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In order to ensure optimal optical performance, primary mirror assembly must be impervious to environmental
influences. These environmental influences include gravity, assembly error, and thermal change, under which
external loads are imposed on the mirror. The external loads degrade the mirror surface accuracy and cause mis-
alignment between mirrors. In this paper, a tripod flexure with a flexible hinge is designed to alleviate the influence
of the external load on the surface accuracy of a 2 m primary mirror. This structure can effectively release the
rotational freedom, provide a certain translational flexibility, and yield high axial stiffness. The axial stiffness
is used to increase the frequency of the primary mirror assembly. According to the fast optimization model, the
derivation of close form compliance equations is developed to characterize the flexibility, and parameter optimiza-
tion is done to achieve the maximum performance. Then a finite element analysis and test are used to verify the
final design. The results show that the index requirements of the 2 m primary mirror have been met. © 2022 Optica

PublishingGroup

https://doi.org/10.1364/AO.476783

1. INTRODUCTION

In a space-based telescope, there is a trend of using large-aperture
reflective mirrors to improve the angular resolution and signal-
to-noise ratios [1–5]. As the size of the mirror increases, the
support structure design undoubtedly becomes one of the chal-
lenges in the design of space telescopes. The structural form of
the flexible hinge provides more possibilities for mirror support
design. As a special transmission structure, the flexure hinge pro-
vides a small range of translation or rotation between adjacent
components through elastic deformation. Different flexibility
configurations determine the performance of flexure hinges
under static loads [6]. The flexure hinge design method based on
a flexibility equation was first proposed by Paro and Weisbord,
and then a variety of flexure hinges were designed. Since then,
the flexure hinge has received more interest from scholars. Many
new configurations of flexure hinges have been proposed using
analytical methods. Smith et al . proposed an elliptical flexure
hinge by extrapolating the cut curve from a circle to an ellipse
[7]. Lobontiu et al . derived the exact flexibility equation of an
angular circular flexure hinge [8–10]. Moreover, a set of flexure
hinge design methods based on the flexibility equation was
introduced by quantifying rotation capacity, rotation accuracy,
and stress level [11]. The configuration of the flexure hinge has
been developed from two-dimensional to three-dimensional,
and from a simple to complex structure, such as cartwheel hinge
[12]. At present, flexure hinges are widely used in aerospace,
manufacturing, optics, and other fields.

Flexible hinges are becoming more widely used in the field of
space telescope design, especially in the mirror support design.
When designing a flexible support for a mirror, a suitable flex-
ible hinge is determined to take into account many practical
factors, including the mirror weight, lightweight form, external
loads, assembly errors, processing technology, and the posi-
tion of the hinge in the flexible support. The flexible support
may contain one or more types of flexible hinges. The type of
hinges can be determined according to different functional
requirements.

For the design of a mirror support structure, the two most
extensively used mounts are the flexure bipod mounts [13–16]
and flexure hinge mounts [17–21]. Due to the peculiarities of
the flexure bipod, the subtle deviation will cause substantial
degradation of the mirror performance. Moreover, even if it is
possible to compensate for the gravitational distortion of the
mirror, the implemented method is quite complicated. The
flexure bipod must be long enough to release the deformation
of the mirror caused by temperature variation and assembly
tolerance; the mirror will be far away from the space telescope
base plate. Thus, a flexure bipod will increase the axial enve-
lope size of the mirror assembly. A method that assembles the
flexure hinge mounts on the back blind hole of the mirror was
adopted. This method has been implemented on many different
apertures of mirrors in their studies, where the invar sleeve is
attached to the mount with a flexure to match the coefficient
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of thermal expansion of the mirror material. The back sup-
port structure has the advantages of light weight and small
space occupation. When the comprehensive surface of mirror
assembly is decomposed into gravity, temperature, and axial
assembly stress according to the actual working conditions,
the surface accuracy under the action of temperature and axial
assembly stress is required to be high. In general, it is difficult
to balance the contradiction between the surface shape, funda-
mental frequency, and dynamic stress of the traditional flexible
support under the above working conditions. In addition, the
traditional flexible support design is more inclined to trial and
error, the design direction is not clear enough, and the efficiency
is low.

A fast design method of the flexible support is proposed by
Zhou and Xu [22]. In this paper, they describe a method to
determine the allowable external loads. The performance of a
flexure is evaluated by the transmitted loads to the mirror. The
force acting on the mirror was analyzed under various condi-
tions, and the influence functions were obtained using inertia
relief. With the knowledge of influence functions, the relation-
ship between external loads and mirror surface distortion was
built. According to the error budget of the primary mirror, the
permissible loads required of the flexure were directly estab-
lished. The optimization was achieved through optimizing the
compliance of the flexure without a mirror. With their method,
the mirror design and flexure design were decoupled, and time
and resources required for optimization were reduced. A parallel
flexure is demonstrated for a 2 m lightweight, horizontally
supported mirror in their research. The influence of gravity,
assembly error, and temperature conditions on the mirror sur-
face shape and frequency is analyzed quantitatively, and the
flexibility requirements of the flexible support under different
conditions are obtained.

When designing the flexible support for large-diameter
mirrors based on the principle of three-point support on the
back in order to reduce the surface shape error under gravity
and assembly errors, the flexible support needs to release the
rotational freedom. Under the influence of temperature change,
the flexible support should release its translation freedom.
However, to limit the decenter of the primary mirror under
gravity, this translation flexibility should not be large. Generally,
the primary mirror can be easily affected by bending, but not by
shear [17]. Then the surface error caused by shear force can often
be ignored. The fundamental frequency of mirror assembly is
related to the axial stiffness of flexure support. The axial stiffness
of the flexible support should be kept or increased. Based on the
above analysis, the flexure support should be a spherical flexure
with high axial stiffness. Compared with the spherical joint, the
spherical flexure has the advantages of no mechanical friction,
no clearance, no hysteresis, and easy manufacture, assembly,
adjustment, and maintenance.

In this paper, according to the flexibility requirements of 2 m
mirror for flexible support under different working conditions
given in Ref. [22], an inverted tripod flexure is designed to alle-
viate the influence of the external load on the surface accuracy of
a 2 m primary mirror for space application. Based on the flexi-
bility calculation formula, the topology of a flexure is proposed,
and the closed-form compliance of the flexure is derived. The
parameter optimization method is used to optimize the flexible

Fig. 1. Exploded view of a pre-designed lightweight primary mirror
assembly showing the symmetries, invar sleeve, and gravity orientation.
For clarity, the rigid part of the flexure has been set to transparent.

support, and the structural parameters are determined. The
finite element analysis is performed to verify the comprehen-
sive performance of the primary mirror assembly. Finally, the
compliance of the designed flexure is tested.

2. MIRROR AND SUPPORT CONFIGURATION

In this study, a 2 m partially closed back monolithic, silicon car-
bide (SiC) primary mirror configuration is examined [22]. The
radius of curvature is 10.5 m, the supporting radius is 0.68 m,
the depth is 0.18 m, and the mass is 265 kg. To improve the ther-
mal stability, three invar sleeves, which have the same expansion
coefficient with SiC material, are bonded to the internal surface
of supporting holes using epoxy adhesive (GHJ-01(Z)) in a
120-degree interval. The primary mirror is supported by three
parallel flexures through the supporting holes located on its
back, as shown in Fig. 1; the material properties used in the pri-
mary mirror assembly are summarized in Table 1. The flexible
support may be regarded as a semi-kinematic design because it
has a finite contact area. Three-point support is commonly used
in the mirror support of space telescopes due to its simplicity
and effectiveness. As the primary mirror subassembly and the
telescope are tested and aligned with a horizontal optical axis,
the required self-weight distortions can be achieved by three-
point supports. Meanwhile, minimizing self-weight distortions
on flight mounts without gravity unloading using counter-
weights, airbags, or actuators introduces the least uncertainty
to test.

According to the type of external disturbance [23], a com-
prehensive surface figure (RMS) of 7.8 nm is decomposed into
5 nm for gravity effect, in which the distortion of a single mirror
is less than 4.5 nm, and the distortion of the support is not more
than 2.6 nm; The surface distortion caused by the assembly
error is less than 4 nm, which mainly refers to the surface accu-
racy degradation when the flatness error of the mounting surface
of the primary mirror assembly is 0.1 mm. When the temper-
ature changes 4◦C, 4.8 nm degradation of RMS is allowed, as
shown in Fig. 2.
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Table 1. Performance and Constraints of the Mirror Assembly under Different Operating Conditions

Material SiC (Mirror) Invar (Sleeve) Titanium (Flexure) Adhesive

Yong’s modulus (Mpa) 330 141 109 0.158
Poisson’s ration 0.25 0.25 0.29 0.49
Density (t/mm3) 3.05× 10−9 8.1× 10−9 4.4× 10−9 1.3× 10−9

Coefficient of thermal
expansion (/◦C)

2.5× 10−6 2.5× 10−6 9.1× 10−6 3× 10−3

Comprehensive surface figure (RMS)
7.8nm

Self-gravity
5nm

Assembly
4nm

Temperature
4.8nm

4 °C Temperature
variation

Support
2.6nm

Mirror
4.5nm

The non-coplanarity
of the mounting

surface is 0.1mm. 

Fig. 2. Schematic illustration of the performance metrics.

3. DESIGN OF FLEXIBLE SUPPORT BASED ON
FLEXIBILITY EQUATION

A. Topology Design of Flexible Support

Due to the requirement on the optical performance, the primary
mirror assembly must have the ability to be unaffected by envi-
ronmental influences. These environmental influences include
gravity, assembly error, and thermal change, under which exter-
nal loads are imposed on the mirror. The external loads degrade
the mirror surface accuracy and cause misalignment between
mirrors. The flexure is used to isolate external loads by passively
utilizing its own elastic deformation. Thus, the optical support-
ing performance of a flexure can be evaluated by the transmitted
loads to the mirror. The relationship between the displacements
at the free end and the transmitted loads can be formulated as
follows:

[
ux u y uz θx θy θz

]T
=C

[
Fx Fy Fz Mx My Mz

]T
, (1)

where Fn and un represent the force and linear displacement
along the three coordinate axes, respectively; Mn and θn

represent the bending moment and angular displacement
around the three coordinate axes, respectively, and C is the
flexibility matrix.

A few remarks will be made in the following regarding the
application of Eq. (1) to the analysis of the flexure. First, the
flexure mounting is composed of flexible strips and a rigid part
in which the flexible strips are much more flexible than its con-
necting parts; that is, the deflection due to shearing is negligible.
Secondly, the flexure strips are assumed to be homogeneous and
isotropic. Finally, the compliance matrix C is developed by uti-
lizing Castigliano’s displacement theorem, which is formulated
based on the strain energy stored through elastic deformations.
The compliance matrix C, which includes 10 independent
elements [24–26], is shown as follows:

C =


Cx−Fx 0 0 0 0 0

0 C y−Fy 0 0 0 C y−Mz

0 0 Cz−Fz 0 Cz−My 0
0 0 0 Cθx−Mx 0 0
0 0 Cθy−Fz 0 Cθy−My 0
0 Cθz−Fy 0 0 0 Cθz−Mz

 .

(2)
Flexible spherical joints can effectively ensure the mirror surface
accuracy and structural stability, and have high adaptability
to external environmental disturbances. The topology of the
flexible spherical joint adopts a multi-axis hinge combined with
a parallel tripod, as shown in Fig. 3(a). In order to improve the
stability of the flexible spherical joint, the traditional thin rod
structure is replaced by the spring structure with equivalent flex-
ibility, as shown in Fig. 3(b). In order to reduce the local thermal
stress caused by the mismatch of the linear expansion coefficient
between the invar cone sleeve and titanium alloy flexible sup-
port, the flexible moving pair shown in Fig. 3(c) is adopted. The
topology of flexible support is shown in Fig. 3(d). The flexible
part is composed of three legs, and each leg is composed of two
Hooke hinges (U) and a moving pair (P). In order to make the
rotation center of the flexible support (the zero moment point of
the flexible joint) coincide with the neutral plane of the mirror,

(a) (c)(b)

(d)

Fig. 3. Topology structure of the flexure support for the 2 m pri-
mary mirror. (a) Tripod spherical hinge with a wire flexure. (b) Tripod
spherical hinge with a blade flexure. (c) Translation flexure hinge.
(d) Topology structure of the flexure support for the 2 m primary
mirror.
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Fig. 4. Size of the basic compliant elements.

the inverted tripod structure is adopted. The rest of the structure
of flexible support is defined as the rigid part, which plays the
role of connection. The topology of the flexible support (3PUU)
can provide rotational flexibility and translational flexibility,
and it has high axial stiffness.

B. Flexibility Calculation Method

Due to the limited flexible support space and high axial stiffness
demand of the large-aperture mirror, the length and thickness
of the flexible element are similar, and the flexibility matrix
obtained by a direct derivation has a large error with the finite
element method. The flexibility matrix of the angular circular
flexure hinge was too complex to optimize the flexible support.
The fillet radius of the flexible support is far less than the length
of the flexible element, so the flexibility equation of the straight
beam hinge is adopted in this paper. The research shows that,
when the error between the calculation equation and the finite
element result is less than 10%, the calculation equation can be
used to guide the engineering design [27].

The flexible element of the flexible support is usually a
short beam, and the torsion and shear deformation should be
considered in the calculation. The structural dimensions and
coordinate system of the flexible unit are shown in Fig. 4. In
order to improve the calculation accuracy, the length of the
flexible element is corrected as

l = l0 − r , (3)

where l0 is the length of the flexible unit, and r is the fillet radius.
The relationship between the flexibility matrix of the straight

beam hinge and structural size is as follows:

R =

 cos(φ) cos(θ) cos(φ) sin(θ) sin(ψ)− sin(φ) cos(ψ) cos(φ) sin(θ) sin(ψ)+ sin(φ) sin(ψ)
sin(φ) cos(θ) sin(φ) sin(θ) sin(ψ)+ cos(φ) cos(ψ) sin(φ) sin(θ) cos(ψ)− cos(φ) sin(ψ)
− sin(θ) cos(θ) sin(ψ) cos(θ) cos(ψ)



S =

 0 −rz r y

rz 0 −rx

−r y rx 0

 . (8)

C =



l
E A 0 0 0 0 0
0 l3

3E Iz
+

fs l
G A 0 0 0 l2

2E Iz

0 0 l3

3E Iy
+

fs l
G A 0 −l2

2E Iy
0

0 0 0 l
G J 0 0

0 0 −l2

2E Iy
0 l

E Iy
0

0 l2

2E Iz
0 0 0 l

E Iz


, (4)

where E is the Young’s modulus of the material, A is the cross-
sectional area of the flexible unit, G is the shear modulus, f s is
the shear shape coefficient, and Iy , Iz, and J are the moments
of inertia and torsion constants. The specific values of each
parameter are

A=wt

G = E/(2(1+ ν))

Iy =wt3/12

Iz =w
3t/12

J =wt3(1/3− 0.21t/w(1− 1/12(t/w)4)), (5)

wherew and t are the width and thickness of the flexure hinge,
respectively.

The coordinate transformation method [28] is a general and
fully parameterized analysis method for flexible structures. As
shown in Fig. 5, if the flexibility matrix of the flexible element in
the local coordinate system Oi is Ci (the stiffness matrix is K i ),
the flexibility matrix can be transformed into the coordinate
system O j through a 6× 6 coordinate transformation matrix T.
The relationship between the flexibility matrix before and after
conversion is

C j = TCi TT ,

K j = T−T K i T−1
= T−TCi

−1T−1, (6)

where the superscript t is expressed as a transpose matrix, and the
coordinate transformation matrix can be expressed as

T =
[

R S R
0 R

]
, (7)

where R represents the rotation matrix of coordinate system Oi

relative to coordinate system O j , and S represents the movement
transformation matrix, and its expression is
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Fig. 5. Representation of compliance transformation.

Fig. 6. Combination structure of a tripod flexure with three
identical chains.

When the flexible elements are represented in the same
coordinate system, the flexibility of the series flexible structure
is equal to the sum of the flexibility of each element; that is,
C =

∑
i=1

Ti Ci TT
i . The stiffness of the parallel flexible struc-

ture is equal to the sum of the stiffness of each element; that is,
K =

∑
i=1

T−T
i K i T

−1
i .

C. Flexibility Calculation of Moving Pair

As shown in Fig. 6, OP is defined as the origin of the moving
pair coordinate system, which is located in the same plane as
the origin O of the global coordinate system, and the distance
between them is l3. Four parallel straight beam hinges form the
moving pair 1. According to Eq. (8), the matrix parameters for
converting the straight beam element coordinate system to the
moving sub-coordinate system are

T1 = T(−(l1 − l p)/2, wp/2, l2/2, 0, 0, 0)
T2 = T(−(l1 − l p)/2, wp/2,−l2/2, 0, 0, 0)
T3 = T((l1 − l p)/2, wp/2, l2/2, 0, 0,−π)
T4 = T((l1 − l p)/2, wp/2,−l2/2, 0, 0,−π)

, (9)

where l p and wp are the length and width of the straight beam
hinge, respectively.

According to Eq. (6), the flexibility of the moving pair in
hinge 1 is calculated as

C1P =

[
4∑

i=1

T−T
i C−1

i Ti
−1

]−1

. (10)

Similarly, the flexibility of the moving pair in hinges 2 and
3 is calculated, and the matrices of the three moving pair coor-
dinate systems converted to the global coordinate coefficients,
respectively, are

T1 = T(0, 0, l3, 0, 0, π/2)
T2 = T(0,−

√
3l3/2,−l3/2, 2π/3, 0, π/2)

T3 = T(0,
√

3l3/2,−l3/2,−2π/3, 0, π/2)
. (11)

The flexibility of the moving pair in the global coordinate
system is

C 0
iP = TCiPTT , (12)

where the superscript 0 represents the flexibility in the global
coordinate system.

D. Hooke Hinge Flexibility Calculation

O1 is defined as the origin of the rotating hinge in hinge 1, as
shown in Fig. 6. The angle between the hinge and the flexible
support axis is α, and the coordinates of X and Y in the global
coordinate system are H and R , respectively. Two flexible
Hooke hinges in hinge 1 are connected in a series, and each
Hooke hinge includes two straight beam units connected in a
series. According to Eq. (8), the transformation matrix parame-
ters from the straight beam element coordinate system to the O1

coordinate system are
T1 = T(0, 0, 0, 0, 0, 0)
T2 = T(−l4, 0, 0, π/2, 0, 0)
T3 = T(−l5, 0, 0, π/2, 0, 0)
T4 = T(−l6, 0, 0, π/2, 0, 0)

. (13)

According to Eq. (6), the flexibility of the two Hooke hinges
in hinge 1 can be calculated as

C1U =

4∑
i=1

Ti Ci Ti
T . (14)

Similarly, the flexibility of the hook hinges in hinge 2 and
branch chain 3 can be obtained. The transformation matrices
from the Hooke hinge coordinate system to global coordinate
system are

T1 = T(−h, 0, R, 0,−α, 0)
T2 = T(−h,−

√
3R/2,−R/2, 2π/3,−α, 0)

T3 = T(−h,
√

3R/2,−R/2,−2π/3,−α, 0)
. (15)

The flexibility of the two Hooke hinges in the branch chain in
the global coordinate system can be calculated as

C 0
iU = TCiUTT , (16)

where the superscript 0 represents the flexibility in the global
coordinate system.
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Fig. 7. Moment My 1 and displacement uz of the primary mirror
assembly under 1 g gravity with respect to the flexure parameters.

E. Flexibility Calculation and Analysis of Flexible
Support

Each hinge is composed of a moving pair and two Hooke hinges
in a series. The flexibility of a single hinge in the global coordi-
nate system can be calculated as

C 0
i =CiP +CiU. (17)

The three hinges of the flexible support are connected in
parallel, and the flexibility can be calculated as

C 0
=

[
3∑

i=1

[C 0
i ]
−1

]−1

. (18)

R = 46 mm, according to the diameter of the mirror support
hole. The thickness of the flange plate at the front end of the flex-
ible support is 15 mm, and h is 16 mm according to engineering
experience. Figure 6 shows the curve of the bending moment
My 1 [22] and rigid body displacement uz of the mirror under
the gravity condition with each parameter. When other param-
eters are fixed at the nominal value [29]. The nominal values of
flexure hinge thickness t , widthw, length l , and included angle
α are 4, 20, and 6 mm, and 60◦, respectively. Each parameter is
normalized in Fig. 7, and the range of actual values is shown in
the legend. The requirements of My 1 under the gravity condi-
tion are indicated by red arrows. Except for the included angle α
value being low, other parameter ranges meet the requirements,
as shown in Fig. 7(a). The greater the slope of the curve, the
greater is the influence of the parameters on the target. Included
angleα is the most sensitive parameter, and its tolerance needs to
be strictly controlled. The requirements of uz under the gravity
condition are indicated by a red arrow. Except for thickness t
and width w, other parameter ranges meet the requirements,
as shown in Fig. 7(b). Rigid body displacement uz is directly
proportional to the length l and inversely proportional to other
parameters.

Figure 8 shows the curve of the bending moment My 1 of
the mirror under the condition of the 0.1 mm assembly error
with each parameter, when other parameters are fixed at the
nominal value. The variation range of most parameters meets
the requirements of the bending moment, but the thickness
t should be small enough to meet the requirements. Figure 9
shows the curve ofβ with each parameter under the temperature
condition, when other parameters are fixed at the nominal value.
Except for the included angle α value being low, the variation
range of other parameters meets the requirements. Comparing

Fig. 8. Moment My 1 under a 0.1 mm assembly error with respect to
the flexure parameters.

Fig. 9. Ratio β under 4◦C temperature change with respect to
flexure parameters.

Figs. 7(a) and 9, it can be seen that the design parameters have
the same influence on the mirror bending moment My 1 under
the gravity condition and β under the temperature condition.
According to this characteristic, the two design objectives can be
combined in design and optimization.

In the vibration test, the mirror assembly will be excited in
three directions. The first-order frequency appears in the direc-
tion of maximum flexibility. By comparing the flexibility of the
first three columns of Eq. (2), the fundamental frequency of the
mirror assembly can be obtained. Figure 10 shows the curve of
the first-order translational frequency of the mirror assembly
with each parameter when other parameters are fixed at the
nominal value. As can be seen from Fig. 10, most parameter
ranges meet the requirements of frequency higher than 100 Hz,
but the thickness t and angle should be large enough to meet the
requirements.

4. PARAMETRIC DESIGN

There is an error between the closed flexibility equation and the
finite element method. The design accuracy can be improved by
using the finite element method. The flexible support parameter
optimization link built by the integrated optimization software
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Fig. 10. First natural frequency with respect to flexure parameters.

Fig. 11. iSIGHT linkage of flexure optimization.

iSIGHT is shown in Fig. 11. Integrate UG, HyperMesh, and
Optistruct software through sight, and set the variables listed in
Table 1 as the optimization variables. The specific optimization
process includes:

(1) Using C language to develop and compile the ugupdate.exe
program to update the UG parametric model and export
the Parasolid format model;

(2) Writing TCL script to call HyperMesh software to realize
geometric model import, geometric model cleaning, tet10
mesh drawing, material and element attribute distribution,
boundary conditions and load application, and finally
submit it to Opistruct software for a finite element analysis;

(3) According to the analysis results, iSIGHT calls the built-in
optimization strategy to complete multiple iterations.

After 120 iterations, the sensitivity, design space, and optimal
solution of each design variable to the target were obtained.
Through a sensitivity analysis, the sensitivity of each design
variable to the objective function is shown in Fig. 12. Table 2
shows the design parameter, value range, initial value, and
optimized value of each parameter after the optimization of
the flexibility calculation equation. The initial design value
is optimized according to the flexibility closure equation. It
can be seen from Table 1 that the changes of parameters before
and after the parameter optimization are small, which also
reflects the accuracy of the results of the flexibility calculation
equation.

Table 3 lists the objective function values of gravity, assembly
error, and temperature conditions before and after the param-
eter optimization. The optimal result obtained from the primary

Fig. 12. Contributions of the design parameters to the target
functions.

Table 2. Initial Values, Variation Range, and Optimal
Values

Optimization
Parameters

Initial
Value/mm

Variation
Range/mm

Optimal
Value/mm

Thickness t 4.5 4–6 5
Widthw 20 15–22 20
Length l 5 4–7 6
Included angleα 60◦ 50–65 60◦

mirror assembly is shown in Fig. 13. As shown in Fig. 13, there
is less astigmatism under the action of gravity. Astigmatism is
dominant under 0.1 mm forced displacement, while the surface
shape is dominated by trefoil astigmatism (similar to the form
of Zernike’s tenth term) under a temperature load. The design
error budget is satisfied simultaneously. Considering that the
different load cases are generally unrelated, the mirror surface
accuracy under the combination of the transmitted loads can be
calculated by the root sum square method. It can be seen from
Table 3 that the first-order frequency of the mirror assembly
reaches 129 Hz when the static design requirements are met.
The first three modes of the assembly are shown in Fig. 14.

5. FLEXIBILITY VERIFICATION AND DYNAMIC
PERFORMANCE ANALYSIS OF FLEXIBLE
SUPPORT

A. Flexibility Verification of Flexible Support

As the processing cycles of the 2 m the SiC primary mirror
is almost two years, the optical supporting performance of a
flexure can hardly be verified in advance. However, with the
presented method in this paper, the optical supporting perform-
ance can be estimated by testing the specific compliance of the
flexure. Then the static and dynamic requirements of the flexure
can be verified in advance.

In order to verify the accuracy of the flexible support design
and simulation, the flexibility of the flexible support was
measured experimentally. Figure 15 shows the translational
flexibility CZ−Fz test device of the flexible support. We place
the dynamometer with force output accuracy of 0.5N on the
three-dimensional adjustment frame to accurately control the
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Table 3. Comparison of Responses before and after Parameter Optimization

Load Cases Initial Optimal

Gravity
My 1 = 41482.1 N ·mm
RMS= 4.65 nm
uz1 = 12.4 µm

My 1 = 41123.7 N ·mm
RMS= 4.65 nm
uz1 = 12.6 µm

0.1 mm assembly error
My 1 = 1067.5 N ·mm
RMS= 3.56 nm

My 1 = 1028.5 N ·mm
RMS= 3.43 nm

4◦C temperature change

Fz1 = 596.3N
My 1 = 26753.2 N ·mm
β =

My 1

Fz1
= 44.8

RMS= 3.43 nm

Fz1 = 498.8N
My 1 = 22185.4 N ·mm
β =

My 1

Fz1
= 44.5

RMS= 3.4 nm
Frequency 130 Hz 129 Hz

Fig. 13. Optimum result under three load cases. (a) 1 g gravity,
(b) 0.1 mm assembly error, and (c) 4◦C temperature change.

Fig. 14. Modal analysis result of the primary mirror assembly.
(a) f1 = 129.3, (b) f2 = 136.0, and (c) f3 = 136.1 Hz.

position of force application. First, we move the adjusting frame
left and right to make the dynamometer output a force of 100N,
and use the dial indicator to measure the translation of the flexi-
ble support end face many times. In order to verify the isotropy
of the support, we remove the support from the tooling, rotate
it 46 ◦ around the support axis (the rotation angle is related to
the position of the screw hole at the constraint end of the flexible
support), connect it with the tooling again, and measure the
translation amount of the support under 100N force many
times.

Figure 16 shows the rotating flexibility Cθy−Fz test device of
the flexible support. We paste a small plane mirror on the end
face of the flexible support, move the adjusting frame to make
the dynamometer output a force of 100N, and measure the
angle change of the plane mirror before and after the force was
applied by Leica theodolite many times. Figure 17 shows the
rotating flexibility Cθy−My test device of the flexible support.
We apply 100N thrust and tension simultaneously through two
identical dynamometers. Leica theodolite is used to measure the
angle change of the plane mirror before and after the bending
moment was applied many times. The flexibility measurement
results are shown in Table 4. Comparing the simulation analysis

Fig. 15. Measuring device for translational compliance CZ−Fz .

Fig. 16. Measuring device for rotational compliance Cθy−Fz .

results with the experimental results, the measurement errors
of CZ−Fz , Cθy−Fz ,Cθy−My are all within 5%. The flexibility
measurement results of the flexible support before and after the
rotation angle are consistent, indicating that the flexible joint is
isotropic. Table 5 shows the flexibility measurement results of
the three flexible supports under the same state. The consistency
of the three flexible supports is good.

B. Dynamic Performance Analysis of Flexible
Support

When considering the dynamic performance of the flexible
support, it is required that the dynamic stress must be less than
the micro-yield strength of the material to ensure the structural
stability of the mirror assembly. Otherwise, the flexible support
may be permanently deformed, which will change the relative
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Fig. 17. Measuring device for rotational compliance Cθy−My .

Table 4. Initial Values, Variation Range, and Optimum
Values

Optimization
Test

Location
Simulation

Result
Experimental

Result Error

Flexibility
CZ−Fz

0◦ 0.165 mm 0.158 mm 4.43%
46◦ 0.165 mm 0.157 mm 5.1%

Flexibility
Cθy−Fz

0◦ 248.8′′ 244′′ 2%
46◦ 248.8′′ 241′′ 3.24%

Flexibility
Cθy−My

0◦ 226.6′′ 221.5′′ 2.3%

Table 5. Comparison of Compliance Measurement
Results between Three Flexures

Material
Test

Location 1# 2# 3#

Flexibility
Cz−Fz

0◦ 0.158 mm 0.158 mm 0.159 mm

Flexibility
Cθy−Fz

0◦ 244′′ 242′′ 241′′

position between the mirror components and affect the optical
performance. We have verified the dynamic performance of the
flexible support through a simulation analysis. Table 6 shows the
excitation conditions of sinusoidal vibration, and the damping
ratio is 0.03 based on engineering experience. The simulation
analysis results of the primary mirror assembly in the X, Y, and
Z directions are shown in Figs. 18(a)–18(c), respectively. The
translational mode of the flexible support in the X direction is in
the frequency band greater than 130 Hz, and the stress value in
this frequency band increases exponentially. The upper bound-
ary of the frequency of sine sweep is 100 Hz. At this time, the
maximum stress of the flexible support in X, Y, and Z directions
is 161.8, 240.2, and 242.3 Mpa respectively. The maximum
stress points in three directions are located at the spring of the
flexible support. The material of the flexible support is TC17,
and the micro-yield stress is 672 Mpa (1120 Mpa× 60%).

Fig. 18. Stress response of 2 m (PM) assembly under sinusoidal
vibration in X/Y/Z directions.

Table 7. Summary of Measured Performance of
Single Zernike Term

Loading
Direction X/Y/Z

Frequency range
(Hz)

10–50 50–800 50–800

Magnitude 0–p 3 dB/oct 0.032 g2/Hz 0.032 g2/Hz
RMS acceleration
value

6.34 g

Duration 2 min

The results of the sinusoidal analysis show that the flexible
supporting structure will not be deformed or destroyed. It meets
engineering requirements.

Typically, the “3σ ” criterion is used as the evaluation standard
of random vibration response according to engineering experi-
ence. It assumes that the Gaussian distribution contains 99.7%
of the response. The excitation conditions of random vibration
are shown in Table 7. The random stress of the flexible support
and the mirror surface node are shown in Figs. 19(a)–19(c). The
maximum random stresses in X, Y, and Z directions are 455.7,
326.7, and 286.2 Mpa, respectively, and all the maximum stress
points are located at the flexible support spring. The simulation
results of random vibration show that the flexible support meets
the engineering requirements.

6. CONCLUSION

Based on the back three-point support theory, an inverted tripod
flexible support structure applied to a 2 m space primary mirror
is proposed in this paper. First, according to the requirements of
a 2 m primary mirror for flexible support flexibility, the 3PUU

Table 6. Summary of Measured Performance of Single Zernike Term

Loading
Direction X Y/Z

Frequency range 4–9 9–18 18–36 36–100 4–10 10–32 32–100
Amplitude 0–p 16.7 mm 5.4 g 7.2 g 5.4 g 18.0 mm 7.2 g 5.4 g
Load scan rate 2 oct/min
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Fig. 19. Random vibration of PM assembly along X/Y/Z axes.

parallel flexible support topology was established. This structure
can effectively release the rotational freedom, provide a certain
translational flexibility, and yield high axial stiffness. According
to the fast optimization model, the flexibility closed equation
derivation and parameter optimization of 3PUU parallel flexi-
ble support were carried out. After the parameter optimization,
the surface shape error and rigid body displacement under the
horizontal gravity condition of the optical axis were 4.65 nm and
12.6 µm, respectively. The surface shape errors under a 0.1 mm
assembly error condition and 4◦C temperature condition were
3.43 and 3.4 nm, respectively. The first-order frequency of the
mirror assembly reaches 129 Hz. The design results meet the
design index requirements. The simulation results further verify
the correctness of the flexibility equation. The flexibility char-
acteristics of the flexible support were verified by the flexibility
measurement test of the flexible support. With our method,
the mirror design and flexure design were decoupled, and the
independent evaluation of flexible support performance was
realized.
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