, the irradiance of the reflected light from the freeform reflector to the
diffuser is supposed to very uniform to ensure higher radiation value transfer accuracy. The size
of the diffuser is 120 mm× 120 mm. EMIS and TR have a maximum observation area of 90 mm
on the diffuser, so 100 mm× 100 mm is sufficient to cover their aperture and field of view. After
analysis, the radiance uniformity is supposed to be better than 98% in the effective illumination
area of 100 mm× 100 mm. The radiance uniformity of the diffuser is affected by the uniformity
of its reflectance and the uniformity of the irradiance of the incident light. The diffuser we used
is of very good reflectance uniformity, so we want the irradiance uniformity of the incident light
of the diffuser, that is, the reflected light of the freeform reflector to be also better than 98%.

2.2. Freeform reflector design concept

Many ideas have been put forward for the construction and solution of freeform surface. However,
the current freeform surface design methods are difficult to form a smooth and continuous
freeform reflector that can be used for onboard calibration light source system and generate large
area uniform light spots. Schruben [17] constructed an illumination system based on mathematical
principles and obtained the mathematical model of the elliptic MA (Monge-Ampère) equation of
the asymmetric freeform reflector illumination system. But the partial differential equation has
high nonlinearity, making its solution very complicated [18,19]. Oliker et al. [20,21] proposed
the supported cone method, which is based on illumination discretization. Simultaneous Multiple
Surface (SMS) is used to construct the freeform surface by concatenating multiple surfaces,
but this makes the resulting surface shape not smooth and continuous. Wu et al. [22–24]
solved the elliptic MA equation of freeform reflector by using the Newton descent method and
obtained a continuous smooth surface model. However, this method only applies to the design of
transmissive freeform surfaces. Luo [16,25] et al. first constructed a point light source model
by separating variables, then modified the preset distribution according to the actual irradiance
distribution, and finally established a new irradiance distribution by iterative function, thus
completing the design of freeform mirror. A rectangular spot distribution with an irradiance
uniformity of 81.08% was achieved by this method. Based on the existing freeform surface
design ideas, we propose a new discretization method for the initial structure of the freeform
surface, based on the definition of Chebyshev points, a two-dimensional extension is carried out
to make it a better match between the projection grid of the light emitted from the light source, to
improve the continuity of the surface and the uniformity of the reflected light. In the next section,
we introduce the method of establishing and solving the freeform surface mathematical model.

3. Freeform reflector design principle

3.1. Establishment of the mathematical model

The essence of the design and solving method proposed in this section is to transfer the energy
from the light source to the target plane in a reasonable way by a freeform reflector. As shown
in Fig. 2 is the diagram of energy transfer for a freeform reflector. According to the law of
conservation of energy, the energy received by the target surface is equal to the energy of the
light source incident on the freeform reflector multiplied by the reflectance of the reflector. Then
the Jacobi matrix can be used to achieve the energy conversion between each face. As long as the
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irradiance in each illumination area unit is equal, an irradiance uniformity spot can be obtained
on the target plane.

Fig. 2. Diagram of energy transfer for a freeform reflector.

As shown in Fig. 3(a) is the 3D diagram of the illumination coordinate system, Fig. 3(b) is
the corresponding 2D diagram. According to the design and solving method, first, a spherical
coordinate system with a radius of 1 is constructed. All subsequent variables are normalized
to facilitate calculation. Assuming that the surface type region of the freeform reflector is Ω0,
and the projection region of the luminous region emitted by the light source on the unit sphere
is ρ(u, v), where ρ is the distance between the light source and the freeform reflector, and the
region of reflection projection on the target surface is Ω1. The Ω0, Ω1 and point O have been
marked in Fig. 1. The topological plane u1 − v1 is titled β from plane u − v. The target surface
tx − ty is shifted upward 2 units form plane u − v; tx − ty is called the target plane of the incident
area of the light source. The purpose is to convert the irregular region of incident light on the
unit sphere into a plane to facilitate calculation.

Fig. 3. Diagram of the illumination coordinate system: (a) 3D (b) 2D.

Assuming that the intensity of the input light source OP is I, M is the projection of point P on
the plane z= 1 along the line through the south pole (0, 0, -1) of the unit sphere and point P. With
coordinates u and v, M can be expressed as I(u,v). We assume that there is no energy loss in the
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optical system during the design stage. According to the law of conservation of energy, we have:∫∫
Ω1

E(tx, ty)dtxdty =
∫∫

Ω

I(u, v)dΩ. (1)

where E is the irradiance of a point at the coordinate (tx, ty), Ω1 is the illumination area on the
target plane which can also be regarded as the diffuser as shown in Fig. 1, and Ω is the solid angle
of the output light. Assuming that plane u1 − v1 is titled along the x-axis, and the obtained point
in plane u1 − v1 is S(u1, v1, 0), as the plane u1 − v1 is titled β from the plane u − v, then point S
in the coordinate u − vcan be expressed as:⎡⎢⎢⎢⎢⎢⎢⎢⎣

u

v

w

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0

0 cos β sin β

0 − sin β cos β

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎣

u1

v1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (2)

By solving Eq. (2), we can obtain point S in the coordinate u − v is (u1, v1 cos β,−v1 sin β).
As the plane is shifted upward 1 unit from the plane, the coordinate of point S in the coordinate

x − y is (u1, v1 cos β, 1 − v1 sin β). At this point, the equation of the line O′SP can be expressed
as:

x
u1
=

y
v1 cos β

=
z + 1

2 − v1 sin β
= k. (3)

Since point P is on the sphere, it needs to satisfy the following equation:

x2 + y2 + z2 = 1. (4)

Solving Eqs. (3) and (4),

k =
2(2 − v1 sin β)

u2
1 + v2

1 − 4v1 sin β + 4
. (5)

The vector of the output light ray is OP, considering the points S (u, v, 1) and P (x, y, z).
Defining OP to be the vector m, it can then be expressed as

m(u1, v1) =
1

u2
1 + v2

1 − 4v1 sin β + 4

⎛⎜⎜⎜⎜⎝
2u1(2 − v1 sin β),

2v1 cos β(2 − v1 sin β),

(2 − v1 sin β)2 − v2
1cos2β − u2

1

⎞⎟⎟⎟⎟⎠
. (6)

As the energy of the output light is contained within the solid angle, we obtain

dΩ = |mu1 × (mv1 cos β)|du1dv1. (7)

where mu1 and mv1are the partial derivatives of m with respect to u and v, respectively. mu1 and
mv1 can be expressed as

mu1 = [−
4u1

2(2 − v1 sin β)
(4 + u12 + v12 − 4v1 sin β)2

+
2(2 − v1 sin β)

4 + u12 + v12 − 4v1 sin β
,

−
4u1v1 cos β(2 − v1 sin β)

(4 + u12 + v12 − 4v1 sin β)2
,

−
2u1

4 + u12 + v12 − 4v1 sin β
−

2u1(−u1
2 − v1

2cos2β + (2 − v1 sin β)2)
(4 + u12 + v12 − 4v1 sin β)2

].

(8)
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mv1 = [−
4u1(v1 − 2 sin β)(2 − v1 sin β)
(4 + u12 + v12 − 4v1 sin β)2

−
2u1 sin β

4 + u12 + v12 − 4v1 sin β
,

−
4v1 cos β(v1 − 2 sin β)(2 − v1 sin β)

(4 + u12 + v12 − 4v1 sin β)2
+

4 cos β(1 − v1 sin β)
4 + u12 + v12 − 4v1 sin β

,

−
2v1cos2β + 2 sin β(2 − v1 sin β)

4 + u12 + v12 − 4v1 sin β
−

2(v1 − 2 sin β)(−u1
2 − v1

2cos2β + (2 − v1 sin β)2)
(4 + u12 + v12 − 4v1 sin β)2

].

(9)

using Eqs. (8) and (9), Eq. (7) then becomes

dΩ =
8cos2β|−2 + v1 sin β|

(4 + u12 + v12 − 4v1 sin β)2
du1dv1. (10)

when β = 0,
dΩ = (1 + 0.25w2)−2dudv. (11)

where w2 = u2 + v2. The directions of vectors OF and OP are aligned, and OP is the unit vector.
If the distance between the source position O and the point F is ρ, the vector OF can be expressed
as:

A = ρm = ρ(
u

1 + 0.25w2 ,
v

1 + 0.25w2 ,
1 − 0.25w2

1 + 0.25w2 ). (12)

According to the law of reflection, the relationship between vectors A and T is shown in Fig. 4,
T represents the vector OT; vector A of the emergent ray and the unit normal vector N at point F
can be expressed as:

A
|A|
+

A − T
|T − A|

=
2N(A · N)

|A| |N|2
. (13)

and
N = Au × Av = (ρum + ρmu) × (ρvm + ρmv)

= ρ2(1 + 0.25w2)−2m − ρuρmu − ρvρmv.
(14)

where Au and Avare the partial derivatives of A with respect to u and v, respectively, ρu and ρv
are the partial derivatives of ρ with respect to u and v, respectively, and F and G can be defined
as follows:

F = |T − A|(1 + 0.25w2)−1

[ρ2(1 + 0.25w2)−2 + ρu
2 + ρv

2]−1.
(15)

G = (1 + 0.25w2)−1 + F[−ρ2(1 + 0.25w2)−2

+ ρu
2 + ρv

2 − ρ(ρuu + ρvv)(1 + 0.25w2)−1].
(16)

Finally, the coordinates of point T can be calculated as follows:

tx = uG + 2ρuρvF, ty = vG + 2ρuρvF. (17)

This equation can be rewritten as:

tx = tx(u, v, ρ, ρu, ρv), ty = ty(u, v, ρ,ρu,ρv). (18)

Based on the law of energy conservation, the relationship between the total energy of the
outgoing light and the total energy of the target surface irradiation region can be obtained as
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follows: ∫∫
Ω1

E(tx, ty)dtxdty =
∫∫

Ω

I(u, v)dΩ. (19)

whereΩ is the solid angle of the outgoing light. According to the mathematical model established
by Schruben,

dtxdty = |J(T)|dudv, |J(T)| =

|︁|︁|︁|︁|︁|︁ ∂tx
∂u

∂tx
∂v

∂ty
∂u

∂ty
∂v

|︁|︁|︁|︁|︁|︁ . (20)

Then Eq. (19) can be rewritten:

E(tx, ty)

|︁|︁|︁|︁|︁|︁ ∂tx
∂u

∂tx
∂v

∂ty
∂u

∂ty
∂v

|︁|︁|︁|︁|︁|︁ dtxdty = I(u, v)(1 + 0.25w2−2
)dtxdty. (21)

Based on the optimal transmission theory, the MA equation of the system can be obtained as
follows:

a1(ρuuρvv − ρ
2
uv) + a2ρuu + a3ρuv + a4ρvv + a5 = 0. (22)

a1 =
∂tx
ρu

∂ty
ρv

−
∂tx
ρu

∂ty
ρv

a2 =
∂tx
ρu

∂ty
v

−
∂tx
v
∂ty
ρu
+ ρv

(︃
∂tx
ρu

∂ty
ρ

−
∂tx
ρ

∂ty
ρu

)︃
a3 =

∂tx
ρv

∂ty
v

−
∂tx
v
∂ty
ρv
+
∂tx
u
∂ty
ρu

−
∂tx
ρu

∂ty
u
+ ρu

(︃
∂tx
ρ

∂ty
ρu

−
∂tx
ρu

∂ty
ρ

)︃
+ ρv

(︃
∂tx
ρv

∂ty
ρ

−
∂tx
ρ

∂ty
ρv

)︃
a4 =

∂tx
u
∂ty
ρv

−
∂tx
ρv

∂ty
u
+ ρu

(︃
∂tx
ρ

∂ty
ρv

−
∂tx
ρv

∂ty
ρ

)︃
a5 =

∂tx
u
∂ty
v

−
∂tx
v
∂ty
u
+ ρu

(︃
∂tx
ρ

∂ty
v

−
∂tx
v
∂ty
ρ

)︃
+ ρu

(︃
∂tx
u
∂ty
ρ

−
∂tx
ρ

∂ty
u

)︃
.

(23)
where ρuu and ρvvare the second partial derivative of ρ with respect to u and v, respectively, ρuv
is the mixed partial derivative of ρ with respect to u and v. Thus, the mathematical model is
completed. ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

a1(ρuuρvv − ρ
2
uv) + a2ρuu + a3ρuv + a4ρvv + a5 = 0

BC :
⎧⎪⎪⎨⎪⎪⎩

tx = tx(u, v, ρ, ρu, ρv)

ty = ty(u, v, ρ, ρu, ρv)
: ∂Ω0 → ∂Ω1 .

(24)

Fig. 4. .Law of reflection.
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3.2. Chebyshev point and Chebyshev grid

In a freeform reflector illumination system, when the light source has rotational symmetry, the
projection area of the light source is circular, whereas the sampling grid is usually topological
squares or rectangles [26,27]; this results in a mismatch between the two. Therefore, in this paper,
the method of discretization of the circular region is proposed. The specific implementation
methods are as follows: 1) The system is designed by using the mapping from target irradiation
to light source emission; 2) The boundary condition is the mapping between the boundary of
the irradiation output region and the boundary of the light source emission region; 3) Select
the luminous region of the light source, and set its projection boundary to match the mapping
boundary. On this basis, the solution of the mathematical model of the optical system is obtained,
and the problem of mismatch between the projected area of the light source and the sampling
grid is solved. When the area of the mirror is large, 41× 41 or 81× 81 points can be used as the
discretization condition, as shown in Fig. 5.

Fig. 5. Chebyshev points on freeform reflector: (a) 41× 41 points (b) 81× 81 points.

Here, only a numerical solution can be used; hence, it is impossible to obtain an accurate
answer. First, we must discretize the elliptic Monge-Ampère equation and the nonlinear boundary
condition [28]. hi = ρi+1,j −ρi,j and hj = ρi,j+1 −ρi,j are the spacings in u- and v-axes, respectively,
as shown in Fig. 6. The grid points along Ω0 are called the boundary points, and the grid points
inside Ω0 are the interior points. Therefore, each interior point should satisfy the elliptic Monge-
Ampère equation, and each boundary point should satisfy the boundary condition. Subsequently,
we use the difference formula for derivatives to discretize the elliptic Monge-Ampère equation
and the nonlinear boundary condition.

For the interior point, we define the scheme shown in Fig. 6 as:

ρu =
ρi+1,j − ρi−1,j

2hi
,ρv =

ρi,j+1 − ρi,j−1

2hj
, ρuu =

ρi+1,j − ρzi,j + ρi−1,j

h2
i

ρvv =
ρi,j+1 − 2ρi,j + ρi,j−1

h2
j

,ρuv =
ρi+1,j+1 − ρi+1,j−1 − ρi−1,j+1 + ρi−1,j−1

4hihj
.

(25)

Taking u = umax as an example of the boundary line, as shown in Fig. 6, by one-sided finite
differences, we find that:

ρu =
3ρm,j − 4ρm−1,j + ρm−2,j

2hi
, ρv =

ρm,j+1 − ρm,j−1

2hj
. (26)

Equation (22) can be rewritten in (m+ 1) (n+ 1) equation sets and there are (m+ 1) (n+ 1)
Chebyshev points. The intensity of the point source obeys the lambert characteristic, the
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Fig. 6. Nine-point finite difference scheme for the interior points and boundary points.

intensity I(u, v)(1 + 0.25w2)−2can then be obtained. Solving the (m+ 1) (n+ 1) equation sets, the
coordinates of the points on the freeform reflector can be determined. Newton downhill method
is used to solve all the remaining points. Finally, the freeform surface can be constructed, and the
Bezier surface pieces proposed by Wu et al. [29] are used to suture each piece to obtain the final
freeform surface model.

4. Simulation and testing

4.1. Off-axis reflected illumination model

Based on the freeform surface model establishment and solution method proposed in the previous
section, we designed the SCAR-based radiation calibration system freeform reflector in detail.
The design process is shown in Fig. 7.

The structural parameters of each part of the radiometric calibration light source system are
shown in Table 1.

Table 1. Design parameters of the freeform reflector.

Parameters value

θ/° 15

β/° 22.5

γ/° 45

r/mm 400

z/mm 900

F# 1.6

Here θ is the luminous angle of the light source, β is the deflection angle of the freeform
reflector, γ is the tilt angle of the diffuser, r is the distance between the light source and the
freeform reflector, Z is the distance between the target surface and the freeform reflector, and
F# is the F-number of the system, which is represented by the ratio of the distance between the
reflector and the light source and the maximum aperture of the reflector. The discrete point data
are obtained by solving using MATLAB. At this time, the discrete graph model of the freeform
reflector is obtained by using Chebyshev points, as shown in Fig. 8; 81× 81 points are used.
Equation (5) is solved to obtain the freeform reflector model, as shown in Fig. 9.
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Fig. 7. Design flowchart.

Fig. 8. Schematic of Chebyshev points.

Fig. 9. Schematic of the freeform reflector simulation.
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The results are imported into the LightTools optical software. The optical simulation is carried
out according to the optical path of the whole spectral calibration light source, the schematic of
the illumination is shown in Fig. 10. It is worth noting that the previous derivations are based on
point light source, but the light source in Fig. 10 is a circular outlet with a diameter of 22 mm of
a small integrating sphere. If an extended light source is used to replace the point light source,
the irradiance of the boundary region on the target surface will show a large trapezoidal decline,
as shown in Fig. 11(a). Therefore, the freeform reflector solved based on the point source model
cannot be directly applied to the actual calibration task. Here we apply a feedback optimization
method which we have used before to optimize the freeform reflector. The feasibility of this
method has been demonstrated previously in coaxial systems [30].

Fig. 10. The model of light path.

Fig. 11. A square illuminated area with a side length of 150 mm: (a) before optimization
(b) after optimization.

The irradiance simulation result of the target plane after optimized is shown in Fig. 11(b), it
can be seen that the illumination area formed by the freeform reflector on the target plane is
larger than 120 mm× 120 mm which is sufficient to cover the diffuser and is of good uniformity.
The simulation results show that the freeform reflector design method based on Chebyshev points
can achieve ideal uniformity and illumination area, and it is feasible to be applied to turn and
collimate the optical path in the SCAR-based radiation calibration system. To verify this result,
detailed tests on the freeform reflector and calibration light source system were conducted.
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4.2. Actual test

According to the above freeform reflector simulation model established based on the off-axis
reflection illumination model of the SCAR-based radiation calibration system, the freeform
reflector structure model was constructed as shown in Fig. 12(a). The surface of the model is
smooth and continuous, which results in good machinability. Moore Nanotech 250UPL precision
single-point diamond machining machine was used to process the freeform reflector, and the real
object is shown in Fig. 12(b). The whole freeform reflector is made of aluminum. In order not to
damage the surface of the reflector, the surface is not coated. And then a series of tests were
conducted on the roughness of the freeform reflector and the optical properties of the freeform
calibration light source system.

Fig. 12. (a) Freeform reflector model pattern, (b) freeform reflector physical pattern.

LUPHO Scan scanner was used to detect the surface shape of the freeform reflector and
obtained the roughness data. The test results are shown in Fig. 13, where the RMS is 0.61 µm.
The test results show that the processed freeform reflector has no obvious tool marks and the
continuity of the processed surface is good, which can meet the practical application.

Fig. 13. Test results of surface roughness of the freeform reflector.

As shown in Fig. 14, the freeform reflector was integrated into the SCAR-based radiation
calibration system for light path bending and collimation. As expected before, after the bending
and collimation of the freeform reflector, a light spot is formed on the diffuser, which is sufficient
to cover the 120 mm× 120 mm diffuser. The uniformity of the spot will be evaluated by
experimental tests.
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Fig. 14. Uniform whole spectral calibration light source.

As mentioned before, the size of the light spot created by the freeform reflector on the diffuser
needs to be large enough because the diffuser needs to cover the observation area of EMIS
and TR, and the irradiance uniformity of the light spot at the diffuser position (Target Plane) is
supposed to be better than 98% in the 100 mm× 100 mm region. The location of the target plane
is shown in Fig. 15. In this regard, the spot size and its uniformity were tested in detail.

Fig. 15. The location of the target plane.

The grid-scanning method is used to detect the light spot formed by the freeform reflector
on the target plane, and the scheme is shown in Fig. 16. We fixed the Hamamatsu S2281
Si-photodiode on a electric two-dimensional guide rail, and placed the two-dimensional guide
rail on the position of the diffuser to drive S2281 to perform point-by-point scanning in the target
plane, this is used to measure the irradiance in each small area received by the diffuser. After
connecting the detector to an amplification box and a calibrated 6½ digit digital multimeter, three
groups of data were measured at each measuring point and the average value was taken as the
irradiance data at that point. The scan area is 150 mm× 150 mm, and the scan step is 10 mm.

Denote the relative position of the test point to the center of the diffuser in two directions
by X and Y, respectively. The normalized test result of irradiance is shown in Fig. 17. It can
be seen from the data that due to the smoothness and continuity of the freeform reflector, the
irradiance distribution of its reflected light on the target plane is also continuous without obvious
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Fig. 16. Irradiance uniformity test scheme.

mutation point. The diameter of the photosensitive surface of S2281 is 11.3 mm, so a 10× 10
scanning grid can cover the test area of 100 mm× 100 mm. As shown in Table 2, we extracted
10× 10 data points in the center of the scanned grid for analysis, Eq. (27) is used to calculate
the irradiance nonuniformity u, where Emax is the maximum irradiance value and Emin is the
minimum irradiance value in grid data. After calculation, the irradiance uniformity in the test
area is 98.2%, which meets the requirement of uniformity better than 98%.

u =
Emax − Emin
Emax + Emin

(27)

In addition, to verify the radiance uniformity of the freeform calibration light source system,
we use SVC HR1024i spectrometer to measure the radiance in the way of grid scanning, the test
diagram is shown in Fig. 18. The SVC was placed in the same observation direction as the EMIS,
and was driven by a two-dimensional guide rail for point-by-point scanning. The diameter of the
SVC observation area on the diffuser is about 45 mm, so a 5 by 5 grid test with a step size of 15
mm is sufficient to cover the 100 mm× 100 mm illuminated area.

Fig. 17. Normalized test data for irradiance uniformity.

The test data of two spectral channels were selected of SVC for uniformity analysis. As shown in
Fig. 19(a) and Fig. 19(b) is normalized radiance test data at 1036.9 nm and 780.8 nm, respectively.
Equation (27) was also used to evaluate the uniformity of grid test data. After calculation,
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Fig. 18. Radiance uniformity test scheme.

Table 2. Normalized test data for irradiance.

Y\X -45mm -35mm -25mm -15mm -5mm +5mm +15mm +25mm +35mm +45mm

-45mm 0.9962 0.9981 0.9985 0.9995 1.0017 1.0046 1.0083 1.0125 1.0164 1.0193

-35mm 0.9981 0.9997 0.9995 1.0003 1.0018 1.0043 1.0077 1.0107 1.0128 1.0128

-25mm 0.9992 1.0004 1.0003 1.0010 1.0023 1.0042 1.0067 1.0087 1.0092 1.0070

-15mm 1.0001 1.0008 1.0008 1.0010 1.0019 1.0033 1.0047 1.0060 1.0052 1.0019

-5mm 1.0006 1.0013 1.0009 1.0010 1.0015 1.0027 1.0023 1.0026 1.0009 0.9963

+5mm 1.0011 1.0022 1.0015 1.0009 1.0004 1.0000 0.9989 0.9982 0.9962 0.9913

+15mm 1.0020 1.0032 1.0020 1.0006 0.9991 0.9971 0.9952 0.9941 0.9918 0.9872

+25mm 1.0037 1.0041 1.0017 0.9992 0.9967 0.9943 0.9922 0.9904 0.9877 0.9827

+35mm 1.0034 1.0019 0.9985 0.9953 0.9923 0.9894 0.9874 0.9861 0.9841 0.9816

+45mm 1.0096 1.0033 0.9963 0.9910 0.9874 0.9841 0.9818 0.9811 0.9819 0.9824

the uniformity of 1036.9 nm and 780.8 nm are both 98.5%, which meets the requirement of
uniformity better than 2%.

Fig. 19. Normalized test data for radiance: (a) 1036.9 nm (b) 780.8 nm.
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5. Discussion

At present, the radiometric calibration of space remote sensing is faced with difficult problems
such as poor consistency, poor data comparability of different remote sensors, and low radiometric
calibration accuracy, this has greatly affected our monitoring and forecasting of the Earth’s
climate and environmental changes. The SCAR-based onboard radiation calibration system
can greatly improve the credibility of space remote sensing data in both temporal and spatial
dimensions. However, the load, space, and energy consumption of the calibration system are the
factors that restrict its final performance on board. A freeform reflector can precisely control the
light to reach a specified area, this can not only make the space layout of the whole calibration
system more flexible and increase the space utilization but also improve the energy utilization
and reduce the energy consumption. Most importantly, it can provide a large area of uniform
light source for the calibration system, reduce the error introduced by the radiation transfer link,
and improve the accuracy of the onboard calibration. Therefore, compared with the current
illumination scheme, the onboard illumination mode based on the freeform reflector adopted in
this paper more perfectly meets the requirements of onboard calibration in terms of both space,
energy utilization and uniform light source. The freeform reflector light source has the potential
to be used in more onboard calibration systems.

The Chebyshev spectrum method can be used for differential equations with boundary
conditions and computation intervals showing non-periodicity. The initial structure discretization
design method of freeform surface based on Chebyshev points proposed in this paper, starting
from Chebyshev’s basic definition, it is extended and derived in two dimensions, so that it can
better match the projection grid of the light source. The advantage of this method lies in that
not only the emission region of the light source is effectively discretized, but also the partial
differential equation is decomposed into the ordinary differential equation by this method, and
the solution of complex (MA) Monge-Ampère equation is transformed into solving ordinary
differential equations, this also makes the design of freeform mirror easier and more universal.
The freeform reflectors established based on this idea are more smooth and more continuous. As
the core device of the calibration light source system, it provides important support for irradiance
uniformity of reflected light.

6. Conclusion

This paper proposed a new onboard calibration light source system based on a freeform reflector
for the SCAR-based radiation calibration system. A new design idea for the freeform surface
is also put forward according to the present freeform surface design method. Based on the
characteristics of Chebyshev meshes, the topological meshes of the outgoing light can be
discretized inhomogeneous. At the same time, the freeform surface model with a good initial
structure is directly generated by the Optimal mass Transport (OMT) theory. Finally, the Bessel
curve is used to control and adjust the discrete points, and a continuous smooth freeform surface
is constructed. The constructed freeform reflector is simulated and analyzed according to the
light path of the SCAR-based radiation calibration system, the size and uniformity of the spot
formed in the target plane can meet the application requirements. Then we processed the designed
freeform reflector and tested its surface roughness, the result shows that the RMS is 0.61 µm and
the continuity of the machining surface is good. We integrate it into the calibration system and
use S2281 Si-photodiode and SVC spectrometer respectively to measure the irradiance of the
effective illumination area in the target plane and the radiance of the diffuser with grid-scanning
method. The experimental results show that in the effective illumination area of 100 mm× 100
mm of the target plane, the irradiance uniformity of the diffuser and the light emitted from the
freeform reflector are 98.5% and 98.2%, respectively, which are both better than 98% and meet
the practical application requirements. The designed freeform reflector can be perfectly applied
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to the optical path bending and collimation of the SCAR-based radiation calibration system. The
freeform reflector calibration light source system not only provides high uniformity calibration
light source for onboard radiometric calibration, but also improves the space utilization of the
calibration system, reduces on-board resource consumption, and also provides the possibility to
achieve the goal of the spectral radiance measurement uncertainty better than 1% on the reflected
solar band of Chinese Space-based Radiometric Benchmark (CSRB).
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