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Abstract
Nickel–cobalt layered double hydroxide (Ni–Co LDH) is a pseudocapacitance electrode material, which has attracted wide 
attention due to its excellent electrochemical performance, high theoretical capacitance, and a large amount of natural 
resources. However, the current problem is its poor electrical conductivity and the collapse and stacking of the lamellar 
structure during the charging and discharging process. In this paper, carbonized melamine sponge (CMS) was prepared by 
high-temperature calcination, and then, it is compounded with the Ni–Co LDH by further hydrothermal reaction. The resulted 
Ni–Co LDH nanoflake structure induced the improved electrolyte flow and ion transfer. The Ni–Co LDH@CMS electrode 
achieved a specific capacitance of 2039.8 mF  cm−2 and 80.3% capacity retention after 5000 cycles. Then, an all-solid-state 
flexible asymmetric supercapacitor (ASC) was prepared by Ni–Co LDH@CMS as a cathode. When the power density is 
0.699 mW  cm−2, the energy density of the ASC is 66.79 μWh  cm−2. The capacitor retention rate is as high as 85.2% after 
5000 cycles. In addition, Ni–Co LDH@CMS composite was applied to a wearable pressure sensor for monitoring human 
health, which has a fast response time and recovery time of 20 ms, as well as excellent stability after 5000 cycles. This work 
indicates that Ni–Co LDH@CMS composite has an excellent prospect as a kind of flexible versatile material.

Keywords Supercapacitors · Pressure sensors · Flexible electrode material · Ni–Co LDH nanoflakes · Carbonized 
melamine sponge

Introduction

With the rapid progress of science and technology, flexible 
and wearable electronic devices have gradually become 
important in daily life, leading to an increasing demand 
for multi-functional electronic gadgets [1–3]. In recent 
years, energy storage devices, such as lithium-ion batteries, 
sodium-ion batteries, and supercapacitors, as well as sensing 

devices, such as pressure sensors and temperature sensors, 
have gained a lot of attention in the field of electronics [4–8]. 
Supercapacitors have attracted significant attention due to 
their good reversibility and circularity during energy stor-
age processes [9–12]. Moreover, pressure sensors possess 
remarkable features, such as high response speed, excellent 
stability, and wide applicability, making them highly useful 
in fields including medical equipment, human body monitor-
ing, and automatic control [13–15]. To enhance the applica-
tion ability of electrode materials, designing and improving 
their performance are a critical challenge. It has been discov-
ered that metal oxides or hydroxides can generate ultra-high 
pseudocapacitance, which provides promise as an electrode 
material [16–21]. Among these materials, Ni–Co LDH has 
attracted great attention due to its outstanding performance, 
strong redox activity, easy preparation, high specific capaci-
tance (Cs), and low price [22–26]. However, limited electri-
cal conductivity and lamellar structure agglomeration during 
long-term cycling remain issues that need to be addressed to 
further optimize the performance of Ni–Co LDH.
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Carbon-based materials, such as graphene, activated car-
bon (AC), and CMS, exhibit excellent electrical conductiv-
ity and structural stability, making them ideal for combining 
with metal hydroxides to improve the electrochemical perfor-
mance of these materials [27–31]. Zou et al. grew Ni–Co LDH 
nanosheets on a graphene matrix and successfully improved the 
rate performance and cycle stability of electrode materials [32]. 
Sun et al. synthesized NiCo-DH@OAC composite material 
by hydrothermal method using oxidized activated carbon and 
Ni–Co LDH, which successfully improved the Cs and struc-
tural stability of electrode materials [33]. Shan et al. prepared 
Sponge-NiMn hydroxide composite by hydrothermal method 
and then obtained NiMn oxide supported by porous carbon by 
calcination, which greatly increased the active reaction area and 
ensured good cycle stability of the materials [34]. These studies 
demonstrate that combining carbon-based materials with Ni–Co 
LDH enhances the stability of the latter while increasing the 
number of electrochemical reaction active sites, thereby improv-
ing the performance of supercapacitors. Melamine sponge is a 
3D porous material with low cost, high porosity, low density, 
compressibility, good flexibility, and elasticity, making it an 
ideal material with significant practical application potential 
[35–39]. The higher porosity of the melamine sponge enables 
faster ion diffusion in the electrolyte and a larger surface area, 
thus improving the Cs of the supercapacitor [40–44]. Combining 
CMS with Ni–Co LDH is expected to yield a flexible electrode 
material with outstanding performance.

In the present work, we utilized melamine sponge as raw 
material and prepared CMS through high-temperature cal-
cination. Then, Ni–Co LDH nanoflakes were prepared by 
hydrothermal method using CMS as a template. The Ni–Co 
LDH@CMS composite has the Cs of 2039.8 mF  cm−2, and 
its open lamellar structure provides more active sites and 
promotes ion transfer. Moreover, an all-solid-state flexible 
ASC was prepared by Ni–Co LDH@CMS cathode, which 
exhibited good energy density and excellent cycling perfor-
mance. Furthermore, we prepared a pressure sensor utiliz-
ing a Ni–Co LDH@CMS composite material, which shows 
excellent performance in terms of response speed and sta-
bility. Therefore, as a multi-functional material with good 
electrochemical and mechanical properties, Ni–Co LDH@
CMS composite has good application potential in the fields 
of energy storage and pressure sensing.

Experimental

Preparation of Ni–Co LDH@CMS composite

Preparation of CMS

The melamine sponge was subjected to ultrasonic clean-
ing with deionized water and ethanol to remove grease and 

impurities from its surface. Then, the melamine sponge was 
annealed in a nitrogen atmosphere at 800 °C for 150 min to 
obtain CMS.

Preparation of Ni–Co LDH@CMS composite

A total of 0.58 g of nickel nitrate hexahydrate, 0.58 g of 
cobalt nitrate hexahydrate, 0.24 g of urea, and 0.33 g of 
dimethylimidazole were dissolved in 40 ml of methanol by 
magnetic stirring. Then, the CMS and the mixed solution 
were placed together in a 50-ml reactor and heated at 120 °C 
for 10 h to undergo a hydrothermal reaction. After comple-
tion of the reaction, the resulting sample surface was cleaned 
with a large amount of ionized water and dried at 60 °C for 
12 h to obtain the Ni–Co LDH@CMS composite.

Assembly of all‑solid‑state flexible ASCs

AC anode was obtained by grinding and coating AC, PVDF, 
and conductive carbon black (8:1:1) on carbon cloth. The 
PVA/KOH gel film was prepared by dissolving 2.5 g PVA 
in 25 ml DIW and then adding 3 M KOH. The all-solid-state 
flexible ASC was assembled with PVA/KOH gel electrolyte, 
AC anode, and Ni–Co LDH@CMS cathode.

Preparation of the pressure sensor

Ni–Co LDH@CMS is placed on the purchased digital 
interelectrode and packaged in dust-free paper. The pressure 
sensor is then assembled by connecting two copper wires to 
the digital interelectrode through a conductive silver paste.

Results and discussion

Figure 1 is the synthesis procedure of Ni–Co LDH@CMS 
composites. Flexible MS was calcined at high tempera-
tures to prepare CMS. As a 3D network structure material, 
it has more obvious voids and good electrical conductivity 
after carbonization. Then, Ni–Co LDH nanoflakes were 
prepared on CMS by hydrothermal method. Ni–Co LDH 
nanoflakes were tightly wrapped on the CMS surface, 
which enhanced the structural stability and ion transport 
ability of electrode materials (the photographs of the MS, 
CMS, and Ni–Co LDH@CMS material are presented in 
Fig. S1).

Figure 2a shows the X-ray diffraction (XRD) pattern of 
Ni–Co LDH@CMS. The strong diffraction peak at 29.3° 
assigned to CMS appears, which shows that CMS after 
high-temperature calcination has better crystallinity [45]. 
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The diffraction peaks at 10.85, 22.05, 34.36, 39.06, 43.03, 
46.96, and 60.77° can be well attributed to Ni–Co LDH 
(JCPDS card NO. 40-0216), proving the successful prepa-
ration of Ni–Co LDH@CMS composites.

It was further analyzed by X-ray photoelectron spectros-
copy (XPS) spectra. Ni 2p, Co 2p, C 1s, and O 1s peaks can 
be seen in the full XPS spectrum of Fig. 2b. In Fig. 2c, two 
characteristic peaks of Ni  2p1/2 and Ni  2p3/2 of the Ni 2p 
high-resolution spectrum can be discretized and fitted as two 
spin-orbit twins. This indicates the presence of  Ni2+ (872.8 

and 855.1 eV) and  Ni3+ (873.8 and 856.6 eV). Additionally, 
two peaks at 879.5 and 861.3 eV correspond to the Ni  2p1/2 
and Ni  2p3/2 states [46]. Figure 2d displays the high-resolu-
tion Co 2p spectrum, revealing the presence of Co  2p1/2 and 
Co  2p3/2 that can be discretized into two spin-orbit twins. It 
can be seen from the spectral results that  Co2+ (797.2 and 
781.1 eV) and  Co3+ (795.9 and 780.4 eV) coexist. The peaks 
at 802.4eV and 785.6eV can be attributed to Co  2p1/2 and Co 
 2p3/2 states [47]. For C 1s spectrum in Fig. 2e, it can be fitted 
by three peaks (C1: 284.3, C2: 285.2, and C3: 287.9 eV), 

Fig. 1  Schematic illustration of 
the synthesis process of Ni–Co 
LDH@CMS composites

Fig. 2  a XRD pattern and b XPS survey spectrum of Ni–Co LDH@CMS; high-resolution spectra of c Ni 2p, d Co 2p, e C 1s, and f O 1s



4288 Ionics (2023) 29:4285–4293

1 3

corresponding to C=C, C–O, and O=C–O groups, indicat-
ing the presence of CMS [48]. Figure 2f presents the high-
resolution O 1s spectrum which mainly consists of three 
peaks (O1: 530.5, O2: 531.1, and O3: 531.8 eV) [49]. The 
O1, O2, and O3 peaks represent the existence of M–O–H, 
M–O–M, and H–O–H groups, respectively.

The 3D porous network structure of MS is composed of 
branched fibers (Fig. 3a–c), and this 3D porous structure is 
conducive to the transport of ions in the electrolyte solu-
tion. Figure 3d–f is the scanning electron microscopy (SEM) 
images of the Ni–Co LDH@CMS electrode, clearly showing 
the uniform growth of Ni–Co LDH nanoflakes on the CMS 
framework. The diameter of the sponge fiber is about 2 μm, 
while the thickness of the nanoflake can reach the nanoscale. 
As shown in Fig. 3d, the 3D network structure of CMS still 
remains unchanged after the hydrothermal reaction. From 
the SEM images with higher magnification (Fig. 3e, f), it 
can be seen that the thin nanoflake layers of the sample are 
staggered between each other, leaving enough space for the 
electrolyte to fully wet the Ni–Co LDH surface. This struc-
ture effectively increases the active area, thereby improving 
the Cs of supercapacitors. In Fig. 3g–k, the Ni, Co, C, and 
O elements of Ni–Co LDH@CMS are uniformly distrib-
uted in the entire structure. Additionally, Fig. S2a displays 
the nitrogen adsorption and desorption isotherm of Ni–Co 
LDH@CMS, and the BET theoretical model results indicate 
that the material possesses a specific surface area of 18.5  m2 
 g−1. Fig. S2b illustrates the pore size distribution of Ni–Co 

LDH@CMS, revealing a rich mesoporous structure with a 
majority pore size of 30 nm.

To investigate the electrochemical performances of 
Ni–Co LDH@CMS composites, the cyclic voltammetry 
(CV), galvanostatic charge and discharge (GCD), and elec-
trochemical impedance spectroscopy (EIS) methods were 
used for testing and analysis in a three-electrode system with 
3 M KOH electrolyte. Figure 4a shows CV curves of Ni–Co 
LDH@CMS electrode material at different scanning rates. It 
can be observed that the shape of the CV curve remains good 
with the increase in scanning rate, which indicates that the 
Faraday redox reaction occurring on the surface of CMS@
NiCo-LDH electrode material has good reversibility. Fig. S3 
shows CV curves (5 mV  s−1) and GCD curves (1 mA  cm−2) 
of CMS and Ni–Co LDH@CMS. It can be seen that the Cs 
of CMS is negligible compared to the active materials. As 
shown in Fig. 4b, all GCD curves exhibit a clear voltage 
plateau during charge and discharge, which can correspond 
to the redox peak of the CV curve. It has a longer discharge 
time at 1 mA  cm−2, which means a higher Cs. In Fig. S4, the 
Cs of Ni–Co LDH@CMS composites is 2039.8, 1767, 1655, 
672, 580, and 200 mF  cm−2 at 1, 2, 4, 6, 8, and 10 mA  cm−2, 
respectively. In addition, the Ni–Co LDH@CMS composites 
demonstrated competitiveness when compared with other 
active materials (see Table S1). In order to further explore 
the electrochemical performance of the Ni–Co LDH@CMS 
composites, the EIS curve of Ni–Co LDH@CMS is shown 
Fig. 4c (Fig. S5 shows the equivalent circuit diagram). The 

Fig. 3  SEM images of a–c CMS and d–f Ni–Co LDH@CMS. g–k SEM images of element mapping of C, Ni, Co, and O
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charge transfer resistance (Rct) is 1.536 Ω, and the equiva-
lent series resistance (Rs) is 0.834 Ω. Its lower resistance 
shows good ion transfer kinetics of the Ni–Co LDH@CMS 
composite. In addition, the ratio between capacitance control 
and diffusion control can be calculated using the formula:

Here, I represents the total current, K1V represents the 
contribution of capacitance control, and K2V1/2 represents 
the contribution of diffusion control. As depicted in Fig. 4d, 
the capacitance control contribution of the Ni–Co LDH@
CMS electrode is 72.6% at 80  mV−1 (the proportion of 
capacitance control contribution under other scanning rates 
is shown in Fig. S6). Figure 4e illustrates the capacitance 
control contribution of the Ni–Co LDH@CMS electrode 
under different scanning rates. It is evident that the capaci-
tance control process significantly influences the overall 
capacity, indicating the rapid transfer kinetics of Ni–Co 
LDH@CMS. In addition, 5000 cycle stability tests were per-
formed at 20 mA  cm−2. The coulombic efficiency of Ni–Co 
LDH@CMS was basically maintained at 100% in Fig. 4f, 
which indicates that the faradaic redox reaction occurring on 
the composite surface is highly reversible. A total of 80.3% 
of the original capacity is still maintained after 5000 cycle 
tests, indicating its good long-term cycle stability. Fig. S7 (a, 
b) shows the SEM images of Ni–Co LDH@CMS after 5000 
cycles at different magnifications. The layered structure of 
Ni–Co LDH is well maintained, and there is no collapse or 

(1)I = K
1
V + K

2
V

1∕2

stacking of the layered structure. Therefore, Ni–Co LDH@
CMS has good cycle stability.

To investigate the application potential of Ni–Co LDH@
CMS, with Ni–Co LDH@CMS as a cathode, AC@CC 
(carbon cloth) as an anode, and PVA/KOH gel as an elec-
trolyte, an all-solid-state flexible ASC was prepared. In 
Fig. 5a, the voltage window of AC is −1 to 0 V and that of 
Ni–Co LDH@CMS is 0–0.6 V (the electrochemical char-
acteristics of the AC anode are shown in Fig. S8). Thus, 
the voltage range of the combined ASC is up to 1.6 V. A 
safety voltage of 1.4 V has been chosen to ensure the safety 
of flexible ASC. Figure 5b shows CV curves of the ASC at 
different voltage ranges under the condition of 20 mV  s−1. 
The shape of the CV curve is maintained nicely, showing 
the feasibility of manufacturing 1.4 V ASC. Figure 5c illus-
trates the GCD curves of the ASCs under different voltage 
ranges at 5 mA  cm−2. And the GCD curves maintain a good 
shape, indicating its good electrochemical reversibility.

Figure 5d illustrates the device CV curves at different 
scanning speeds. The CV curve maintains a good shape, 
indicating its good rate capability. Figure 5e illustrates the 
GCD curves of the ASCs at various current densities of 1, 2, 
4, 6, 8, and 10 mA  cm−2. And corresponding calculated Cs 
of the device is 245.4, 234.6, 204.8, 188.5, 172, and 157.2 
mF  cm−2, respectively. Fig. S9 shows the Cs of the ASC at 
different current densities. The performance of Cs in the 
present work is compared with other reports in Table S1. 
Even with a 10-fold increase in current density, it can still 

Fig. 4  a CV curves of Ni–Co LDH@CMS at different scan rates; b 
GCD curves of Ni–Co LDH@CMS at different current densities; c 
EIS curve of Ni–Co LDH@CMS; d capacitive contribution of Ni–Co 

LDH@CMS at 80 mV  s−1; e ratio of capacitive controlled and diffu-
sion-controlled contribution at different scan rates; f cycling test of 
Ni–Co LDH@CMS at 20 mA  cm−2 for 5000 cycles
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retain 64% of the original Cs, which shows its good rate 
performance.

To further evaluate the electrochemical performance 
of flexible ASCs, an EIS test was performed. Figure 5f, 
according to the fitting analysis, reveals that the device 
exhibits the low Rs of 1.94 Ω and the Rct of 2.91 Ω, 
indicating its good electrical conductivity. Meanwhile, 
the Ragone diagram presented in Fig. 5g depicts that 
the ASC demonstrates an energy density of 66.79 μWh 
 cm−2 at a power density of 0.699 mW  cm−2 and maintains 
42.78 μWh  cm−2 at 7 mW  cm−2. The performance of the 
ASC is compared with other devices in Table S2. It can 
be noticed that the ASC has a high energy density. The 
cycling stability was investigated through repeated GCD 
tests as shown in Fig. 5h, whereby the ASCs retained the 
85.2% cycle stability at 20 mA  cm−2 after 5000 cycles, 
indicating excellent cycling performance. In addition, as 
shown in Fig. 5i, three ASCs were connected in series 
to achieve a 4.2 V voltage range, successfully driving a 

motor. This demonstrates the practical application value 
of this ASC. The aforesaid results indicate that the Ni–Co 
LDH@CMS composites have great application potential 
in flexible energy storage devices.

In addition, we have applied flexible Ni–Co LDH@
CMS composites to pressure sensors. When subjected 
to external pressure, the three-dimensional skeleton of 
Ni–Co LDH@CMS will deform, causing a change in the 
resistance value inside the material and resulting in an 
electrical output. The sensitivity of the Ni–Co LDH@
CMS pressure sensor can be represented by the slope 
of its curve in Fig. 6a. It exhibits a sensitivity of 0.95 
 kPa−1 in the low-pressure region (0–20 kPa) and 6.49 
 kPa−1 in the high-pressure region (20–33 kPa). Moreover, 
as illustrated in Fig. 6b, the Ni–Co LDH@CMS pres-
sure sensor has a very short response time and recovery 
time (both around 20 ms), indicating an extremely fast 
response speed. To verify the stability of the sensor, we 
have conducted 5000 cycle tests. Figure 6c shows that 

Fig. 5  a CV curves of Ni–Co LDH@CMS and AC@CC at 50 mV 
 s−1; b CV curves and c GCD curves of Ni–Co LDH@CMS//AC all-
solid-state flexible ASC in different voltage ranges; d CV curves of 
the ASC at different scanning rates; e GCD curves of the ASC at dif-

ferent current densities; f EIS curve of the ASC; g Ragone plot of 
the ASC and comparison with other materials; h cyclic stability test 
of the ASC for 5000 cycles at 20 mA  cm−2; i photographs of driven 
devices of one motor by the ASC in series
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no significant current attenuation occurs, indicating its 
good stability. Notably, the Ni–Co LDH@CMS pressure 
sensor can detect human body movements and has a wide 
range of applications. As displayed in Fig. 6d, when gen-
tly pressed with a finger, the intensity and duration of the 
pressure can be clearly observed from its current curve. 
Figure 6e, f demonstrates that it can monitor human joint 
movements, such as finger curvature and palmar exten-
sion. Consequently, Ni–Co LDH@CMS composites hold 
great potential in the field of pressure sensors.

Conclusions

In summary, melamine sponge was carbonized, and a 
dense Ni–Co LDH nanoflake structure was grown on its 
surface by hydrothermal reaction. Based on the synergistic 

effect between Ni–Co LDH and CMS, synthesized Ni–Co 
LDH@CMS composite not only has high Cs, but also 
retains the original flexibility of melamine sponge. At 
the same time, the Ni–Co LDH nanoflakes are closely 
arranged, which not only increases a large number of 
chemical reaction active sites, but also shortens the trans-
mission distance of ions in the electrolyte, making the 
faradaic redox reaction on the electrode material surface 
more sufficient. Ni–Co LDH@CMS composite exhibits a 
high Cs of 2039.8 mF  cm−2 at 1 mA  cm−2. Furthermore, 
an all-solid-state flexible ASC is assembled by Ni–Co 
LDH@CMS cathode material. The device exhibits 66.79 
μWh  cm−2 energy density at 0.699 mW  cm−2 power den-
sity. After 5000 cycles, the capacity retention rate of the 
ASC is 85.2%. Similarly, the Ni–Co LDH@CMS com-
posite material is applied to the pressure sensor, which 
also showed excellent stability and application prospects.

Fig. 6  a Current response of Ni–Co LDH@CMS sensor under differ-
ent pressures (1–33 kPa); b response time and recovery time of the 
sensor; c cycling stability test of the sensor under 20 kPa for 5000 

cycles; the i–t curves of Ni–Co LDH@CMS sensor originate from d 
finger press, e finger curvature, and f palmar extension
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