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Featured Application: The drive and deployment unit of the variable diameter internal drive de-
vice described in this paper is primarily intended for use in space deployment structures. This in-
novative mechanism is expected to serve as a potential deployment mechanism for large-aperture
space telescopes, providing the capability to explore distant deep space.

Abstract: The limitations associated with traditional screw-based and cable-based deployment
mechanisms for space deployable structures, such as deployment stiffness, accuracy, and distance,
are effectively overcome by introducing the concept of a variable diameter internal drive device. To
enhance stability during the discontinuous surface transition phase inside the tubular structure, a thin-
walled flexible beam structure is adopted for the driving deployment unit. The analysis employs the
spatial absolute nodal coordinate formulation, integrating the pose states of each node into the global
coordinate system. The three-dimensional displacement field and rotational angle changes at different
time intervals are obtained using the unit shape function matrix and Kirchhoff theory. Subsequently,
a dynamic model of the corresponding spatial nodes is established using the virtual work principle.
This significant improvement enhances the dynamic characteristics of the coupled rigid-flexible
deformation of the driving deployment unit under radial and axial external forces, surpassing the
previously used flexible beam structure. The dynamic simulation analysis is performed using the
finite element method and validated through experimental tests. The experimental results confirm
the driving deployment unit’s stability and successful achievement of the desired functionalities, as
demonstrated by the endpoint displacement, three-dimensional centroid displacement, and trajectory
rotation angle.

Keywords: variable diameter internal drive device; flexible beam structure; thin-walled flexible beam
structure; absolute nodal coordinate formulation; driving deployment unit

1. Introduction

According to the 125 most challenging scientific questions published by Science in
2005, 16% of the issues are related to the universe and Earth, with the top question being the
composition of the universe. Space telescopes are indispensable tools for human perception
and exploration of the universe; however, they are currently limited by launch space and are
transitioning from monolithic to modular research. As a result, space deployable structures
play a crucial role in modular space telescopes. These telescopes are typically designed to
undergo a process from a compact stowed configuration to full deployment through space
deployable mechanisms [1–6]. Over the past few decades, various driving techniques have
been employed to enhance the deployment capabilities of space deployable mechanisms,
including hinged, thin-walled tubular, cylindrical, and wrapped configurations [7–9].
However, the tubular space deployable mechanism exhibits more prominent capabilities
in terms of deployment stiffness, strength, and accuracy. Notably, the Telescopic Tube
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Mast (TTM) developed by Northrop Grumman for the ISIS (Inflatable Sunshield In Space)
system achieved a fully extended length of 6.70 m [10]. Mechanical analysis conducted by
Mehran Mobrem et al. on the deployment and retraction of TTM, as shown in Figure 1b,
demonstrated that its stiffness and frequencies were better suited for space applications
compared to other space deployable mechanisms [11]. Additionally, Fengwei Guan et al.
investigated the TTM in the sunshield deployment mechanism of a space telescope and
simulated its structural status under axial loads in space, proving that the 8 m long TTM
could stably move under a 50 N axial load [12]. However, current fixed-drive devices
(screw-nut or cable-driven) used in the TTM result in a short deployment distance and a
heavy mass [13–15]. To address this issue, a three-dimensional structure called the variable
radial internal drive device (Figure 2) was developed to achieve step-by-step deployment
with a smaller mass for the tubular structure while maximizing the extension distance.
The effective and stable transition between the non-continuous surfaces at different stages
within the tubular structure is currently a critical technical challenge that needs to be
addressed to ensure the successful deployment of space telescopes. To overcome this
challenge, conducting a flexible multibody dynamics analysis on the non-continuous
surfaces during the transitional phase of the variable radial internal drive device is of
utmost importance, as it will provide valuable insights into the behavior and reliability of
the system.
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In recent years, researchers both domestically and internationally have extensively stud-
ied the flexible multibody dynamics analysis of structures with thin-walled characteristics or
flexible beam structures, due to their importance in various engineering applications. These
structures often exhibit complex deformations and require accurate analysis methods to un-
derstand their behavior. The earliest approach used the Kane’s Equations of Motion (KED)
method [16] to address flexible multibody dynamics. However, this method neglected the
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effects of elastic components’ motion within their range and gradually revealed limitations in
the analysis of coupled fields. To overcome these limitations, the Floating Frame of Reference
method (FFR) [17] was proposed, introducing inertial coupling between the motion of rigid
components and elastic deformation. However, the nonlinearity of its system matrix signif-
icantly impacts the solution of dynamic equations [18,19], leading to reduced accuracy in
solving deformation problems. To address these issues, Shabana proposed the absolute nodal
coordinate formulation (ANCF) [20,21] based on finite element and continuum mechanics
theories. In ANCF, the nodal coordinates of elements are represented by position vectors and
slope vectors, instead of the traditional nodal angular coordinates used in finite elements.
Additionally, ANCF derives a constant mass matrix, and its system dynamic equations do
not include Coriolis and centrifugal force terms, which improves computational efficiency.
Therefore, these advantages make the absolute nodal coordinate formulation more suitable
for flexible multibody systems compared to other traditional methods.

Zhang Dayu from Northwestern Polytechnical University [22] conducted in-depth re-
search on flexible beam structures using the absolute nodal coordinate formulation (ANCF).
The study focused on modeling flexible beams, numerical solutions of the differential-
algebraic equations for multibody systems, and applications. The research proposed a
novel multibody system modeling method that considers pin joints, effectively addressing
the rigid-flexible coupling dynamics problem in spacecraft solar panels and flexible caterpil-
lar tracks with pin joints. Li Boyu [23] aimed to address the numerical simulation issues of
slender thin-walled beams with different cross-sectional shapes under large rotations and
deformations. Within the framework of the absolute nodal coordinate formulation, a new
method was proposed, employing Lagrange interpolation to construct the displacement
field of thin-walled beam cross-sections. Lin Shiyang from Harbin Institute of Technol-
ogy [24] conducted research on dynamic modeling, analysis, and motion control of typical
flexible attachments in spacecraft, such as large trusses and robotic arms, based on the
absolute nodal coordinate formulation. The study validated the applicability of the abso-
lute nodal coordinate formulation in modeling flexible components, providing valuable
insights into the behavior of such structures. Wu Maoqi and colleagues [25] developed a
more accurate deformation reconstruction method based on the absolute nodal coordinate
formulation, allowing for further extension in the application direction using existing
mechanical tools. The method was optimized using a planar beam as an example, and
the results demonstrated that the absolute nodal coordinate formulation is beneficial for
improving optimization accuracy and efficiency.

Kai Luo and colleagues [26] proposed a new formulation of the absolute nodal coordi-
nate formulation (ANCF) for hyperelastic thin shell finite elements based on the Kirchhoff–
Love theory. The study derived the two-dimensional compressible Neo-Hookean constitu-
tive model and the two-dimensional incompressible Mooney–Rivlin constitutive model for
ANCF shell elements under plane stress conditions. Additionally, they utilized continuum
mechanics to derive efficient analytical formulas for the internal forces and their Jacobians
within the shell element, enhancing the understanding and analysis of hyperelastic thin
shell structures. Qingjun Li and colleagues [27] presented a unified modeling method for
large-scale flexible space structures based on the absolute nodal coordinate formulation.
By employing Kronecker products to express various ANCF element shape functions in a
unified form, the study derived motion equations through the Hamilton’s principle. This
approach provides a versatile and systematic approach to modeling large-scale flexible
structures, aiding in their design and analysis. Cheng Zhang and colleagues [28] proposed
a mechanical analysis model suitable for flexible structures based on the absolute nodal
coordinate formulation. By using gradient coordinates instead of traditional angular coor-
dinates in the global coordinate system, they established a mapping relationship between
parameters in the current configuration and the reference configuration. This method offers
an effective means to analyze the behavior of flexible structures under different loading
conditions. Astrid Pechstein and colleagues [29] applied the absolute nodal coordinate for-
mulation to beam structures and derived motion equations for axial motion beams based on
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the generalized Lagrange equations in the Lagrange–Euler sense. This research contributes
to the understanding of the dynamic behavior of beams and their applications in various
engineering systems. Gengxiang Wang [30] treated the dynamic platform of a parallel
mechanism as a thin plate element based on the absolute nodal coordinate formulation.
By employing the elastic middle surface method, they effectively reduced high-frequency
vibration modes, improving the stability and performance of the dynamic platform. The
introduction of tangent coordinates to define joint coordinate systems further enhanced the
modeling and analysis of flexible-rigid coupled systems. Jingchen Hu and colleagues [31]
proposed a recursive algorithm based on the absolute nodal coordinate formulation for
dynamic analysis of multi-flexible-body systems with nonlinear large deformations. By
describing flexible bodies using ANCF and establishing kinematic and dynamic recur-
sive relationships based on the Articulated Body Algorithm (ABA), the study provides a
powerful and efficient method for analyzing complex flexible multibody systems. Yang
Dan and colleagues [32] developed a new combined element model based on the absolute
nodal coordinate formulation, which derived consistent deformation conditions for two
thin plate contact interfaces. This study contributes to the accurate and reliable modeling
of contact interactions in thin plate structures, making it valuable for various engineering
applications. Fangfang Sheng and colleagues [33] introduced a new model based on the
absolute nodal coordinate formulation using the gradient method. By applying this model
to nonlinear dynamic analysis of elastic line structures under tension and deformation con-
ditions, the study demonstrated good accuracy and computational efficiency in obtaining
results, providing a promising approach for analyzing complex line structures.

Based on extensive research conducted by domestic and international scholars on flexible
beam structures or thin-walled flexible beam structures, it has been found that the use of the
absolute nodal coordinate formulation (ANCF) offers significant advantages over other flexible
multibody dynamic analysis methods in terms of computational accuracy and cost. However,
there is limited literature on the application of spatial ANCF for the dynamic analysis of
the parallel triangular configuration of thin-walled flexible beam structures, especially in the
context of inner-drive unit components of deployable cylindrical structures. To address this
gap, this paper first constructs a flexible multibody dynamic analysis model for the inner-drive
unit of a deployable cylindrical structure based on the spatial ANCF. This model analyzes the
motion states of the driving deployment unit and dynamically models the parallel triangular
configuration of the thin-walled flexible beam structure using ANCF. The proposed planar
triangular element configuration, with its unique design, aims to enhance the adaptability
of the coupled rigid-flexible structure within the deployable cylindrical structure of a space
telescope when subjected to radial and axial external forces. By superimposing this coupled
rigid-flexible structure in spatial orientation, a parallel configuration is formed, ensuring
structural integrity during deployment. To validate the proposed model and assess its
performance, finite element analysis is employed to simulate and analyze a virtual prototype.
Subsequently, a 1:1 experimental prototype is established to conduct stability tests on the
driving deployment unit. This enables the realization of both the driving and stowing
functions of the thin-walled flexible beam structure with the triangular configuration within
the deployable cylindrical structure while maintaining more stable structural characteristics.

The paper is structured as follows: Section 2 focuses on analyzing the motion states of
the space structure. We then proceed with the establishment of displacement fields for both
the flexible beam structure and the thin-walled flexible beam structure. Next, we delve
into the dynamic equations for the thin-walled flexible beam structure, followed by the
dynamic equations for the triangular configuration and the parallel structure system. We
also perform trajectory fitting for the axial deployment within the deployable cylindrical
structure using node displacement and node velocity calibration. Moving on to Section 3,
we employ the finite element analysis method to capture the pose variations of the driving
deployment unit at different time points. Additionally, we establish an explicit dynamic
coupling field under the pre-tensioned state. Section 4 involves the construction of a test
prototype, enabling us to conduct stability tests on the driving deployment unit. Lastly, in
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Section 5, we provide a comprehensive summary of the entire paper and offer insights into
the scope of future work.

2. Methods
2.1. Motion Analysis of the Driving Deployment Unit

The inner-drive unit within the deployable cylindrical structure of a space telescope
plays a critical role in achieving both axial deployment and radial pre-tensioning capabilities
for motion deployment and stowing functions. This deployable cylindrical structure is
an essential part of a space telescope, enabling its optical components to be precisely
positioned at designated locations. Figure 3 illustrates the driving deployment unit, which
is distributed within the inner-drive unit. This unit is responsible for driving the axial
deployment of the inner-drive unit inside the cylindrical structure, sequentially expanding
each level of the cylindrical tube to facilitate the positioning of optical components at the
end of the third-level cylindrical tube.
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In Figure 4, we present a simplified model of the driving deployment unit in the XOY
coordinate system. Point A denotes the rotation point, while Point B serves as the pre-
tensioning point providing radial pre-tensioning load. Point C represents the connection
point between the driving arm component and the pre-tensioning component, and finally,
Point D is the contact point between the driving deployment unit and the inner wall of the
cylindrical structure.
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When the driving and retracting unit is working inside the sleeve, the driving force
provides traction Fq; the pre tightening component provides the radial pre tightening force
Fy; the reaction force Ft is formed on the inner wall of the sleeve; a reverse friction force
Fj is formed between the traction force Fq and the inner wall of the sleeve; when working,
it is subject to the gravity of the earth G. According to the force analysis when driving
the retracting unit, with the decrease of sleeve diameter, point A rotates clockwise, and
the included angle β reduce. If the length of L1 between two points AB is unchanged, the
included angle α will also decrease. If the included angle is maintained α, the length of
L2 needs to be adjusted. In order to maintain a stable triangular configuration ABC, L1,
L2, and L3 are set as variable beam elements to cope with the force changes caused by the
change of sleeve diameter and maintain the stability of the driving retraction process.

2.2. The Spatial Nodal Dynamic Description of the Thin-Walled Flexible Beam Structure

To achieve both driving and pre-tensioning functions, the inner-drive unit must
withstand significant axial forces and bear strong bending moments. Therefore, we have
opted to replace each rod element with beam elements, utilizing a triangular element
structure. By maintaining the coupled rigid-flexible state of the inner-drive unit and
considering the thin-walled characteristics of internal components, we conduct analyses on
each flexible beam structure using a thin-walled configuration.

To achieve smooth inter-stage transitions within the inner-drive unit of the deployable
cylindrical structure of a space telescope and effectively suppress nonlinear vibrations
among internal components, conducting motion-elastic dynamic analysis of the triangular
configuration of the thin-walled flexible beam structure is of utmost importance. As
discussed in Section 1, the absolute nodal coordinate formulation (ANCF) is based on
finite element and continuum mechanics theories, providing a more accurate description
of structural self-rotation and deformation under external forces. To provide a clearer
explanation of the dynamic analysis of the thin-walled flexible beam structure using the
absolute nodal coordinate formulation (ANCF), we establish a unit nodal matrix based
on the flexible beam structure and then discretize the matrix. Furthermore, we extract
the position vectors of the mid-surface, forming a collection of position vectors for any
point on the mid-surface of the thin-walled flexible beam structure. By utilizing the strain
and curvature of the unit, we transform the unit mass matrix to obtain the unit dynamic
equations. Moreover, we obtain the generalized external forces using the principle of virtual
work and introduce them into structures with different configurations and morphologies.
During this process, we transform the unit mass matrix of the thin-walled flexible beam
element to derive the corresponding unit mass matrix. Finally, by constructing the dynamic
equations, we can obtain node velocities and node displacements. The specific process is
illustrated in Figure 5.

2.2.1. Analysis of the Displacement Field in the Flexible Beam Structure

The global position vector r of any point on the space absolute coordinate flexible
beam element can be described by the global shape function [34,35] and the absolute node
coordinates of the element as follows:

r = S(x, y, z)e (1)

where: S is the element shape function matrix; x, y, z are the position coordinates of nodes in
the global coordinate system; e is the absolute node coordinate vector, which is represented
by the node displacement vector and slope vector. Figure 6 shows the change of the global
position vector r.
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Difference polynomial of displacement field of this element:

r =

r1
r2
r3

 =

a0 + a1x + a2y + a3z + a4xy + a5xz + a6x2 + a7x3

b0 + b1x + b2y + b3z + b4xy + b5xz + b6x2 + b7x3

c0 + c1x + c2y + c3z + c4xy + c5xz + c6x2 + c7x3

 (2)

The displacement vector and gradient vector in node coordinates can be obtained through
rigid body motion from the undeformed reference configuration. The three-dimensional beam
element with absolute node coordinates is an isoparametric element [36,37]. Each element
consists of 2 nodes, and each node has 12 node coordinates. When the beam element
is undeformed, its length is denoted by “l”. The absolute node coordinate vector of the
element can be expressed as follows:

e =
[
ri ri,x ri,y ri,z rj rj,x rj,y rj,z

]T (3)

where: ri and rj are the absolute position vectors of node k on unit j; r,x, r,y, and r,z are the
partial derivative vectors of element nodes i and j in the x, y, and z directions, respectively,
which are used to describe the deformation of the beam cross-section in this direction.
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r,x = ∂r/∂x,r,y = ∂r/∂y.r,z = ∂r/∂z. Thus, the overall node coordinate vector of the
element can be written as:

e =
[
ri1, ri2, ri3, ∂ri1

∂x , ∂ri2
∂x , ∂ri3

∂x , ∂ri1
∂y , ∂ri2

∂y , ∂ri3
∂y , ∂ri1

∂z , ∂ri2
∂z , ∂ri3

∂z

rj1, rj2, rj3,
∂rj1
∂x ,

∂rj2
∂x ,

∂rj3
∂x ,

∂rj1
∂y ,

∂rj2
∂y ,

∂rj3
∂y ,

∂rj1
∂z ,

∂rj2
∂z ,

∂rj3
∂z

] (4)

It can be observed that each beam element has 24 node coordinates, which is also
a disadvantage of the absolute node coordinates method. The large number of node
coordinates results in reduced calculation efficiency.

The element shape function matrix can be defined using the element interpolation
polynomial and node coordinates:

S =
[
S1 I S2 I S3 I S4 I S5 I S6 I S7 I S8 I

]
(5)

where matrix I is a 3 × 3 order identity matrix:

S1 = 1− 3ξ2 + 2ξ3, S2 = l(ξ − 2ξ2 + ξ3)
S3 = l(η − ξη), S4 = l(ζ − ξζ)
S5 = 3ξ2 − 2ξ3, S6 = l(−ξ2 + ξ3)
S7 = lξη, S8 = lξζ)

(6)

Including: ξ, η, and ζ are dimensionless parameter; ξ = x/l, η = y/l, ζ = z/l, l is the
length of the beam element in the undeformed configuration.

2.2.2. Analysis of the Displacement Field in the Thin-Walled Flexible Beam Structure

Building upon the flexible beam structure, we conduct a displacement field analysis
for the flexible beam with thin-walled characteristics. The primary objective is to achieve
both driving transmission and pre-tensioning transmission while maintaining lightweight
characteristics. In contrast to the displacement field analysis of the flexible beam structure
in the previous Section 2.2.1, this section employs the middle surface characteristics to more
accurately describe the displacement field variation of the flexible beam structure with
thin-walled characteristics. To better illustrate the concept, Figure 7 illustrates a schematic
diagram of the thin-walled flexible beam structure.
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As shown in Figure 4, since the wall thickness h of the thin-walled flexible beam
element is much smaller than the section width w, according to Kirchhoff’s thin plate
theory, the displacement field of the thin-walled flexible beam element can be determined
from its midplane. In the global coordinate system, the displacement field of the position
vector r of any point on the middle plane of the thin-walled flexible beam element at time t
is given by the following Equation (7):

r(x, y, t) =
n

∑
k=0

rk(x, t)Lk,n(y) (7)
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where: rk is the k-th axis of the middle plane. The k-th axis in the thin-walled beam
element can be expressed by the absolute node coordinate method under three-dimensional
coordinates as follows:

rk(x, t) = S(x)ek(t) (8)

where: rk(x, t) is the function of the parameter x and time t in the local coordinates, where
S(x) is still the shape function matrix, and ek(t) is the value of the node coordinate matrix
of the k-th axis at time t. Where ek(t) is:

ek =

[
rT

k

∣∣∣
x=0

∂rT
k

∂x

∣∣∣∣∣
x=0

rT
k

∣∣∣∣∣
x=l

∂rT
k

∂x

∣∣∣∣∣
x=l

]T

(9)

In the formula, T is the transposition and l is the length of the thin-walled flexible
beam element. In Formula (7), the basis function Lk,n defines the corresponding centerline
on the middle plane of the thin-walled flexible beam element, which is a function of the
local coordinate parameter y. The interpolation form of basis function Lk,n is:

Lk,n =
n

∏
i=0
i 6=k

(y− yi)

(yk − yi)
(10)

where: yi is the node coordinate of the i-th axis. Through the above displacement field of
thin-walled flexible beam element, for different n-order Lagrangian interpolation, there
is corresponding thin-walled flexible beam element model Ln, and the coordinate q of the
element node is:

q =
[
eT

0 eT
1 · · · eT

n
]

(11)

The unit shape function is:

N(x, y) =
[
L0,n(y)S(x)L1,n(y)S(x) · · · Ln,n(y)S(x)

]
(12)

Through Equations (11) and (12), the position vector of any point on the middle plane
of the thin-walled flexible beam element is:

r(x, y, t) = N(x, y)q(t) (13)

2.2.3. The Dynamic Equations of the Thin-Walled Flexible Beam Structure

First, derivative of time t of Equation (13) can be used to obtain the element kinetic
energy expression of thin-walled flexible beam element:

T =
1
2

ρh
∫ w

0

∫ l

0
qTqdxdy =

1
2

qT Mq (14)

where: ρ is the mass density, h is the thickness, q is the coordinates of element nodes, M is
the element mass matrix, and the element mass matrix is:

M& =
∫
V

ρST · SdV

13
35 mI 11

210 lmI 7
20 ρlQzI 7

20 ρlQyI 9
70 mI − 13

420 lmI 3
20 ρlQzI 3

20 ρlQyI

1
105 l2mI 1

20 ρl2QzI 1
20 ρl2QyI 13

420 lmI − 1
140 l2mI 1

30 ρl2QzI 1
30 ρl2QyI

1
3 ρllzzI 1

3 ρllyzI 3
20 ρlQzI − 1

30 ρl2QzI 1
6 ρl IzzI 1

6 ρllyzI

1
3 ρllyyI 3

20 ρlQyI 1
30 ρl2QyI 1

6 ρllyzI 1
6 ρllyyI

13
35 mI − 11

210 lmI 7
20 ρlQzI 7

20 ρlQyI

1
105 l2mI − 1

20 ρl2QzI − 1
20 ρl2QyI

1
3 ρl IzzI 1

3 ρIyzI

1
3 ρIyyI



(15)
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Strain energy of thin-walled flexible beam element:

U = Uε + Uκ (16)

where, Uε is the membrane strain energy caused by the tension, compression, and other
deformation of the middle surface of the thin-walled beam element [38], and Uκ is the
bending strain energy caused by the bending and torsional deformation of the thin-walled
beam element. They are:

Ue =
Eh

2(1− v2)

w∫
0

1∫
0

ε2
x + ε2

y + 2vεxεy +
1
2
(1− v)γ2

xydxdy (17)

Uκ =
Eh3

24(1− v2)

w∫
0

l∫
0

κ2
x + κ2

y + 2vκxκy + 2(1− v)κ2
xydxdy (18)

where, E is Young’s modulus and v is Poisson’s ratio. The strain and curvature are:

εx =
1
2

(
rT

x rx − 1
)

, εy =
1
2

(
rT

y ry − 1
)

, γxy = rT
x ry (19)

κx =
rT

xxn
‖ n ‖3 , κy =

rT
yyn

‖ n ‖3 , κxy =
rT

xyn

‖ n ‖3 (20)

where: r is the partial derivative of x or y, and n = rx × ry is the normal vector of the mid
plane of the thin-walled flexible beam element.

Further obtaining the dynamic equations of the thin-walled flexible beam structure,
we can derive them using the Lagrangian equation [39,40] as shown in Formula (21).

d
dt

(
∂T
∂

.
q

)
− ∂T

∂q
+

∂U
∂q

= F (21)

where: T is the kinetic energy, U is the strain energy, and F is the generalized external force
derived from the virtual work of the external force [41,42].

2.2.4. The Dynamic Equations of the Triangular Configuration

Through the dynamic derivation of the thin-walled flexible beam element in the
previous section, to solve the dynamic equation of the triangular configuration of thin-
walled flexible beam element combination, first, suppose that each cross section area is
A1, A2, A3, each length is l1, l2, l3, and the material is the same material, so the density is
ρ, I is the order 3× 3 unit matrix, and the first and second moments of the cross section
are, respectively: 

Qy1 =
∫

A1
zdA1, Qy2 =

∫
A2

zdA2, Qy3 =
∫

A3
zdA3

Qz1 =
∫

A1
ydA1, Qz2 =

∫
A2

ydA2, Qz3 =
∫

A3
ydA3

Iyy1 =
∫

A1
z2dA1, Iyy2 =

∫
A2

z2dA2, Iyy3 =
∫

A3
z2dA3

Izz1 =
∫

A1
y2dA1, Izz2 =

∫
A2

y2dA2, Izz3 =
∫

A3
y2dA3

Iyz1 =
∫

A1
yzdA1, Iyz2 =

∫
A2

yzdA2, Iyz3 =
∫

A3
yzdA3

(22)

Substitute the parameters in Equation (22) into Equation (15), where l is replaced
by l1, l2, l3, and the kinetic energy and strain energy of the system are obtained through
Equations (14) and (16). The system dynamics equation can be established by using the tra-
ditional finite element assembly method. For the unit mass matrix obtained by substituting
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Equation (22) into Equation (15), use the direct integration method to solve the dynamic
equation [43], as follows:

Mv
..
qt = Q−KABt−∆t (23)

where, Mv is the equivalent mass matrix,Q = QFA + QgA

Mv = MA +
∆t2

6
KA (24)

Bt−∆t = qt−∆t + ∆t
·
qt−∆t +

∆t2

3
..
qt−∆t (25)

Then, multiply the left and right ends of Equation (23) by the inverse matrix M−1
v of

the equivalent mass matrix to get.

..
qt = M−1

v (Qt −KBt−∆t) (26)

After obtaining node acceleration
··
qt at time t, node velocity and node displacement

can be calculated by the following formula:

·
qt =

·
qt−∆t +

∆t
2
··
qt−∆t +

∆t
2
··
qt (27)

qt = qt−∆t + ∆t
·
qt−∆t +

∆t2

2
··
qt−∆t +

∆t2

6
··
qt (28)

2.3. The Dynamic Fitting of the Parallel Configuration

To effectively enhance stability, we arrange the thin-walled flexible beam structures in
parallel within the spatial telescope tube, forming a parallel configuration and constituting
the variable-radius internal driving device, as illustrated in Figure 8.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 28 
 

2.3. The Dynamic Fitting of the Parallel Configuration 
To effectively enhance stability, we arrange the thin-walled flexible beam structures 

in parallel within the spatial telescope tube, forming a parallel configuration and consti-
tuting the variable-radius internal driving device, as illustrated in Figure 8. 

 
Figure 8. Schematic diagram of the parallel symmetrical structure. 

To achieve the sequential expansion and driving functions of each level of the spa-
tial telescope tube, we employ a dual-layer symmetrical structure with an angle of 120°. 
This is accomplished using six identical thin-walled flexible beam triangular unit con-
figurations, as shown in Figure 9, which represents the overall model of the thin-walled 
flexible beam triangular units. Additionally, from Figure 8, it can be observed that the 
upper and lower layers of the structure consist of thin-walled flexible beam triangular 
units on the same side, forming a new triangular configuration that constitutes one-third 
of the overall variable-radius internal driving device structure. As the variable-radius 
internal driving device is axially symmetrical, we take a partial structure as an example 
to derive the kinematics of the parallel configuration of the driving expansion units. 

 
Figure 9. Overall configuration of the triangular element. 

Taking the dynamic equation in Section 2.2 as an example, the new triangular con-
figuration is further deduced. The section of the longest thin-walled flexible beam ele-
ment with the same triangular configuration of the upper and lower thin-walled flexible 
beams is set as A4 and A5. The length is 𝑙𝑙4 and 𝑙𝑙5, and the material density is ρ , 
which are respectively substituted into Formula (22) to form: 

Figure 8. Schematic diagram of the parallel symmetrical structure.

To achieve the sequential expansion and driving functions of each level of the spatial
telescope tube, we employ a dual-layer symmetrical structure with an angle of 120◦. This is
accomplished using six identical thin-walled flexible beam triangular unit configurations,
as shown in Figure 9, which represents the overall model of the thin-walled flexible beam
triangular units. Additionally, from Figure 8, it can be observed that the upper and lower
layers of the structure consist of thin-walled flexible beam triangular units on the same side,
forming a new triangular configuration that constitutes one-third of the overall variable-
radius internal driving device structure. As the variable-radius internal driving device is
axially symmetrical, we take a partial structure as an example to derive the kinematics of
the parallel configuration of the driving expansion units.
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Taking the dynamic equation in Section 2.2 as an example, the new triangular configu-
ration is further deduced. The section of the longest thin-walled flexible beam element with
the same triangular configuration of the upper and lower thin-walled flexible beams is set
as A4 and A5. The length is l4 and l5, and the material density is ρ, which are respectively
substituted into Formula (22) to form:

Qy4 =
∫

A4
zdA4, Qy5 =

∫
A5

zdA5

Qz4 =
∫

A4
ydA4, Qz5 =

∫
A5

ydA5

Iyy4 =
∫

A4
z2dA4, Iyy5 =

∫
A5

z2dA5

Izz4 =
∫

A4
y2dA4, Izz5 =

∫
A5

y2dA5

Iyz4 =
∫

A4
yzdA4, Iyz5 =

∫
A5

yzdA5

(29)

After substituting Equation (29) into Equation (15) and obtaining the unit mass matrix,
we employ the direct integration method for dynamic analysis. First, we obtain the nodal
accelerations, and then, utilizing Equations (27) and (28), we determine the nodal veloc-
ities and displacements of the new triangular configuration. Figures 10 and 11 illustrate
the displacement variations of the driving expansion unit in the parallel structure. We
observe that the displacement variations are more uncertain at the free end compared to
the constrained end. This uncertainty arises from the thin-walled flexible beam structure’s
behavior, which exhibits “free end” conditions when not subjected to radial loads but acts
as “constrained end” conditions on the discontinuous surface when under radial loads.
These conditions are not independent but occur as part of a complete process, where the
“free end” temporarily appears due to the unique nature of the internally driven unit with
a variable diameter moving within the spatial sleeve involving a transitional discontinuous
surface (step-like). Consequently, there is a possibility of momentary failure due to axial
friction and radial preloading. Although the occurrence of such a situation is low in proba-
bility, considering the overall stability and reliability of the structure [44], its uncertainty is
greater than that of the “constrained end” conditions. Therefore, our analysis focuses on
the displacement components under the “free end” condition.
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Figure 11. The Y-axis displacement component at the free end node.

Figure 10 shows that the displacement in the X-direction of the local coordinate system
increases negatively with axial expansion, while the radial distance increases positively.
Additionally, Figure 11 demonstrates that the displacement in the Y-direction gradually
increases over time, exhibiting positive growth in the axial distance. These changes in
displacements in the X and Y directions are caused by the reduction in tube diameter.
Figure 12 illustrates the midpoint deflection of the thin-walled flexible beam structure in its
free-end state.
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Figure 12 shows that as the driving expansion unit transitions among the different
stages of the tube, the displacement of the endpoints causes changes in the midpoint
deflection at various locations. This observation indicates that during this motion process,
the thin-walled flexible beam structure in its free-end state undergoes both tensile and
bending deformations. Additionally, Figure 13 illustrates the changes in the displacement
field of the thin-walled flexible beam structure in its free-end state.
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Figure 13. The displacement field state at the free end.

It can be found from Figure 13 that when the time interval is 0.2, the change of L3
changes from the initial state T = 0 to the time of T = 2.0 after realizing the function
of driving and retracting, the thin-walled flexible beam element produces tension and
deformation, resulting in the change of displacement in X and Y directions. Based on the
free end, through the analysis of the motion state of the driving expansion unit in the
space sleeve, combined with the free end and the constraint end, a complete working state
is formed.

Figure 14 illustrates the positional variations of the driving expansion unit at different
time intervals in its complete state. At the four time intervals (0.25 s, 0.5 s, 0.75 s, and
1.0 s), the displacement in the X direction of the thin-walled flexible beam structure shows
more noticeable changes compared to the displacement of the flexible beam structure from
its initial position, while maintaining the same Y height. Similarly, when the X position
remains constant, the displacement in the Y direction also undergoes significant changes,
which align more closely with the structural characteristics of the thin-walled flexible
beam structure.
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Figure 14. Pose variations of the driving deployment unit. (a) At the time of 0.25 s; (b) At the time of
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Figure 15 illustrates the trajectory variations of the axial expansion within the interior
of the tube when the driving expansion unit is in an integrated state, considering both
constrained and unconstrained conditions. The displacement analysis of the overall parallel
structure utilizes a combination of constrained and unconstrained states (free end) as boundary
conditions to better approximate the actual operating state and validate the motion trajectory.
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Figure 15a,b illustrates the nodal displacements of the flexible beam structure and
the thin-walled flexible beam structure using the absolute nodal coordinate formulation
(ANCF) method. Within the time interval of 0 to 0.1 s, the displacement variations of their
centroids in the x and y directions are not significant. This lack of significant displacement
is attributed to the initial motion occurring on the inner surface of the first-level tube. As
the diameter of the tube changes, the displacement gradually increases. However, the
presence of inter-level discontinuous surfaces at the connections between the various levels
of tubes results in observed peaks and valleys during this period.

Figure 15c shows that the thin-walled flexible beam structure exhibits oscillations
in the Z direction compared to the flexible beam structure. This is due to its enhanced
flexibility and the effect of its own weight. On the other hand, Figure 15d illustrates the
angle variations of both the individual and parallel triangle configurations, which consist
of the flexible beam structure and the thin-walled flexible beam structure. It is evident from
the graph that the angle variations of the individual and parallel triangle configurations
with the thin-walled flexible beam structure are more pronounced than those with the
flexible beam structure. In conclusion, the driving and unfolding unit constructed with the
thin-walled flexible beam structure, as described by the ANCF nodal displacement, better
aligns with its operational state within the telescope’s sleeve-type deployable structure.

3. Finite Element Analysis
3.1. Boundary Conditions

The first step involves modeling the variable-radius inner-drive unit using SolidWorks.
Figure 16 presents the complete geometric model of the variable-radius inner-drive unit,
with the right side representing the unit in its fully expanded state, and the left side
depicting the initial stage of axial deployment of the variable-radius inner-drive unit inside
the cylindrical structure. From the figure, it can be observed that the variable-radius inner-
drive unit consists of three groups of axially symmetrical driving and stowing units, divided
into upper and lower layers. During the axial deployment inside the cylindrical structure,
the angle between each group of driving and stowing units remains fixed at 120 degrees.
However, as the diameter of the cylindrical structure decreases, the angle between the two
layers of axially symmetrical driving and stowing units gradually increases.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 18 of 28 
 

structure decreases, the angle between the two layers of axially symmetrical driving and 
stowing units gradually increases. 

 
Figure 16. The geometric model of the variable-radius inner-drive unit. 

We constructed the explicit dynamic coupling field under the radial pre-tensioning 
load state using the Ansys-Workbench Ls-Dyna module [45]. Figure 17 displays the fi-
nite element model of the variable-radius inner-drive unit, comprising 7429 beam ele-
ments used to simulate the driving and stowing units experiencing tensile, compressive, 
and bending loads simultaneously. Additionally, 1847 nonlinear elastic elements are em-
ployed to simulate the flexible connection components. 

 
Figure 17. The finite element model of the variable-radius inner-drive unit. 

To ensure effective analysis and validation, we carefully chose boundary conditions 
that align with the real operating state of the actual prototype. Additionally, the compu-
tational conditions used in the theoretical phase were maintained. The material proper-
ties of the driving and stowing units can be found in Table 1. 

Table 1. Material parameters for the driving-unfolding unit. 

Structural Unit Material Elastic Modulus 𝐄𝐄 Poisson’s Ratio 𝛍𝛍 Density 𝛒𝛒 
Beam structure Aluminum Alloy (2A14) 67.7 GPa 0.33 2800 kg/m3 

Flexible connectors Spring Steel (40Cr) 211 GPa 0.277 7820 kg/m3 

Figure 16. The geometric model of the variable-radius inner-drive unit.

We constructed the explicit dynamic coupling field under the radial pre-tensioning
load state using the Ansys-Workbench Ls-Dyna module [45]. Figure 17 displays the finite
element model of the variable-radius inner-drive unit, comprising 7429 beam elements
used to simulate the driving and stowing units experiencing tensile, compressive, and
bending loads simultaneously. Additionally, 1847 nonlinear elastic elements are employed
to simulate the flexible connection components.
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Figure 17. The finite element model of the variable-radius inner-drive unit.

To ensure effective analysis and validation, we carefully chose boundary conditions
that align with the real operating state of the actual prototype. Additionally, the computa-
tional conditions used in the theoretical phase were maintained. The material properties of
the driving and stowing units can be found in Table 1.

Table 1. Material parameters for the driving-unfolding unit.

Structural Unit Material Elastic Modulus E Poisson’s Ratio µ Density ρ

Beam structure Aluminum Alloy (2A14) 67.7 GPa 0.33 2800 kg/m3

Flexible connectors Spring Steel (40Cr) 211 GPa 0.277 7820 kg/m3

Elastomer JSR 0.0078 GPa 0.47 1040 kg/m3

• Axial forward speed is constant at 5 mm/s;
• Radial pre-tensioning load: 100–150 N. The radial pre-tensioning load is adjusted

within this range based on the variation of the cylindrical structure diameter. For
instance, the radial pre-tensioning load is higher during the transition between the
first-level stages compared to the transition between the second-level stages, and so on;

• Top load: 40 N. The total top load in the full structure state is 120 N, and the designed
variable-radius inner-drive unit follows a 120-degree axially symmetrical structure.
Therefore, one-third of the structure is used for validating the driving and stowing units;

• Boundary contact: Face-to-face contact is used, and the contact options include sliding
friction, rolling friction, and viscoelastic friction in a mixed contact mode. The contact
state remains non-offset in the axial direction;

• Deformation setting: Large deformation (flexural deformation) is enabled. The elas-
tic material, JSR, undergoes certain elastic deformation when in contact with the
discontinuous rigid surface;

• Ambient temperature: 26 degrees Celsius.

3.2. Simulation Analysis

After partitioning the hexahedral mesh, Parts L1, L2, and L3 are set as beam structures.
Figure 18 shows the displacement contour plots of the triangular configuration with thin-
walled flexible beam structures under the parallel configuration at time intervals of 0.25 s,
0.5 s, 0.75 s, and 1.0 s. To provide a clearer view of the driving and stowing units, the
simulation contour plots only display the driving and stowing units.
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Figure 18 illustrates the maximum deformations in the x and y directions at different
time intervals: 0.25 s, 0.50 s, 0.75 s, and 1.00 s. At 0.25 s, the deformations of points L1,
L2, and L3 during the initial stage of the inter-level transition under radial load are not
significant, with a maximum deformation of 0.3425 mm. At 0.50 s, points L1 and L2 undergo
some bending deformation with a maximum deformation of 0.5491 mm, while point L3
is less affected due to symmetric stress distribution. At 0.75 s and 1.00 s, the maximum
deformations in the x and y directions are 0.9417 mm and 1.3621 mm, respectively. During
these intervals, point L1 experiences bending deformation only at the front end, point
L2 undergoes axial deformation with stress concentrated at the contact area with point
L1, and point L3 maintains good bending resistance. Additionally, Figure 19 provides a
comparative analysis of the centroid displacements in different directions of the thin-walled
flexible beam elements during the theoretical stage depicted in Figure 15.

Figure 19a–c depicts the displacements of the centroid of the drive-unfold unit in the X,
Y, and Z directions, respectively. These simulation curves align with the trends observed in
the theoretical stage. In the X-direction centroid displacement graph, a series of peaks and
valleys appears between 0.2 s and 0.5 s due to radial displacement caused by the transition
diameter change during the inter-level transition of the elastic body. The contact between
the elastic material and the discontinuous surface rigid body leads to deformation of the
elastic material, resulting in a peak-to-peak difference of 1.43 mm in the radial direction.
The Y-direction centroid displacement graph shows a phenomenon of axial displacement
regression between 0.4 s and 0.6 s, attributed to elastic rebound during the inter-level
transition when the elastic body contacts the discontinuous surface rigid body, causing a
fluctuation of 0.96 mm. In the Z-direction centroid displacement graph, oscillations occur
due to tangential displacement generated by the compression of the elastic body under
radial load. During the initial stage of the inter-level transition (between 0.35 s and 0.45 s),
the radial load generates stress without adjustment due to the reduction of the transition
diameter, leading to increased compression of the elastic body and an associated increase
in tangential displacement. However, with timely radial load adjustment, the elastic body
undergoes instantaneous radial rebound, resulting in a decrease in tangential displacement.
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Based on the above analysis, the drive-fold unit, when described using the ANCF
method for nodal displacements, exhibits consistent mechanical characteristics during
the internal motion of the space telescope’s tubular deployable structure. Additionally,
under the boundary conditions of a moving speed of 5 mm/s and a load of 60 N, the thin-
walled flexible beam structure, described by the ANCF method for nodal displacements,
demonstrates favorable multidirectional positional variations when subjected to radial
preloading and axial frictional forces. This approach brings it closer to the actual state,
aiming to improve the motion characteristics of the rigid-flexible coupled deformation and
motion precision of the drive-fold unit, ensuring its stability.

4. The Experimental Results and Discussion
4.1. Inter-Level Transition Test

To validate the stability of the parallel triangular configuration structure constructed
based on the theoretical node displacement description using the absolute nodal coordinate
formulation (ANCF), a 1:1 scale experimental prototype was designed and fabricated. The
material selection and boundary conditions were set to be consistent with those used in the
theoretical and simulation stages. The experimental setup can be referred to in Figure 20.
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Figure 20. Test prototype diagram.

During the experiment, various parameters of the driving and stowing units were
monitored using sensors. Figure 21 illustrates the installation positions of the sensors in the
experimental prototype. Displacement sensors, velocity sensors, and angle sensors were
utilized to measure the endpoint displacement, axial movement velocity, and rotational
angle during the unfolding phase of the driving and stowing units.
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Figure 21. Prototype local diagram.

To simplify the motion structure for the experiment, symmetrical elements were
chosen within the variable-radius inner-drive unit, as both the driving and stowing units
exhibit a symmetrical structure. The experimental setup involved a stepped surface to
simulate the non-continuous interior surface of the cylindrical structure. The driving motor
was responsible for providing the driving force to an elastic wheel, while the pre-tensioning
motor applied a radial pre-tensioning load, pressing the elastic wheel against the stepped
surface. Moreover, the driving arm, pre-tensioning components, and pre-tensioning motor
were aligned with the central column and equipped with lubricated ball bearings and guide
rails. These modifications facilitated axial unfolding, combining the traction force from the
elastic wheel with the radial pre-tensioning load from the pre-tensioning components.

The experiment aimed to assess the stability of the parallel triangular configuration
structure with thin-walled flexible beam elements after implementing the ANCF method for
node displacement description, using the same boundary conditions as in the simulation.
Figure 22 illustrates the endpoint displacements in the x and y directions at both the free
and constrained ends during the experimental phase. To obtain a more representative result,
the data were divided into 40 groups and averaged, resulting in four curves representing
the average displacements in the x and y directions for each group.



Appl. Sci. 2023, 13, 8969 21 of 26

Appl. Sci. 2023, 13, x FOR PEER REVIEW 22 of 28 
 

were utilized to measure the endpoint displacement, axial movement velocity, and rota-
tional angle during the unfolding phase of the driving and stowing units. 

 
Figure 21. Prototype local diagram. 

To simplify the motion structure for the experiment, symmetrical elements were 
chosen within the variable-radius inner-drive unit, as both the driving and stowing units 
exhibit a symmetrical structure. The experimental setup involved a stepped surface to 
simulate the non-continuous interior surface of the cylindrical structure. The driving 
motor was responsible for providing the driving force to an elastic wheel, while the 
pre-tensioning motor applied a radial pre-tensioning load, pressing the elastic wheel 
against the stepped surface. Moreover, the driving arm, pre-tensioning components, and 
pre-tensioning motor were aligned with the central column and equipped with lubri-
cated ball bearings and guide rails. These modifications facilitated axial unfolding, com-
bining the traction force from the elastic wheel with the radial pre-tensioning load from 
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The experiment aimed to assess the stability of the parallel triangular configuration 
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Figure 22. The endpoint displacements in the x and y directions. (a) The displacement in the
X-direction at the endpoints; (b) The displacement in the Y-direction at the endpoints.

From Figure 22a,b, we can observe a consistent trend in the average displacements in the
x and y directions for the four groups of endpoints during the experimental phase. However,
noticeable fluctuations occur at the inter-level discontinuities or steps due to the contact
between the stowing unit and the inner wall of the variable-radius inner-drive unit using
an elastic wheel. Specifically, at 0.25 s, there is a peak displacement in the x-direction, and
between 0.25 s to 0.5 s, there is an axial displacement in the y-direction. This phenomenon is
attributed to the transitional phase between levels where the elastic component undergoes
deformation, and the driving and stowing unit experiences its first non-continuous surface.

Upon further comparison with the free-end x and y displacements in Figures 10 and 11, it
becomes evident that the displacement trends of any group in Figure 22 more accurately reflect
the motion state during the same time period. Therefore, combining the free and constrained
ends as a complete motion mode for the driving and stowing unit is a valid approach.

Figure 23 illustrates the trajectory angles during the experimental phase. It is observed
that the rotational angle exhibits peak changes during the intervals of 0.15–0.25 s, 0.45–0.55 s,
and 0.75–0.85 s. This phenomenon is attributed to the transitional phase between levels,
involving the rebound effect of the elastic component and the effect of radial pre-tensioning
load, which leads to a counterclockwise rotation of the trajectory angle. However, as the
driving and stowing unit progresses axially over continuous surfaces and the diameter of
the variable-radius inner-drive unit decreases, the trajectory angle undergoes a clockwise
rotation, resulting in a further increase in the rotational angle.
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Figure 23 displays the trajectory angle during the experimental phase. By analyzing the
trajectory angle in Figure 23 and comparing it with Figure 19d, we observe that the trajectory
angle curves of the four groups in the experimental phase align with the trends observed in
the theoretical and simulation phases. Notably, three peaks occur in the same time frame,
which can be attributed to the stepped surface. Table 2 presents the displacement and
trajectory angle data collected during the combined testing of the prototype at the stepped
surface in the three transitional phases.

Table 2. Test displacements and angular displacements for the 13 transition stages.

Group
01–10 11–20 21–30 31–40

Transition Order 1—Transverse and Longitudinal Displacement Mean (mm) 0.48/0.68 0.42/0.64 0.51/0.68 0.49/0.66
Transition Order 2—Transverse and Longitudinal Displacement Mean (mm) 1.13/1.05 1.16/1.07 1.04/1.11 1.09/1.08
Transition Order 3—Transverse and Longitudinal Displacement Mean (mm) 1.72/1.45 1.62/1.43 1.69/1.46 1.65/1.45

Transition Order 1—Angular Rotation Mean (θ) 97.2 96.8 96.5 96.3
Transition Order 2—Angular Rotation Mean (θ) 119.7 120.4 119.4 120.2
Transition Order 3—Angular Rotation Mean (θ) 137.9 138.2 137.5 137.8

4.2. Discussion

Based on the data obtained from Table 2 during prototype testing at the three transi-
tional phases, we further calculated the average of the four groups to obtain the centroid
motion trajectory data of the driving and expanding unit. Subsequently, the trajectory data
were fitted, and Figure 24 illustrates the comparison and fitting curves of the driving and
expanding unit’s trajectories in the theoretical, simulation, and experimental phases.
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Upon analyzing Figure 24a–c, it is evident that the centroid’s displacement in three
directions of the driving and expanding unit, utilizing thin-walled flexible beam elements
described with the absolute nodal coordinate formulation (ANCF), shows a slight reduc-
tion in the experimental phase compared to the theoretical and simulation phases. The
maximum displacements at peak stages are reduced by 1.81 mm, 2.71 mm, and 0.47 mm,
respectively. This reduction is attributed to the friction between the elastic wheel surface
and the inner wall of the spatial tube. However, the results indicate that the displacements
in all directions are significantly smaller than the dimensional parameters of the driving
and expanding unit and the spatial tube structure, demonstrating a high level of stability
while effectively accomplishing the climbing motion on the inner wall of the spatial tube.

However, during the experimental phase, the model’s beam units were connected
using pin connections, which led to some errors attributed to material processing and
environmental factors. Nevertheless, these errors were within an acceptable range. Com-
paring the experimental results with theoretical and simulated data, the maximum error in
positional changes during the experimental phase was 0.41%, and the minimum error was
0.32%. These errors occurred during the transition from the first stage to the third stage,
likely due to the gradual reduction in the diameter of the spatial sleeve, resulting in more
stable mechanical properties. Additionally, Figure 15d indicated that the rotational angle of
the parallel triangular configuration of the thin-walled flexible beam unit almost perfectly
matched between the simulation and theoretical stages, implying that this error has no
significant impact on the trajectory analysis of the driving and retracting unit. Furthermore,
considering that the structure operates in a space environment with zero gravity during
orbit, such errors can be neglected, especially with the presence of a temperature control
system that prevents material properties from affecting the structure.

The experimental results confirmed the excellent stability of the driving and expanding
unit with a thin-walled flexible beam structure when operating inside the space telescope’s
collapsible structure. The experimental findings align closely with the theoretical and simu-
lation analysis results, showing a high level of consistency. The adoption of a thin-walled
flexible beam structure in the driving and expanding unit not only enhances the structure’s
ability to undergo rigid-flexible coupling deformation, improves its dynamic characteristics,
and enhances motion precision but also facilitates future lightweight design initiatives. For
instance, during the experimental phase, the thin-walled flexible beam structure demon-
strated remarkable performance in handling varying loads and maintaining stability. Thus,
the use of ANCF theory effectively enables the precise description of node displacements
in the triangular configuration of the thin-walled flexible beam structure, ensuring that the
constructed driving and expanding unit operates with excellent stability within the space
telescope’s collapsible structure.

5. Conclusions

To align with future space exploration strategies, research has focused on addressing
issues related to expansion precision, stiffness, and distance in space telescope collapsible
structures when utilizing traditional driving and pre-tensioning devices for axial expansion.
In response to the limitations of conventional driving and pre-tensioning devices, the
concept of a variable-diameter inner-drive device has been proposed. However, achieving
the desired working motion state and design rationality of this variable-diameter inner-
drive device necessitates a shift from a conventional flexible beam structure to a thin-walled
flexible beam structure. Consequently, there is a need to explore space-based methods for
describing the node displacements of the driving and expanding unit with a thin-walled
flexible beam structure, aiming to enhance the structure’s deformability and improve its
motion stability.

This study is based on the theoretical framework of the Space Absolute Nodal Co-
ordinate Formulation (ANCF). Its objective is to analyze the positional states and dis-
placement variations of flexible beam structures, thin-walled flexible beam structures, and
parallel structures with triangular configurations at different nodes. To achieve this, the
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positional states are transformed into the global coordinate system, obtaining the three-
dimensional displacement field and angular rotation variations. The approach involves
using global shape functions and unit absolute nodal coordinate vectors to construct the
element absolute nodal coordinate vector. Additionally, the element shape function matrix
is established by combining the unit shape functions and interpolation polynomials, which
is then inserted into the face position vector of the thin-walled flexible beam structure.
By taking the derivative with respect to time, the study calculates the element kinetic
and strain energies, leading to the derivation of dynamic equations for the thin-walled
flexible beam structure. Furthermore, specialized node descriptions are applied for the
triangular configurations and parallel structures, and fitting analyses are conducted for
the displacement field and attitude of the thin-walled flexible beam structure under both
free-end and overall states.

During the validation work, a prototype model of the driving and unfolding unit
structure was established. The model incorporated the theoretical node displacement de-
scription using the Space absolute nodal coordinate formulation (ANCF) for the thin-walled
flexible beam structure. Coupled analyses were conducted to explore the displacement
variation cloud maps of the structure at different time intervals in the space environment.
The experimental results demonstrated a remarkable consistency between the positional
changes at different time intervals and the fitted curves based on the theoretical Space
ANCF, with an error range between 0.32% and 0.41%. The correctness of the theoretical
Space ANCF in studying the flexible multibody dynamics of the thin-walled flexible beam
structure was successfully verified through the design and fabrication of a 1:1 scale ex-
perimental prototype. Additionally, the effectiveness of the coupled analysis approach in
analyzing the positional responses of the thin-walled flexible beam structure at various
time intervals was thoroughly confirmed.

Due to constraints in knowledge and time, this study is considered preliminary com-
pared to the complexity of space exploration structures. As a part of future work, it is
essential to investigate the impact of the unit structure itself on elastic friction contact
during the inter-level transition phase of the driving deployment unit within the tubular
deployable structure of the space telescope. By understanding the friction factors at differ-
ent times and their relation to the external force applied to the driving deployment unit,
the overall stiffness and motion accuracy can be further enhanced.
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